北京高三高中数学月考试卷带答案解析
北京第二中学高三数学理月考试题含解析

北京第二中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知双曲线的渐近线与圆相切,则双曲线的离心率为()(A)(B)2 (C)(D)3参考答案:B2. 设U={1,2,3,4,5},A,B为U的子集,若A B={2},()B={4},()()={1,5},则下列结论正确的是 ( )A.3 B.3 C.3 D.3参考答案:C3.设且则之间的大小关系是()A. B. C. D.参考答案:答案:B4. 在复平面内,复数对应的点位于A.第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:A5. 等比数列{a n}的前n项和为S n,已知a2a5=2a3,且a4与2a7的等差中项为,则S5=()A.29 B.31 C.33 D.36参考答案:B【考点】等比数列的前n项和.【分析】利用a2?a3=2a1,且a4与2a7的等差中项为,求出数列的首项与公比,再利用等比数列的求和公式,即可得出结论.【解答】解:∵数列{a n}是等比数列,a2?a3=2a1=a1q?=a1?a4,∴a4=2.∵a4与2a7的等差中项为,∴a4 +2a7 =,故有a7 =.∴q3==,∴q=,∴a1==16.∴S5==31.故选:B.6. 已知集合,则A.{0,1} B.{-1,0,1} C.{-2,0,1,2} D.{-1,0,1,2}参考答案:A【分析】化简集合A,根据交集的定义写出A∩B.【详解】,∴故选:A【点睛】在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.7. 下列函数中,既是奇函数又是减函数的是A. B.C. D.参考答案:8. 若i为虚数单位,图1中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数的共轭复数是( ) A.- B. C.-i D.i参考答案:C9. 已知,,,则的大小关系为(A)(B)(C)(D)参考答案:A10. 已知函数,若,则A. B.1 C.2D.4参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知正三棱锥ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________.参考答案:略12. 已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=-2,则实数a=__________.参考答案:-113. 如图,已知△ABC中,点D在边BC上,为的平分线,且.则的值为_______,△ABC的面积为_______________.参考答案:1【分析】在△ABD和△ADC中,分别由正弦定理可得和,进而可求得;设,分别表示出和△ADC的面积,再由二者面积之和为△ABC的面积,可求得的值,进而可求出答案.【详解】在△ABD中,由正弦定理得:,在△ADC中,由正弦定理得:,因为,,所以.设,则,,, 则,解得,即.故.故答案为:;1.【点睛】本题考查了正弦定理在解三角形中的运用,考查了三角形面积公式的运用,考查了学生的计算求解能力,属于中档题.14. 北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),则旗杆的高度为米.参考答案:30【考点】解三角形的实际应用.【分析】先画出示意图,根据题意可求得∠PCB和∠PEC,转化为∠CPB,然后利用正弦定理求得BP,最后在Rt△BOP中求出OP即可.【解答】解:如图所示,依题意可知∠PCB=45°,∠PEC=180°﹣60°﹣15°=105°∴∠CPB=180°﹣45°﹣105°=30°由正弦定理可知=,∴BP=?sin∠BCP=20米∴在Rt△BOP中,OP=PB?sin∠PBO=20×=30米即旗杆的高度为30米 故答案为:30.15. 我市某小学三年级有甲、乙两个班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,现在需要各班按男、女生分层抽取20%的学生进行某项调查,则两个班共抽取男生人数是 .参考答案:11【考点】B3:分层抽样方法.【分析】根据分层抽样的定义即可求出.【解答】解:甲班有男生30人,乙班有男生25人,女生25人,现在需要各班按男生分层抽取20%的学生,故有30×20%+25×20%=6+5=11, 故答案为:11.【点评】本题考查了分层抽样的问题,属于基础题.16. 设向量=(x ,x+1),=(1,2),且⊥,则x= .参考答案:【考点】数量积判断两个平面向量的垂直关系. 【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x 的方程,解方程便可得出x 的值. 【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.17. 在平面直角坐标系下,曲线(t 为参数),,曲线(为参数),若曲线C 1、C 2有公共点,则实数的取值范围为 .参考答案:曲线的方程为,曲线方程为,圆心为,半径为2,若曲线C 1、C 2有公共点,则有圆心到直线的距离,即,所以,即实数的取值范围是。
北京市中学2024-2025学年高三上学期10月月考数学试卷含答案

北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。
北京顺义区第三中学高三数学理月考试卷含解析

北京顺义区第三中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合则S∩T等于A.S B.T C. D.φ参考答案:答案:A2. 已知O为正△ABC内的一点,且满足,若△OAB的面积与△OBC的面积的比值为3,则λ的值为()A.B.C.2 D.3参考答案:C【考点】向量在几何中的应用.【分析】如图D,E分别是对应边的中点,对所给的向量等式进行变形,根据变化后的条件得到=﹣λ,由于正三角形ABC,结合题目中的面积关系得到S△COB=S△ABC,S△COA=S△ABC,由面积之比,O分DE所成的比,从而得出λ的值.【解答】解:由于,变为++λ(+)=0.如图,D,E分别是对应边的中点,由平行四边形法则知+=2,λ(+)=2λ,故=﹣λ,在正三角形ABC中,∵S△COB=S△AOB=×S△ABC=S△ABC,S△COA=S△ACB﹣S△ABC﹣S△ABC=S△ABC,且三角形AOC与三角形COB的底边相等,面积之比为2得λ=2.故选:C.3. 某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B. C.10 D.参考答案:C本题考查了三视图的相关知识,难度中等.由三视图可知,该四面体可以描述为:面,,且,从而可以计算并比较得面的面积最大,为10,故应选C.4. 如右下图是向阳中学筹备2011年元旦晚会举办的选拔主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.84,4.84 B.84,1.6C.85,1.6 D.85,8参考答案:C略5. 如图,球O夹在锐二面角之间,与两个半平面的切点分别为A、B,若球心O到二面角的棱l的距离为2,则球O的表面积为(A) (B)(C) (D)参考答案:A6. 已知点为平面区域上的一个动点,则的取值范围是() A.B.C.D.参考答案:C7. 设曲线上任一点处切线斜率为,则函数的部分图象可以为.参考答案:C略8. 设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()B解答:解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m?α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B9. 设为非零向量,则以下说法不正确的是()A.“”是“”的充分不必要条件B.“”是“”的必要不充分条件C.“”是“存在,使得”的充分不必要条件D.“”是“”的既不充分也不必要条件参考答案:B10. 某几何体的三视图如图所示,则此几何体的体积为(▲ )A.B.1 C.D.参考答案:C该几何体为三棱锥,其直观图如图所示,体积.故选.二、填空题:本大题共7小题,每小题4分,共28分11. 已知数列{a n}满足对,都有成立,,函数,记,则数列{y n}的前13项和为______.参考答案:26【分析】由题意可得,为常数,可得数列为等差数列,求得的图象关于点对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和.【详解】解:对,都有成立,可令即有,为常数,可得数列为等差数列,函数,由,可得的图象关于点对称,,,可得数列的前项和为.故答案为:.【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.12. 已知函数,则.参考答案:略13. 如图,F1,F2是双曲线C:(a>0,b>0) 的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 | AB | : | BF2 | : | AF2 |=3 : 4 : 5,则双曲线的离心率为.参考答案:略14. 在极坐标系中,点到直线的距离等于_____。
北京第十四中学高三数学理月考试卷含解析

北京第十四中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设函数若关于x的方程f(x)=x+a有且只有两个实根,则实数a的范围是A (2,4)B [3,4]C D参考答案:B2. 已知:命题:“是的充分必要条件”;命题:“”.则下列命题正确的是()A.命题“∧”是真命题B.命题“(┐)∧”是真命题C.命题“∧(┐)”是真命题D.命题“(┐)∧(┐)”是真命题参考答案:B略3. 已知的终边在第一象限,则“”是“”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分与不必要条件参考答案:D略4. 阅读如图所示的程序框图,若输入变量n为100,则输出变量S为(A)2500 (B)2550 (C)2600 (D)2650参考答案:B5. 如图所示的程序框图是为了求出满足的最小偶数,那么在空白框中填入及最后输出的值分别是()A.和6 B.和6 C.和8 D.和8参考答案:D6. 若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120°B.150°C.180°D.240°参考答案:C【考点】旋转体(圆柱、圆锥、圆台).【专题】空间位置关系与距离.【分析】由已知中一个圆锥的侧面积是底面积的2倍,可得圆锥的母线是底面半径的2倍,进而得到圆锥侧面展开图的扇形的圆心角.【解答】解:∵圆锥的侧面积为:πrl,圆锥的底面面积为:πr2,∴若一个圆锥的侧面积是底面积的2倍,则圆锥的母线l是底面半径r的2倍,即l=2r,设圆锥侧面展开图的扇形的圆心角为α,则2πl=2πr,即α=180°,故选:C【点评】本题考查的知识点是旋转体,熟练掌握圆锥中,侧面展开图的扇形的圆心角α满足:α:360=r:l=S底:S侧是解答的关键.7. 已知集合,,,则的子集共有()A.2个 B.4个 C.6个 D.8个参考答案:B8. 函数的图象大致为A.B.C.D.参考答案:C9. 若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是( )参考答案:D略10.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为3, 3, 7,则输出的s =( )A .9B .21 C. 25 D .34参考答案:C程序运行过程如下: 第一次循环:, 第二次循环:, 第三次循环:,此时跳出循环,输出的s 值为25. 本题选择C 选项.二、 填空题:本大题共7小题,每小题4分,共28分11. 点M (x ,y )是不等式组表示的平面区域内一动点,定点是坐标原点,则的取值范围是 .参考答案:[0,18] 略12. 设△ABC的三个内角A 、B 、C 所对的三边分别为a, b, c ,若△ABC 的面积为S = a 2-(b -c)2,则= .参考答案:4易知:,又S = a 2-(b -c)2=,所以,所以=4.13. 计算(lg2)2+lg2?lg50+lg25= .参考答案:2【考点】4H :对数的运算性质.【分析】将式子利用对数的运算性质变形,提取公因式,化简求值.【解答】解:原式=2 lg5+lg2?(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2) =2 lg5+2 lg2=2; 故答案为2.14. 已知二次函数的值域为,则的最小值为 。
2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]
![2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]](https://img.taocdn.com/s3/m/4ca444db8662caaedd3383c4bb4cf7ec4afeb6db.png)
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
北京高三下学期3月月考数学试卷(解析版)

2023北京汇文中学高三3月月考数学一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,那么( )()(){|210}A x x x =∈+-<Z {}2,1B =--A B ⋃=A. B. {}2,1,0,1--{}2,1,0--C. D.{}2,1--{}1-【答案】B 【解析】【分析】求解一元二次不等式从而求解集合,再根据并集的定义求解. A A B ⋃【详解】由,得, ()(){|210}A x x x =∈+-<Z {}1,0A =-结合,可知. {}2,1B =--{}2,1,0A B =-- 故选:B . 2. 如果,那么下列不等式一定成立的是( )0a b >>A. B.C. D.a b <11a b>1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ln ln a b >【答案】D 【解析】【分析】根据不等式的性质判断A 、B ,再根据指数函数的性质判断C ,根据对数函数的性质判断D ; 【详解】解:因为,所以,故A 错误;0a b >>0a b >>因为,所以,故B 错误;0a b >>11ab<因为,且在定义域上单调递减,所以,故C 错误;0a b >>12xy ⎛⎫= ⎪⎝⎭1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭因为,且在定义域上单调递增,所以,故D 正确;0a b >>ln y x =()0,∞+ln ln a b >故选:D3. 如果平面向量,,那么下列结论中正确的是( ).(2,0)a =(1,1)b =A. B. C. D.||a b |=|a b ⋅= ()a b b -⊥v v v a b【答案】C 【解析】【详解】由平面向量,知:(2,0)a = (1,1)b =在中,,A ||2a = ||b =r∴,故错误;||||a b ≠A 在中,,故错误;B 2a b ⋅=B 在中,,C (1,1)a b -=-∴,()110a b b -⋅=-=∴,故正确;()a b b -⊥C 在中,∵, D 2011≠∴与不平行,故错误.a bD 综上所述. 故选.C 4. 已知直线m ,n 和平面,如果,那么“m ⊥n”是“m ⊥”的( ) αn ⊂ααA. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【详解】若,则,即必要性成立,m α⊥m n ⊥当时,不一定成立,必须垂直平面内的两条相交直线,即充分性不成立, m n ⊥m α⊥m α故“”是“”的必要不充分条件, m n ⊥m α⊥故选:.B 5. 在等比数列中,,,则等于( ) {}n a 13a =1239a a a ++=456a a a ++A. 9 B. 72C. 9或70D. 9或72-【答案】D 【解析】【分析】利用等比数列的性质求出公比,即可求出的值. 456a a a ++【详解】由题意,,N n *∈在等比数列中,,, {}n a 13a =1239a a a ++=设公比为,q ,即,解得或,21119a a q a q ∴++=23339q q ++=2q =-1q =∴,()334561239a a a a a q a q ++=++=当时,, 1q =4569a a a ++=当时,.2q =45672a a a ++=-故选:D.6. 下列函数中,定义域为的奇函数是 R A. B. C. D.21y x =+tan y x =2x y =sin y x x =+【答案】D 【解析】【详解】定义域为R,所以舍去B,又为偶函数,为非奇非偶函数, 21y x =+y =2x 故选:D.7. 已知双曲线的一个焦点是,则其渐近线的方程为( )2221(0)y x b b-=>(2,0)A. B.0x ±=0y ±=C. D.30x y ±=30x y ±=【答案】B 【解析】【分析】求出的值即得解. b【详解】解:由题得,21+4,b b =∴=所以双曲线的渐近线方程为. y x ==0y ±=故选:B8. 在空间直角坐标系中,正四面体的顶点、分别在轴,轴上移动.若该正四O xyz --P ABC A B x y 面体的棱长是,则的取值范围是( ). 2||OPA. B.C.D.1]-+[1,3]1,2]-1]【答案】A 【解析】【分析】固定正四面体的位置,原点在以为直径的球面上运动,由此根据球的性质可以-P ABC O AB 得到答案.【详解】如图所示,若固定正四面体的位置, -P ABC 则原点在以为直径的球面上运动, O AB 设的中点为, AB M则PM ==所以原点到点的最近距离等于减去球的半径, O P PM M 最大距离是加上球的半径, PM M,11OP -≤≤即的取值范围是. ||OP 1]-+故选:.A9. 如果函数的两个相邻零点间的距离为2,那么()sin (0)f x x x ωωω=+>的值为( ).()()()()1239f f f f ++++LA. 1B.C.D.1-【答案】A 【解析】【分析】利用辅助角公式化简函数,由已知求出,再结合函数式计算作答. ()f x ω【详解】依题意,,函数的周期,而,则,π()2sin(3f x x ω=+()f x 4T =0ω>2ππ2T ω==,ππ()2sin(23f x x =+,, 5π11π(1)(3)2sin2sin 066f f +=+=4π7π(2)(4)2sin 2sin 033f f +=+=所以. ()()()()5π1239(1)2[(1)(2)(3)(4)](1)2sin 16f f f f f f f f f f ++++=++++===L 故选:A10. 如图,已知正方体的棱长为,、分别是棱、上的动点,设1111ABCD A B C D -1E F AD 11B C AE x =,.若棱与平面有公共点,则的取值范围是( )1B F y =1DD BEF x y +A. B.C.D.[]1,213,22⎡⎤⎢⎥⎣⎦3,22⎡⎤⎢⎥⎣⎦[]0,1【答案】A 【解析】【分析】取特殊值和,进行验证,结合排除法可得出结论.1x y ==0x =1y =【详解】由题意,若,则棱与平面交于点,符合题意,此时; 1x y ==1DD BEF D 2x y +=若,,则棱与平面交于线段,符合题意,此时. 1x =0y =1DD BEF 1DD 1x y +=排除B 、C 、D 选项. 故选:A .【点睛】本题考查线面位置关系,考查特殊值法的运用,属于中档题.二、填空题:共5小题,每小题5分,共25分.11. 复数____. 1i1i+=-【答案】 i 【解析】【分析】利用复数的代数形式的四则运算法则求解.【详解】. ()()()21i 1i2i i 1i 1i 1i 11++===--++故答案为:.i 12. 在的展开式中,常数项是__________(用数字作答). 261()x x-【答案】15 【解析】【分析】求出通项,令由此求得展开式中常数项. ()36161 rr r r T C x -+=-,3662r r -==,【详解】在的展开式中,通项 621x x ⎛⎫- ⎪⎝⎭()()2612316611 r r r rr r r r T C x x C x (),---+=-=-令 .故展开式中常数项是 , 3662r r -==,()2261 15 C -=,故答案为 15.【点睛】本题考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 13. 若,则______ ;lg 2lg 21a -==a 【答案】40 【解析】 【分析】利用对数的运算公式,,直接求值即可.log log na a n M M =log log log ()a a a M N MN +=【详解】lg 2lg 21a -=Qlg 2lg 21lg 4lg10lg 40a ∴=+=+=40a ∴=故答案为:4014. 在中,角的对边分别为,若,,,则ABC ,,A B C ,,a b c 3c =π3C =sin 2sin B A ==a __________.【解析】【分析】由正弦定理得到,再由余弦定理求出的值. 2b a =a 【详解】由正弦定理得:,2b a =再有余弦定理得:,22222225591cos 22242a b c a c a C ab a a a +---====⨯⋅解得:. a =故答案为:15. 设函数其中.()3,log ,,x a f x x x a ≤≤=>⎪⎩0a >①若,则______;3a =()9f f =⎡⎤⎣⎦②若函数有两个零点,则的取值范围是______. ()2y f x =-a 【答案】 ①.②.[)4,9【解析】【分析】①代值计算即可;②分别画出与y =2的图象,函数有两个零点,结合图象可得答案.()y f x =()2y f x =-【详解】解:①当时, 3a =()33,log ,3,x f x x x ≤≤=>⎪⎩则, ()39log 92f ==∴()()92f f f ⎡⎤⎣⎦==②分别画出与y =2的图象,如图所示,()y f x =函数有两个零点,结合图象可得4≤a <9, ()2y f x =-故a 的取值范围是. [)4,9;.[)4,9【点睛】本题主要考查函数零点个数的判断,根据函数与方程之间的关系转化为两个函数的交点个数问题是解决本题的关键.注意要利用数形结合.三、解答题:共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 如图,在四边形中,,,,.ABCD //ABCD AB =CD =cos A =1cos 3ADB ∠=(1)求; cos BDC ∠(2)求的长. BC 【答案】(12. 【解析】【分析】(1)计算出、,利用两角和的余弦公式可求得的值; sin A sin ADB ∠cos cosBDC ABD ∠=∠(2)在中,利用正弦定理可求出的长,然后在中利用余弦定理可求得的长. ABD △BD BCD △BC 【详解】(1)因为,,则、均为锐角,cos A =1cos 3ADB ∠=A ADB ∠所以,,,sin A ==sin ADB ∠==()()cos cos cos sin sin cos cos ABD A ADB A ADB A ADB A ADB π∠=--∠=-+∠=∠-∠,13==,则,因此,; //AB CD Q BDC ABD ∠=∠cos cos BDC ABD ∠=∠=(2)在中,由正弦定理可得,ABD △sin sin AB BDADB A=∠可得,sin 3sin AB ABD ADB===∠在中,由余弦定理可得,BCD△2222cos 962311BC BD CD BD CD BDC =+-⋅∠=+-⋅=因此,.BC =【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有、、的齐次式,优先考虑正弦定理“边化角”; a b c (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.17. 如图,在四棱锥中,O 是边的中点,底面.在底面P ABCD -AD PO ⊥,1ABCD PO =ABCD 中,.//,,1,2BC AD CD AD BC CDAD ⊥===(1)求证:平面;//AB POC(2)求二面角的余弦值. B AP D --【答案】(1)证明见解析;(2. 【解析】【分析】(1)证明后可证线面平行;//AB OC (2)以为轴建立空间直角坐标系,用空间向量法求二面角.,,OB OD OP ,,x y z 【详解】(1)由题意,又,所以是平行四边形,所以, BC OA =//BC OA BCOA //AB OC 又平面,平面,所以平面;AB ⊄POC OC ⊂POC //AB POC (2),所以是平行四边形,所以,,而,,//BC OD BC OD =BCDO //OB DC OB CD =CD AD ⊥所以,OB AD ⊥以为轴建立空间直角坐标系,如图,,,OB OD OP ,,x y z 则,,,,,(1,0,0)B (0,1,0)A -(0,0,1)P (1,1,0)AB = (0,1,1)=AP 设平面的一个法向量为,则ABP (,,)n x y z =,取,则,即, 00n AB x y n AP y z ⎧⋅=+=⎨⋅=+=⎩1x =1,1y z =-=(1,1,1)n =- 易知平面的一个法向量是,APD (1,0,0)m =所以cos ,m n m n m n⋅<>===所以二面角. B AP D --【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论;(2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).18. 自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下: 20以下 [)20,30 [)30,40 [)40,50 [)50,60[]60,7070以上 使用人数312 17 6 4 2 0 未使用人数 0314363(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;[)30,50(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人[]50,70X 中年龄在的人数,求随机变量的分布列及数学期望;[)50,60X (Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋. 【答案】;(Ⅱ)详见解析;(Ⅲ)2200 17100【解析】 【分析】(Ⅰ)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有3+14=17人,由概率公式即可得到所求值;(Ⅱ)所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望; X (Ⅲ)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值.【详解】(Ⅰ)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为. 17100P =(Ⅱ)所有的可能取值为1,2,3,X , ()124236C C 115C P X ===, ()214236C C 325C P X ===. ()304236C C 135C P X ===所以的分布列为XX 1 2 3P 15 35 15所以的数学期望为. X 1311232555EX =⨯+⨯+⨯=(Ⅲ)在随机抽取的100名顾客中,使用自由购的共有人,3121764244+++++=所以该超市当天至少应准备环保购物袋的个数估计为. 4450002200100⨯=【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,是一道综合题. 19.已知函数.2()()x k f x x k e =-(Ⅰ)求的单调区间;()f x (Ⅱ)若对于任意的,都有≤,求的取值范围. (0,)x ∈+∞()f x 1ek 【答案】(Ⅰ)当时,的单调递增区间是和:单调递减区间是,当0k >()f x (,)k -∞-(,)k +∞(,)k k -时,的单调递减区间是和:单调递减区间是.0k <()f x (,)k -∞(,)k -+∞(,)k k -(Ⅱ) . 102⎡⎫-⎪⎢⎣⎭,【解析】【分析】【详解】,令,当时,的情况如下: 221()()x k f x x k e k -'=()0,f x x k ='=±0k >(),()f x f x ' x (,)k -∞-k - (,)k k - k (,)k +∞ ()f x '+0 -0 + ()f x 214k e -所以,的单调递增区间是和:单调递减区间是,当时,与()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x 的情况如下:()f x ' x (,)k -∞k (,)k k - k - (,)k -+∞ ()f x '-0 + 0 - ()f x 0 214k e -所以,的单调递减区间是和:单调递减区间是.()f x (,)k -∞(,)k -+∞(,)k k -(Ⅱ)当时,因为,所以不会有当时,由(Ⅰ)知0k >11(1)k k f k e e++=>1(0,),().x f x e ∀∈+∞≤0k <在上的最大值是所以等价于, 解得()f x (0,)+∞24()k f k e -=1(0,),()x f x e ∀∈+∞≤24()k f k e-=1e ≤故当时,的取值范围是. 10.2k -≤<1(0,),()x f x e ∀∈+∞≤k 102⎡⎫-⎪⎢⎣⎭ 20. 已知椭圆的一个顶点为,焦距为. 2222:1(0)x y E a b a b+=>>(0,1)A (1)求椭圆E 的方程;(2)过点作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点(2,1)P -M ,N ,当时,求k 的值.||2MN =【答案】(1) 2214x y +=(2)4k =-【解析】【分析】(1)依题意可得,即可求出,从而求出椭圆方程;22212b c c a b =⎧⎪=⎨⎪=-⎩a (2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直()11,B x y ()22,C x y 线、的方程,表示出、,根据得到方程,解得即可;AB AC M x N x N M MN x x =-【小问1详解】解:依题意可得,,1b =2c =222c a b =-所以,所以椭圆方程为; 2a =2214x y +=【小问2详解】解:依题意过点的直线为,设、,不妨令()2,1P -()12y k x -=+()11,B x y ()22,C x y 1222x x -≤<≤,由,消去整理得, ()221214y k x x y ⎧-=+⎪⎨+=⎪⎩y ()()22221416816160k x k k x k k +++++=所以,解得,()()()222216841416160k k k k k ∆=+-++>0k <所以,, 212216814k k x x k ++=-+2122161614k k x x k+⋅=+直线的方程为,令,解得, AB 1111y y x x --=0y =111M x x y =-直线的方程为,令,解得, AC 2211y y x x --=0y =221N x x y =-所以 212111N M x x MN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦ ()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++, ()()12212222x x k x x -==++所以,()()122122x x k x x -=++()212124k x x x x =+++⎡⎤⎣⎦ 22221616168241414k k k k k kk ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414k k k k k k k ⎡⎤=+-+++⎣⎦+整理得,解得4k =4k =-21. 设数列.如果,且当时,()12:,,,2n A a a a n ≥ {}()1,2,,1,2,,i a n i n ∈= i j ≠,则称数列A 具有性质.对于具有性质的数列A ,定义数列,()1,i j a a i j n ≠≤≤P P ()121:,,,n T A t t t - 其中. ()111,,1,2,,10,k k k k k a a t k n a a ++⎧==-⎨⎩ <>(1)对,写出所有具有性质的数列A ;():0,1,1T A P (2)对数列,其中,证明:存在具有性质的数列()121:,,,2n E e e e n -≥ {}()0,11,2,,1i e i n ∈=- P A ,使得与为同一个数列;()T A E(3)对具有性质的数列A ,若且数列满足P ()115n a a n -=≥()T A ()0,,1,2,,11,i i t i n i ⎧==-⎨⎩ 为奇数为偶数,证明:这样的数列A 有偶数个.【答案】(1)、、4,1,2,33,1,2,42,1,3,4(2)证明见解析(3)证明见解析 【解析】 【分析】(1)根据数列的定义,得到且,,,确定,按照()T A 4n =12a a >23a a <34a a <21a =14a =或分别讨论可得答案;44a =(2)设数列:中恰有项为1,在按照、、三种情况分别讨E 121,,,n e e e - s 0s =1s n =-01s n <<-论可证结论;(3)按照的奇偶分类讨论,结合数列的定义可证结论.n ()T A 【小问1详解】因为,所以,则():0,1,1T A 13-=n 4n =因为,,,所以,,, 10t =21t =31t =12a a >23a a <34a a <又,{1,2,3,4}(1,2,3,4)i a i ∈=所以,或,21a =14a =44a =当时,,14a =342,3a a ==当时,或,44a =133,2a a ==132,3a a ==综上所述:所有具有性质的数列A 为:、、.P 4,1,2,33,1,2,42,1,3,4【小问2详解】由于数列:,其中, E 121,,,n e e e - {0,1}i e ∈(1,2,3,1,2)i n n =-≥ 不妨设数列:中恰有项为1,E 121,,,n e e e - s 若,则符合题意,0s =:,1,,1A n n - 若,则符合题意,1s n =-:1,2,,A n 若,则设这项分别为, 01s n <<-s 12,,,s k k k e e e 12()s k k k << 构造数列,令分别为, 12:,,,n A a a a L 1211,,1,s k k k a a a +++ 1,2,,n s n s n -+-+ 数列的其余各项分别为, A 12,,,n s m m m a a a - 12()n s m m m -<<< ,1,,1n s n s --- 经检验数列符合题意.A 【小问3详解】对于符合题意的数列,1,2:,,(5)n A a a a n ≥ ①当为奇数时,存在数列符合题意,n 11:,,,n n A a a a -'且数列与不同,与相同, A A '()T A ()T A '按这样的方式可由数列构造出数列, A 'A 所以为奇数时,这样的数列有偶数个, n A 当时,这样的数列也有偶数个, 3n =A ②当为偶数时,n 如果是数列中不相邻的两项,交换与得到数列符合题意, ,1n n -A n n 1-A '且数列与不同,与相同, A A '()T A ()T A '按这样的方式可由数列构造出数列, A 'A 所以这样的数列有偶数个,A 如果是数列中相邻的两项,由题设知,必有,,, ,1n n -A 1n a n -=1n a n =-12a n =-除这三项外,是一个项的符合题意的数列, 232,,,n a a a - 3n -A 由①可知,这样的数列有偶数个, A 综上,这样的数列有偶数个.A 【点睛】关键点点睛:正确理解数列的定义,并利用定义求解是解题关键. ()T A。
北京首都师范大学第二附属中学 高三数学理月考试卷含解析

北京首都师范大学第二附属中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,,那么的值为()A. B. C. D.参考答案:A2. 在等比数列中,若公比,且,则()A、 B、 C、 D、参考答案:D略3. 已知角的终边上一点坐标为,则角的最小正值为()A. B. C.D.参考答案:B略4. 已知定义在R上的函数对任意的x满足,当-l≤x<l 时,.函数若函数在上有6个零点,则实数a的取值范围是A. B.C. D.参考答案:B5. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。
则使不等式a?2b+10>0成立的事件发生的概率等于()A. B. C.D.参考答案:D解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。
由不等式a?2b+10>0得2b<a+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、…、9中每一个值,使不等式成立,则共有9×5=45种;当b=6时,a可取3、4、…、9中每一个值,有7种;当b=7时,a可取5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种。
于是,所求事件的概率为。
6. 设全集,集合,,则等于()A. B. C.D.参考答案:答案:B7. 已知函数,正实数m,n满足,且,若在区间上的最大值为2,则A. B. C. D.参考答案:A8. 已知a=log23.6,b=log43.2,c=log43.6,则(A)a>b>c(B)a>c>b (C)b>a>c(D)c>a>b 参考答案:B略9. 执行如下图所示的程序框图,则输出的结果是()A.6 B.8 C.10 D.15参考答案:10. 已知不等式≤的解集不是空集,则实数的取值范围是(A)<2 (B)≤2(C)>2 (D)≥2参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 顾客请一位工艺师把、两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料原料原料则最短交货期为工作日参考答案:42因为第一件进行粗加工时,工艺师什么都不能做,所以最短交货期为天.【考点】本小题以实际问题为背景,主要考查逻辑推理能力,考查分析问题与解决问题的能力.【解析】12. 已知是定义在上的奇函数,且当时,则_________.参考答案:13. 若关于的二元一次方程组有唯一一组解,则实数的取值范围是.参考答案:略14. 设集合,,则(用集合表示)参考答案:略15. 在中,点M ,N 满足,,若,则x-y = .参考答案:16. 在△ABC中,角A,B,C的对边分别为a,b,c,若,,且,则△ABC的面积为___________.参考答案:化简得:当时,(舍)或又,则,解得故答案为17. 的二项展开式中的系数是(用数字作答).参考答案:解析:,所以,系数为.三、解答题:本大题共5小题,共72分。
北京市第一零一中学2024届高三上学期10月月考数学试题(含解析)

北京—零一中2023-2024学年度第一学期高三数学统考一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1已知集合,,则()A. B. C. D. 2. 下列函数中既是偶函数,又在上单调递增的是()A. B. C.D. 3. 已知中,角A ,B ,C 所对的边分别为a ,b ,c ,若,则是()A. 钝角三角形B. 等边三角形C. 等腰直角三角形D. 直角三角形,但不是等腰三角形4. 复数,且为纯虚数,则可能的取值为()A. B.C. D.5. 已知,则下列不等式正确的是()A.B. C. D. 6. 如图,在中,,是直线上的一点,若,则实数的值为()A. -4B. -1C. 1D. 47. 已知正项等比数列的公比为,前项和为,则“”是“”的.{}21012M =--,,,,2{|60}N x x x =--≥M N ⋂={}2101--,,,{}012,,{}2-{}2(0,)+∞3y x =29y x =-y x =1y x=ABC cos cos cos a b cA B C==ABC cos isin z αα=+2z α0π4π3π20a b c <<<b aa b>22a c >()()log log c c a b ->-1122ac⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ABC 14AN NC = P BN 25AP mAB AC =+m {}n a q n n S 1q >1012112+>S S SA 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 如图,在曲柄绕C 点旋转时,活塞A 做直线往复运动,设连杆长为40cm ,曲柄长10cm ,则曲柄从初始位置按顺时针方向旋转60°时,活塞A 移动的距离约为())A. B. C. D. 9. 已知,两点是函数与轴的两个交点,且满足,现将函数的图像向左平移个单位,得到的新函数图像关于轴对称,则的可能取值为()A.B.C.D.10. 已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是.接下来的两项是,,再接下来的三项是,,,依此类推.求满足如下条件的最小整数,.且该数列的前项和为2的整数幂.那么是()A. 83B. 87C. 91D. 95二、填空题共5小题,每小题5分,共25分.11. 函数的定义域为________.12. 已知等差数列的前项和为.若,公差,则的最大值为_______.13. 在△中,角,,所对的边分别为,,,表示△的面积,若,,则__________.14. 已知为等边三角形,且边长为2,则________;若,,则最大值为__________..的CB AB CB CB 0CB 0AA 7.81≈8.37≈8.15cm 6.95cm 5.95cm 3.15cm()1,0A x ()2,0B x ()2sin()1(0,(0,))f x x ωϕωϕπ=++>∈x 12min 3x x π-=()f x 6πy ϕ6π3π23π56π020*********N 50N >N N ()πtan 3f x x ⎛⎫=- ⎪⎝⎭{}n a n n S 19a =2d =-n S ABC A B C a b c S ABC cos cos sin a B b A c C +=2221()4S b c a =+-B ∠=ABC ,AB BC = 1BD = CE EA = AD EB ⋅15. 已知函数给出下列四个结论:①若有最小值,则的取值范围是;②当时,若无实根,则的取值范围是;③当时,不等式的解集为;④当时,若存在,满足,则.其中,所有正确结论的序号为__________.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 已知等差数列满足,.(1)求通项公式;(2)设等比数列满足,,问:与数列的第几项相等?(3)在(2)的条件下,设,数列的前项和为.求:当为何值时,的值最大?17. 如图所示,已知中,为上一点,.(1)求;(2)若,求的长.18. 已知函数.的()πππ,,22πcos ,π2e 4,πx a x xf x x x a x -+⎧⎛⎫+< ⎪⎪⎝⎭⎪⎪=≤≤⎨⎪+>⎪⎪⎩()f x a 1,0π⎡⎤-⎢⎥⎣⎦0a >()f x t =t [][)π,441,a a a ++∞ 12a ≤-()()224f x f x +>+()2,2-1a ≥12x x <()()1210f x f x -<=<120x x +>{}n a 1210a a +=432a a -={}n a {}n b 23b a =37b a =6b {}n a 5n n n c a b =-{}n c n n S n n S ABC DAC π,4,4A AB BD AD AB ∠===>sin ADB ∠sin 2sin BDC C ∠∠=DC ()()()221ln 02f x a x x a x x -=-+≤≤(1)讨论函数的单调性;(2)当时,令,,求证:.19. 已知函数.再从条件①、条件②、条件③这三个条件中选择两个,使得函数的解析式唯一确定(1)求的解析式及最小值;(2)若函数在区间上有且仅有2个零点,求t 取值范围.条件①:函数图象的相邻两条对称轴之间的距离为;条件②:函数的图象经过点;条件③:函数的最大值与最小值的和为1.20. 对于函数,,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数和在点P 处相切,称点P 为这两个函数的切点.设函数,.(1)当,时,判断函数和是否相切?并说明理由;(2)已知,,且函数和相切,求切点P 的坐标;(3)设,点P 的坐标为,问是否存在符合条件的函数和,使得它们在点P 处相切?若点P 的坐标为呢?(结论不要求证明)21. 对于数列定义为的差数列,为的累次差数列.如果的差数列满足,,则称是“绝对差异数列”;如果的累次差数列满足,,则称是“累差不变数列”.(1)设数列:2,4,8,10,14,16;:6,1,5,2,4,3,判断数列和数列是否为“绝对差异数列”或“累差不变数列”,直接写出你的结论;的()f x 1a =()()()()ln g x f x f x x x '=---[]1,2x ∈()12g x ≥()()2sin sin cos 0,f x x x x b b ωωωω=++>∈R ()f x ()f x ()f x ()(),0t t t ->()f x π2()f x π,12⎛⎫⎪⎝⎭()f x ()f x ()g x ()f x ()g x ()()20f x ax bx a =-≠()ln g x x =1a =-0b =()f x ()g x a b =0a >()f x ()g x 0a >1,1e ⎛⎫- ⎪⎝⎭()f x ()g x ()e,1{}n a 1i i i a a a +=-△{}n a 21+=-i i i a a a △△△{}n a {}n a i j a a ≠△△()*,,i j i j ∀∈≠N {}n a {}n a 22j i a a =△△()*,i j ∀∈N {}n a 1A 2A 1A 2A(2)若无穷数列既是“绝对差异数列”又是“累差不变数列”,且的前两项,,(为大于0的常数),求数列的通项公式;(3)已知数列:是“绝对差异数列”,且.证明:的充要条件是.{}n a {}n a 10a =2a a =2i a d =△d {}n a B 12212,,,,n n b b b b -⋅⋅⋅{}{}122,,,1,2,,2n b b b n ⋅⋅⋅=⋅⋅⋅12n b b n -={}{}242,,,1,2,,n b b b n ⋅⋅⋅=⋅⋅⋅北京—零一中2023-2024学年度第一学期高三数学统考二一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,则()A. B. C. D. 【答案】C 【解析】【分析】对一元二次不等式求解得到解集,再计算.【详解】不等式解得或,则,又,所以.故选:C.2. 下列函数中既是偶函数,又在上单调递增的是()A. B. C. D. 【答案】C 【解析】【分析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A ,,为奇函数,不符合题意;对于B ,,为偶函数,在上单调递减,不符合题意;对于C ,,既是偶函数,又在上单调递增,符合题意;对于D ,为奇函数,不符合题意;故选:C .【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.3. 已知中,角A ,B ,C 所对的边分别为a ,b ,c ,若,则{}21012M =--,,,,2{|60}N x x x =--≥M N ⋂={}2101--,,,{}012,,{}2-{}2N M N ⋂260x x --≥2x ≤-3x ≥{}][()2|6023N x x x =--≥=-∞-+∞ ,,{}21012M =--,,,,{}2M N =-I (0,)+∞3y x =29y x =-y x =1y x=3y x =29y x =-(0,)+∞,0,0x x y x x x ≥⎧==⎨-<⎩(0,)+∞1y x=ABC cos cos cos a b cA B C==ABC是()A. 钝角三角形B. 等边三角形C. 等腰直角三角形D. 直角三角形,但不是等腰三角形【答案】B 【解析】【分析】先由正弦定理得,进而得到,即可求解.【详解】由正弦定理得,则,又为三角形内角,则,则是等边三角形.故选:B.4. 复数,且为纯虚数,则可能的取值为()A. B.C. D.【答案】B 【解析】【分析】根据复数代数形式的乘法运算、二倍角公式化简,再复数的概念得到,结合余弦函数的性质求出,即可得解.【详解】因为,所以,因为为纯虚数,所以,所以,,所以,.故选:B5. 已知,则下列不等式正确的是()A.B. C D. 【答案】D 【解析】.tan tan tan A B C ==A B C ==sin sin sin cos cos cos A B CA B C==tan tan tan A B C ==,,A B C A B C ==ABC cos isin z αα=+2z α0π4π3π22z cos 20α=αcos isin z αα=+()2222cos isin cos sin 2sin cos i cos 2sin 2i z αααααααα=+=-+=+2z cos 20sin 20αα=⎧⎨≠⎩π2π2k α=+Z k ∈ππ42k α=+Z k ∈0a b c <<<b aa b>22a c >()()log log c c a b ->-1122ac⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【分析】A 作差法比较大小;B 特殊值法,令即可判断正误; C 令,利用对数函数的性质判断即可;D 根据指数函数的单调性判断大小关系.【详解】A:,又,则,,故,即,错误;B :当时,不成立,错误;C :由,即,当时有,错误;D :由,则,正确.故选:D.6. 如图,在中,,是直线上的一点,若,则实数的值为()A. -4B. -1C. 1D. 4【答案】B 【解析】【分析】根据向量共线定理的推论的推论,根据题意化简,再由即可得解.【详解】由,所以,,由,可得,故选:B7. 已知正项等比数列的公比为,前项和为,则“”是“”的A. 充分不必要条件B. 必要不充分条件1,2a c =-=01c <<22b a b a a b ab--=0a b <<220b a -<0ab >0b a a b -<b a a b <1,2a c =-=22a c >0a b <<0a b ->->01c <<()()log log c c a b -<-0<<a c 11122a c⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ABC 14AN NC = P BN 25AP mAB AC =+m 2AP mAB AN =+21+=m 14AN NC = 15AN AC =225255AP mAB AC mAB AN mAB AN =+=+⨯=+21+=m 1m =-{}n a q n n S 1q >1012112+>S S SC. 充分必要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】由题,变形得即可选出选项【详解】由题:,,即,由于题目给定各项为正,所以等价于公比为.故选:C【点睛】此题考查与等比数列有关的两个条件充分性与必要性,关键在于题目给定各项均为正的前提下如何利用.8. 如图,在曲柄绕C 点旋转时,活塞A 做直线往复运动,设连杆长为40cm ,曲柄长10cm ,则曲柄从初始位置按顺时针方向旋转60°时,活塞A 移动的距离约为())A. B. C. D. 【答案】C 【解析】【分析】作图,在三角形中,根据三角函数求出相关线段的长度,结合图形,即可得出答案.【详解】如图,过点作于点,由已知可得,,,,,1012112+>S S S 1211a a >1012112+>S S S 12111110S S S S ->-1211a a >{}n a 1q >1012112+>S S S CB AB CB CB 0CB 0AA 7.81≈8.37≈8.15cm 6.95cm 5.95cm 3.15cm B 1BB AC ⊥1B 40AB =0040A B =10BC =60ACB ∠=︒所以,,,所以,.在中,由勾股定理可得,,所以,,所以,.故选:C.9. 已知,两点是函数与轴的两个交点,且满足,现将函数的图像向左平移个单位,得到的新函数图像关于轴对称,则的可能取值为()A.B.C.D.【答案】A 【解析】【分析】根据,即可求得,再根据平移后函数为偶函数,即可求得.【详解】令,解得,因为,故令,并取,则,即可求得.此时,向左平移个单位得到,若其为偶函数,则,解得.当时,.160sin 10BB BC =︒==15601cos 102CB BC =︒=⨯=10015B B CB CB =-=1Rt AB B △139.05AB ==≈011039.05534.05AB AB B B =-≈-=00004034.05 5.95AA A B AB =-≈-=()1,0A x ()2,0B x ()2sin()1(0,(0,))f x x ωϕωϕπ=++>∈x 12min 3x x π-=()f x 6πy ϕ6π3π23π56π12min 3x x π-=ωϕ()2sin 10x ωϕ++=()1sin 2x ωϕ+=-12min 3x x π-=21x x >12711,66x x ππωϕωϕ+=+=()2123x x πω-=2ω=()()2sin 21f x x ϕ=++6π2sin 213y x πϕ⎛⎫=+++⎪⎝⎭2,32k k Z ππϕπ+=+∈26k πϕπ=+0k =6πϕ=【点睛】本题考查由三角函数的性质求参数值,属综合中档题.10. 已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是.接下来的两项是,,再接下来的三项是,,,依此类推.求满足如下条件的最小整数,.且该数列的前项和为2的整数幂.那么是()A. 83B. 87C. 91D. 95【答案】D 【解析】【分析】根据题意进行分组,然后分组求和即可.【详解】根据题意将数列分组,第一组为第一项是,第二组为为第二项和第三项是,,依次类推,第组为,,,…,第组含有项,所以第组的和为:,前组内一共含有的项数为:,所以前组内的项数和为:,若该数列的前项和为2的整数幂.,只需将消去即可;若,则,,不满足;若,则,,不满足;若,则,,满足;故满足如条件的最小整数为95.020*********N 50N >N N 020212n 02122212n -n n n 122112nn -=--n ()12n n +n 123121212121=22n n n S n +=-+-+-+⋯+---N 2n --()122=0n ++--=1n ()12=32n n N +=+50N >()1242=0n +++--5n =()13=182n n N +=+50N >()12482=0n ++++--=13n ()14=952n n N +=+50N >N二、填空题共5小题,每小题5分,共25分.11. 函数的定义域为________.【答案】【解析】【分析】根据正切函数的定义域求解即可.【详解】由,,即,,所以函数的定义域为.故答案为:.12. 已知等差数列的前项和为.若,公差,则的最大值为_______.【答案】25【解析】【分析】由已知求出等差数列的通项公式,求出满足的最大值,代入可得的最大值.【详解】,,令,解得,又,则的最大值为故答案为:2513. 在△中,角,,所对的边分别为,,,表示△的面积,若,,则__________.()πtan 3f x x ⎛⎫=- ⎪⎝⎭5ππ,Z 6x x k k ⎧⎫≠+∈⎨⎬⎩⎭πππ32x k -≠+Z k ∈5ππ6x k ≠+Z k ∈()πtan 3f x x ⎛⎫=- ⎪⎝⎭5ππ,Z 6x x k k ⎧⎫≠+∈⎨⎬⎩⎭5ππ,Z 6x x k k ⎧⎫≠+∈⎨⎬⎩⎭{}n a n n S 19a =2d =-n S {}n a 0n a ≥n n S 19a = 2d =-()()912112n a n n \=+-´-=-0n a ≥112n ≤*n ∈N 15n ≤≤n S ()554592252S ´=´+´-=ABC A B C a b c S ABC cos cos sin a B b A c C +=2221()4S b c a =+-B ∠=【答案】【解析】【详解】试题分析:∵,∴,∴,∴,.∵,∴,∴,∴,∴.考点:解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.14. 已知为等边三角形,且边长为2,则________;若,,则的最大值为__________.【答案】 ①.②. 【解析】【分析】根据向量夹角的定义即可求出,根据向量的运算可以得到,由,设,由向量夹角的取值范围即可求解.【详解】因为为等边三角形,所以,所以;因为,所以为中点,所以,设,则,所以,又,4π222cos 2b c a A bc +-=22211sin()24S bcA b c a ==+-11sin 2cos 24bc A bc A =⨯tan 1A =4A π=cos cos sin a B b A c C +=2sin()sin A B C +=sin 1C =2C π=4B π=tan 1A =4A π=cos cos sin a B b A c C +=90C =︒B ABC ,AB BC = 1BD = CE EA = AD EB ⋅23π3,AB BC3AD EB BD BE ⋅=-⋅,BD BE θ= ABC π3ABC ∠=2π,3AB BC = CE EA =E AC ()1122AD EB AB BD BA BC ⎛⎫⋅=+⋅-- ⎪⎝⎭()1111112π1422cos 22222232BA AB BC AB BA BD BC BD BD BA BC=-⋅-⋅-⋅-⋅=⨯-⨯⨯⨯-⋅+ 3BD BE =-⋅,BD BE θ=[]cos 1,1θ∈-1BD BE θθ⎡⋅==∈⎣3AD EB BD BE ⋅=-⋅所以当有最大值故答案为:;15. 已知函数给出下列四个结论:①若有最小值,则的取值范围是;②当时,若无实根,则的取值范围是;③当时,不等式的解集为;④当时,若存在,满足,则.其中,所有正确结论的序号为__________.【答案】②③④【解析】【分析】对①,利用函数的单调性与最值的关系结合函数图象求解;对②,利用函数图象,数形结合求解;对③,利用函数的单调性解不等式;对④,利用函数的切线与导函数的关系,以及图形的对称关系,数形结合求解.【详解】当时,,当时,,若,则当时,,则此时函数无最小值;若,则当时,,时,,则函数有最小值为满足题意;若,则当时,,时,,要使函数有最小值,则,解得;BD BE ⋅= AD EB ⋅3+23π3()πππ,,22πcos ,π2e 4,πx a x xf x x x a x -+⎧⎛⎫+< ⎪⎪⎝⎭⎪⎪=≤≤⎨⎪+>⎪⎪⎩()f x a 1,0π⎡⎤-⎢⎥⎣⎦0a >()f x t =t [][)π,441,a a a ++∞ 12a ≤-()()224f x f x +>+()2,2-1a ≥12x x <()()1210f x f x -<=<120x x +>πx >()()πe44,41x f a a a x -++∈=+ππ2x ≤≤()[]cos 1,0x f x ∈-=0a >π2x <()π(π2f a f x <=0a =π2x <()0f x =πx >()πe4(0,1)x f a x -+∈=+1-a<0π2x <()π()π2f a f x >=πx >()()πe44,41x f a a a x -++∈=+π141a a ≥-⎧⎨≥-⎩104a -≤<综上,的取值范围是,①错误;当时,函数在单调递增,单调递减,单调递减,作图如下,因为无实根,所以或,②正确;当时,因为,所以函数在单调递减,又因为所以由可得,,即,解得,所以,所以不等式的解集为,③正确;a 1,04⎡⎤-⎢⎥⎣⎦0a >()f x π,2⎛⎫-∞ ⎪⎝⎭π,π2⎡⎤⎢⎥⎣⎦()π,+∞()f x t =π4a t a ≤≤41t a ≥+12a ≤-411a +≤-()f x π,2⎡⎫+∞⎪⎢⎣⎭222,44,x x +≥+≥()()224f x f x +>+224x x +<+220x x --<02x ≤<()2,2x ∈-()()224f x f x +>+()2,2-函数在点处的切线斜率为,所以切线方程为,则由图象可知,时,,设,记直线与函数,,的交点的横坐标为,因为经过点,所以由对称性可知,当时,,又因为,所以,④正确;故答案为:②③④.【点睛】关键点点睛:本题的②③④小问都用数形结合的思想,数形结合的思想通常与函数的单调性、最值等有关联,根据单调性、最值,以及一些特殊的点准确作出函数图象是用数形结合来解决问题的关键.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 已知等差数列满足,.()f x π,02⎛⎫⎪⎝⎭π()sin 12f x '=-=-π2y x =-+π,π2x ⎡⎤∈⎢⎥⎣⎦πcos 2x x ≥-+()()()121,0f x f x m ==∈-y m =π(),,2f x x ⎛⎫∈-∞ ⎪⎝⎭π2y x =-+π(),,π2f x x ⎡⎤∈⎢⎥⎣⎦102,,x x x ()2ππ,2f x a x x ⎛⎫=+< ⎪⎝⎭π(,0)2-1a ≥100x x +≥20x x >120x x +>{}n a 1210a a +=432a a -=(1)求的通项公式;(2)设等比数列满足,,问:与数列的第几项相等?(3)在(2)的条件下,设,数列的前项和为.求:当为何值时,的值最大【答案】(1)(2)第63项(3)当时,的值最大【解析】【分析】(1)利用等差数列的定义与通项公式即可得解;(2)先求得,,再利用等比数列的定义与通项公式求得,再令,从而得解;(3)利用分组求和法即可求出,再利用导数求得的单调性,从而得解.【小问1详解】依题意,设等差数列的公差为d ,则,又,得,解得,所以;【小问2详解】设等比数列的公比为q ,则,,所以,,所以,令,解得.故是数列的第63项;【小问3详解】由(2)可知,则,所以,{}n a {}n b 23b a =37b a =6b {}n a 5n n n c a b =-{}n c n n S n n S 22n a n =+4n =n S 2b 3b 6b 6n a b =n S {}n S {}n a 432d a a =-=1210a a +=11210a a ++=14a =42(1)22n a n n =+-=+{}n b 238b a ==3716b a ==321628b q b ===214bb q==576422128b =⨯==22128n a n =+=63n =6b {}n a 11422n n n b -+=⨯=155(22)2n n n n c a b n +=-=+-()()()4224(12)546225421122n n n n n S n ++-=++++-=⨯--⎡⎤⎣⎦- 2225154n n n +=-+++令,则,由于,当时,,函数单调递增;当时,,函数单调递减,且,,所以当时,有最大值且最大值为.17. 如图所示,已知中,为上一点,.(1)求;(2)若,求的长.【答案】(1(2)【解析】【分析】(1)在中,由正弦定理可得答案;(2)由(1)得.法1:由正弦定理、可得,再由余弦定理可得.法2:求出及,再由两角差的正弦展开式求出,在中由正弦定理可得答案.【小问1详解】在中,由正弦定理可得,所以,又因为,所以;()222515)4(N x f x x x x++=-+++∈()2ln 221015x fx x +'=-++N x +∈14x ≤≤()0f x ¢>()f x 5x ≥()0f x '<()f x ()128125754756f =-+++=()4648060480f =-+++=4n =n S 480S =ABC D AC π,4,4A AB BD AD AB ∠===>sin ADB ∠sin 2sin BDC C ∠∠=DC ABD △cos ADB ∠sin 2sin BDC C ∠∠=BC DC sin ∠C cos C ∠sin DBC ∠BDC ABD △sin sin AB BDADB A=∠∠sin sin ABADB A BD∠∠=π,4,4A AB BD ∠===sin ADB ∠==小问2详解】因为,所以,所以,由(1)结论,计算可得法1:由正弦定理可知,又,所以,由余弦定理可得,化简整理得,解得法2:因为且,所以由题意可得,所以所以,在中,由正弦定理可得,所以18. 已知函数.(1)讨论函数的单调性;【AD AB >ABD ADB ∠∠>90ADB ∠<o cos ∠==ADB sin sin BC BDBDC C∠∠=sin 2sin BDC C ∠∠=2BC BD ==2222cos BC BD DC BD DC BDC ∠=+-⋅2300DC +-=DC =sin sin BDC ADB ∠∠==sin 2sin BDC C ∠∠=sin sin 2BDC C ∠∠==C ADB ∠<∠cos C ∠=()sin sin DBC ADB C ∠∠∠=-sin cos cos sin ADB C ADB C∠∠∠∠=⋅-⋅35==BDC sin sin DC BDDBC C∠∠=sin sin DBC DC BD C ∠∠===()()()221ln 02f x a x x a x x -=-+≤≤()f x(2)当时,令,,求证:.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求出,然后分,,三种情况,根据导函数即可得出函数的单调性;(2)代入,化简得出,求导根据导函数得出在上的单调性,进而得出最小值,即可证明.【小问1详解】由已知可得,,定义域为,所以.(ⅰ)当时,.当时,有,上单调递增;当时,有,在上单调递减.(ⅱ)当时,解,可得,或(舍去负值).解可得,或,所以在上单调递增,在上单调递增;解可得,,所以在上单调递减.在1a =()()()()ln g x f x f x x x '=---[]1,2x ∈()12g x ≥()()()2312x a f x x x --='0a =02a <<2a =1a =()233121g x x x x=+--()g x []1,2()221ln x ax a x xf x =-+-()0,∞+()()()22331222x ax a a x x f x x x '--=--+=0a =()()321x f x x --='01x <<()()3210x f x x--=>'()f x ()0,11x >()()3210x f x x--=<'()f x ()1,+∞02a <<()()()23120x ax f x x--=='1x =x =1>()0f x ¢>01x <<x >()f x ()0,1⎫+∞⎪⎪⎭()0f x '<1x <<()f x ⎛ ⎝(ⅲ)当时,在上恒成立,所以,在上单调递增.综上所述,当时,在上单调递增,在上单调递减;当时,在上单调递增,在上单调递减,在上单调递增;当时,在上单调递增.【小问2详解】由(1)知,当时,,,所以,.所以,.解,可得(舍去负值),且,所以.当时,解可得,所以在上单调递增;当时,解,所以在上单调递减.又,,所以,当时,在处取得最小值,2a =()()()232110x x f x x '-+=≥()0,∞+()f x ()0,∞+0a =()f x ()0,1()1,+∞02a <<()f x ()0,1⎛ ⎝⎫+∞⎪⎪⎭2a =()f x ()0,∞+1a =()221ln x x x x f x =-+-()231221x f x xx '=--++()()()()ln g x f x f x x x '=---()22321122ln 1ln x x x x x x x x x =⎛⎫-+----++-- ⎪⎝⎭233121x x x =+--()234326g x x x x '=--+()241326x x x=-+-()0g x '=x =45<<4123<<<12x ≤≤()0g x '>1x ≤<()g x ⎡⎢⎣12x ≤≤()0g x '<2x <≤()g x 2⎤⎥⎦()131211g =+--=()()31212112482g g =+--=<12x ≤≤()g x 2x =()122g =所以有.19. 已知函数.再从条件①、条件②、条件③这三个条件中选择两个,使得函数的解析式唯一确定(1)求的解析式及最小值;(2)若函数在区间上有且仅有2个零点,求t 的取值范围.条件①:函数图象的相邻两条对称轴之间的距离为;条件②:函数的图象经过点;条件③:函数的最大值与最小值的和为1.【答案】(1);(2)【解析】【分析】(1)先将解析式化简,再选择相应条件,结合三角函数的性质逐一分析,从而得解;(2)先求得在附近的五个零点,从而得到关于的不等式组,由此得解.【小问1详解】选条件①②:由题意可知,,函数图象的相邻两条对称轴之间的距离为,则,所以,因为函数的图象经过点,所以,所以,()12g x ≥()()2sin sin cos 0,f x x x x b b ωωωω=++>∈R ()f x ()f x ()f x ()(),0t t t ->()f x π2()f x π,12⎛⎫⎪⎝⎭()f x π124()2f x x ⎛⎫=-+ ⎪⎝⎭min 1()2f x =π3π,44⎡⎫⎪⎢⎣⎭()f x ()f x 0x =t 21cos 21()sin sin cos sin 222x f x x x x b x b ωωωωω-=++=++π1242x b ω⎛⎫=-++ ⎪⎝⎭()f x π2π2π222T ω==1ω=()f x π,12⎛⎫⎪⎝⎭πππ1212242f b ⎛⎫⎛⎫=⨯-++= ⎪ ⎪⎝⎭⎝⎭0b =所以,所以.选择条件①③:函数图象的相邻两条对称轴之间的距离为,则,所以,,函数的最大值与最小值的和为1,所以,则,所以,所以.选条件②③:,函数的最大值与最小值的和为1,所以,则,因为函数的图象经过点,所以,所以所以或,显然此时的值有多个,的解析式唯一确定,所以此种情形不符合题意,舍去.【小问2详解】由(1)知,π124()2f x x ⎛⎫=-+ ⎪⎝⎭min 1()2f x =+()f x π2π2π222T ω==1ω=min max 1(),()2f x b f x =++=12b +()f x 11122b b ++++=0b =π124()2f x x ⎛⎫=-+ ⎪⎝⎭min 1()2f x =+min max 11(),()22f x b f x b =++=+()f x 11122b b ++++=0b =()f x π,12⎛⎫⎪⎝⎭πππ1212242f ω⎛⎫⎛⎫=⨯-+= ⎪ ⎪⎝⎭⎝⎭πsin π4ω⎛⎫-= ⎪⎝⎭πππ2π,44k k ω-=+∈Z π3ππ2π,44k k ω-=+∈Z ω()f x π124()2f x x ⎛⎫=-+ ⎪⎝⎭令,得,所以或,即或,所以在附近的五个零点为,,,,,因为在区间上有且仅有2个零点,所以,为在区间上的两个零点,故,解得,所以的取值范围是.20. 对于函数,,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数和在点P 处相切,称点P 为这两个函数的切点.设函数,.(1)当,时,判断函数和是否相切?并说明理由;(2)已知,,且函数和相切,求切点P 的坐标;(3)设,点P 的坐标为,问是否存在符合条件的函数和,使得它们在点P 处相切?若点P 的坐标为呢?(结论不要求证明)【答案】(1)不相切,理由见解析(2)切点的坐标为.(3)P 的坐标为时,存在符合条件的函数和,使得它们在点P 处相切,P的坐标为时,不存在.π1202()4f x x ⎛⎫=-+= ⎪⎝⎭πsin 24x ⎛⎫-= ⎪⎝⎭ππ22π,44x k k -=-+∈Z π3π22π,44x k k -=-+∈Z π,x k k =∈Z ππ,4x k k =-+∈Z ()f x 0x =πx =-π4x =-0x =3π4x =πx =()f x ()(),0t t t ->π4x =-0x =()f x ()(),0t t t ->ππ43π04t t ⎧-<-≤-⎪⎪⎨⎪≤<⎪⎩π3π44t ≤<t π3π,44⎡⎫⎪⎢⎣⎭()f x ()g x ()f x ()g x ()()20f x ax bx a =-≠()ln g x x =1a =-0b =()f x ()g x a b =0a >()f x ()g x 0a >1,1e ⎛⎫- ⎪⎝⎭()f x ()g x ()e,1P (1,0)1,1e ⎛⎫- ⎪⎝⎭()f x ()g x ()e,1【解析】【分析】(1)根据两函数相切可得,即可说明求解;(2)根据题意可知函数和在切点处满足,即可求解;(3)根据两个函数存在切点,则有,即,将所给的两个点坐标分别代入即可求解.【小问1详解】当,时,,,,,令,即无解,所以函数和不相切.【小问2详解】因为,,所以,,,设切点为,则,消去得,(*)注意到,所以,设函数,,令,解得或(舍),令,解得;令,解得;所以函数在单调递增,单调递减,()()f x g x ''=()f x ()g x (,)P s t 2ln 12as as sas a s ⎧-=⎪⎨-=⎪⎩2ln 12ax bx xax b x ⎧-=⎪⎨-=⎪⎩22ln 21ax bx x ax bx ⎧-=⎨-=⎩1a =-0b =()2f x x =-()lng x x =()2f x x '=-()1g x x'=()()f x g x ''=12x x-=()f x ()g x a b =0a >()()20f x ax ax a =->()2f x ax a '=-()1g x x'=(,),(0)P s t s >2ln 12as as s as a s ⎧-=⎪⎨-=⎪⎩a 1ln 21s s s -=-10(21)a s s =>-12s >11()ln ,,212x F x x x x -⎛⎫=-∈+∞ ⎪-⎝⎭2(41)(1)()(21)x x F x x x ---'=-()0F x '=1x =14x =()0F x '>112x <<()0F x '<1x >11()ln ,,212x F x x x x -⎛⎫=-∈+∞ ⎪-⎝⎭1,12⎛⎫⎪⎝⎭()1,+∞所以,所以(*)方程有且仅有一个解为,于是,所以切点的坐标为.【小问3详解】,,若两个函数存在切点,则有,即,假设存在P 的坐标为,则,即,解得,满足题意,所以P 的坐标为,存在符合条件的函数和,使得它们在点P 处相切,此时,.假设存在P 的坐标为,则,解得,不满足题意,所以P 的坐标为,不存在符合条件的函数和,使得它们在点P 处相切.21. 对于数列定义为的差数列,为的累次差数列.如果的差数列满足,,则称是“绝对差异数列”;如果的累次差数列满足,,则称是“累差不变数列”.(1)设数列:2,4,8,10,14,16;:6,1,5,2,4,3,判断数列和数列是否为“绝对差异数列”或“累差不变数列”,直接写出你的结论;max ()(1)0F x F ==1s =ln 0t s ==P (1,0)()2f x ax b '=-()1g x x'=2ln 12ax bx xax b x ⎧-=⎪⎨-=⎪⎩22ln 21ax bx x ax bx ⎧-=⎨-=⎩1,1e ⎛⎫- ⎪⎝⎭221e e 21e e a b a b ⎧-=-⎪⎪⎨⎪-=⎪⎩221e e 21e ea ba b ⎧-=-⎪⎪⎨⎪-=⎪⎩22e 3e a b ⎧=⎨=⎩1,1e ⎛⎫- ⎪⎝⎭()f x ()g x ()222e 3e f x x x =-()ln g x x =()e,122e e 12e e 1a b a b ⎧-=⎨-=⎩01e a b =⎧⎪⎨=-⎪⎩()e,1()f x ()g x {}n a 1i i i a a a +=-△{}n a 21+=-i i i a a a △△△{}n a {}n a i j a a ≠△△()*,,i j i j ∀∈≠N {}n a {}n a 22j i a a =△△()*,i j ∀∈N {}n a 1A 2A 1A 2A(2)若无穷数列既是“绝对差异数列”又是“累差不变数列”,且的前两项,,(为大于0的常数),求数列的通项公式;(3)已知数列:是“绝对差异数列”,且.证明:的充要条件是.【答案】21. 答案见解析22. 答案见解析23. 证明见解析【解析】【分析】(1)根据定义分析判断即可;(2)根据题意分析可知为定值,利用累加法结合等差数列运算求解;(3)根据“绝对差异数列”结合充分、必要条件分析证明.【小问1详解】对于数列:2,4,8,10,14,16;可得:差数列为:2,4,2,4,2,不满足,所以不是“绝对差异数列”;累次差数列为:2,,2,,满足,所以是“累差不变数列”,对于数列:6,1,5,2,4,3;可得:差数列为:,4,,2,,不满足,所以不是“绝对差异数列”;累次差数列为:9,,5,,不满足,所以不是“累差不变数列”.【小问2详解】因为,则,反证:假设不是定值,即存在,使得,可得,即,这与既是“绝对差异数列”相矛盾,假设不成立,所以为定值,①若,即,可知数列是以首项为,公差为的等差数列,{}n a {}n a 10a =2a a =2i a d =△d {}n a B 12212,,,,n n b b b b -⋅⋅⋅{}{}122,,,1,2,,2n b b b n ⋅⋅⋅=⋅⋅⋅12n b b n -={}{}242,,,1,2,,n b b b n ⋅⋅⋅=⋅⋅⋅2i a △1A i j a a ≠△△2-2-22j i a a =△△2A 5-3-1-i j a a ≠△△7-3-22j i a a =△△2i a d =△2=±i a d △2i a △*k ∈N 2210++=k k a a △△()()1210+++--+=k k k k a a a a △△△△2+=k k a a △△{}n a 2i a △2=i a d △1+-=i i a a d △△{}n a △211=-=a a a a △d当时,则,当时,符合上式,综上所述:;②若,同理可得;综上所述:若,;若,.【小问3详解】因为,根据集合的互异性可知,,则,又因为数列是“绝对差异数列”,则,,充分性:若,可得,即,所以,若差数列为,符合的排序只能为;若差数列为,符合的排序只能为或,若差数列为,符合排序只能为或,若差数列为,符合的排序只能为或或或,的2n ≥()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+()()()12111212----=+⋅⋅⋅++=+-+n n n n a a a a n a d △△△1n =10a =()()()1212--=-+n n n a n a d 2=-i a d △()()()1212--=--n n n a n a d 2=i a d △()()()1212--=-+n n n a n a d 2=-i a d △()()()1212--=--n n n a n a d {}{}122,,,1,2,,2n b b b n ⋅⋅⋅=⋅⋅⋅≠i j b b ()*,,i j i j ∀∈≠N 1,2,,21,1,2,,21=⋅⋅⋅-=⋅⋅⋅-i n i b n △B ≠i j b b △△()*,,i j i j ∀∈≠N 21-=-n b b n ()()()12212122212----=-+-=+⋅⋅⋅+--n n n n n b b b b b b b b n 21221--++⋅⋅⋅+=-n n b b b n △△△*12,,22i mb m n m m -⎧=≤∈⎨-⎩N 12n -2,1n 22n -2,2,1n 2,1,21-n n 32n -21,2,2,1-n n 2,1,21,2-n n 24n -3,21,2,2,1-n n 21,2,2,1,23--n n n 2,1,21,2,22--n n n 4,2,1,21,2-n n若排序为,则当差数列为时,无法排序,不合题意;若排序为,则当差数列为时,无法排序,不合题意;所以符合的排序只能为或,利用数学归纳法证明:当差数列为,符合的排序为,显然,符合题意;假设在差数列有意义的前提下:当差数列为,符合的排序为;则当差数列为时,符合的排序为或,当差数列为时,对于可得符合的排序为;对于,无法排序;所以符合的排序为,即当差数列为,符合的排序为;所以当差数列为,符合的排序为,成立;同理可证:当差数列为,符合的另一种排序为;依次类推,可得其排列为或,所以,故充分性成立;若,则,若差数列为,则符合的排序为或,若差数列为,则符合的排序为或或或,21,2,2,1,23--n n n 52n -4,2,1,21,2-n n 52n -3,21,2,2,1-n n 2,1,21,2,22--n n n 122--+n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n 1i =122--+n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n 22-n i 1,21,,,21,2,2,1+-+⋅⋅⋅-i n i i n n 21,,,21,2,2,1,221-+⋅⋅⋅--+n i i n n n i ()1221221--++=-++n i n i 1,21,,,21,2,2,1+-+⋅⋅⋅-i n i i n n ()211,1,21,,,21,2,2,1-+-+-+⋅⋅⋅-n i i n i i n n 21,,,21,2,2,1,221-+⋅⋅⋅--+n i i n n n i ()211,1,21,,,21,2,2,1-+-+-+⋅⋅⋅-n i i n i i n n 122--+n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n 122--+n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n 122--+n i 2,1,21,2,,21,-⋅⋅⋅-+n n n i i 1,,2,1,3,2,,2,2,1++-+-⋅⋅⋅n n n n n n n 2,1,21,2,23,3,,1,--⋅⋅⋅+n n n n n {}{}242,,,1,2,,n b b b n ⋅⋅⋅=⋅⋅⋅{}{}242,,,1,2,,n b b b n ⋅⋅⋅=⋅⋅⋅{}{}2131,,,1,2,,2-⋅⋅⋅=++⋅⋅⋅n b b b n n n ()21±-n 2,1n 1,2n ()22±-n 2,2,1n 2,1,21-n n 1,2,2n 21,1,2-n n若差数列为,则符合的排序为或,因为的排序为,不合题意,的排序为,不合题意,所以若差数列为,则符合的排序为,若差数列为,则符合的排序为或,若差数列为,则符合的排序为或,利用数学归纳法证明:当差数列为时,符合的的排序为,当时,成立;假设在差数列有意义的前提下:当差数列为,符合的排序为;当差数列为,符合的排序为或,当差数列为,对于可得排序为,对于则无法排序,所以当差数列为,符合的排序为;同理可证:当差数列为,符合的排序为;此时满足数列是“绝对差异数列”的排序只有两种:或,则,必要性成立;所以充要条件是.的()23±-n 21,2,2,1-n n 2,1,21,2-n n 1,2,2n 1,2,2,21-n n 21,1,2-n n 2,21,1,2-n n ()21±-n 2,1n ()22±-n 2,2,1n 2,1,21-n n ()23±-n 21,2,2,1-n n 2,1,21,2-n n ()212±+-n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n 1i =()212±+-n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n ()22±-n i 1,21,,,21,2,2,1+-+⋅⋅⋅-i n i i n n 21,,,21,2,2,1,22-+⋅⋅⋅--n i i n n n i ()()2121±+-+n i 1,21,,,21,2,2,1+-+⋅⋅⋅-i n i i n n ()211,1,21,,,21,2,2,1-+++-+⋅⋅⋅-n i i n i i n n 21,,,21,2,2,1,22-+⋅⋅⋅--n i i n n n i ()212±+-n i 21,,,21,2,2,1-+⋅⋅⋅-n i i n n ()212±+-n i 2,1,21,2,,21,-⋅⋅⋅-+n n n i i B 1,,2,1,3,2,,2,2,1++-+-⋅⋅⋅n n n n n n n 2,1,21,2,23,3,,1,--⋅⋅⋅+n n n n n ()()()112232221--=-+-+⋅⋅⋅+-n n n b b b b b b b b ()1221-=-++⋅⋅⋅+=-n n b b b △△△12n b b n -={}{}242,,,1,2,,n b b b n ⋅⋅⋅=⋅⋅⋅【点睛】方法点睛:本题主要考查数列新定义的问题,处理此类问题时,通常根据题中新定义的概念,结合已知结论求解,根据题中的定义,结合等差数的通项公式与求和公式进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.设为两个非空实数集合,定义集合,若,,则中元素的个数为()A.9B. 8C. 7D. 62.设,则大小关系为()A.B.C.D.3.已知向量与的夹角为,则等于()A.5B.4 C.3D.14.向量,,,为了得到函数的图象,可将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度5.等比数列中,,=4,函数,则()A.B.C.D.6.函数则不等式的解集是()A.B.C.D.7.函数与有相同的定义域,且都不是常值函数,对于定义域内的任何, 有,,且当时,,则的奇偶性为()A.奇函数非偶函数B.偶函数非奇函数C.既是奇函数又是偶函数D.非奇非偶函数8.设非空集合满足:当,给出如下三个命题:①若;②若③若;其中正确的命题的个数为()A.0个B.1个C.2个D.3个二、填空题1.若数列满足(,为常数),则称数列为调和数列.记数列=" " .2.若等边的边长为,平面内一点满足,则=_________.3.已知变量满足,设, 若当取得最大值时对应的点有无数个,则值为.4.在△中,内角的对边分别是,若,,则A角大小为.5.若某空间几何体的三视图如图所示,则该几何体的体积为.6.已知是定义在上不恒为零的函数,对于任意的,都有成立.数列满足,且.则数列的通项公式__________________ .三、解答题1.如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(1)若,求的值;(2)设函数,求的值域.2.在等比数列{}中,,公比,且,与的等比中项为2.(1)求数列{}的通项公式;(2)设,数列{}的前项和为,当最大时,求的值.3.(本小题满分13分)正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否存在一点,使?证明你的结论.4.(本小题满分13分)已知函数(1)当时,求曲线处的切线方程;(2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求.5.(本小题满分14分)设数列的前项和为,且.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.6.(本小题满分14分)已知函数(1)当时,求函数的单调区间;(2)求函数在区间上的最小值.北京高三高中数学月考试卷答案及解析一、选择题1.设为两个非空实数集合,定义集合,若,,则中元素的个数为()A.9B. 8C. 7D. 6【答案】B【解析】略2.设,则大小关系为()A.B.C.D.【答案】A【解析】略3.已知向量与的夹角为,则等于()A.5B.4 C.3D.1【答案】B【解析】略4.向量,,,为了得到函数的图象,可将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】D【解析】略5.等比数列中,,=4,函数,则()A.B.C.D.【答案】C【解析】略6.函数则不等式的解集是()A.B.C.D.【答案】C【解析】略7.函数与有相同的定义域,且都不是常值函数,对于定义域内的任何, 有,,且当时,,则的奇偶性为()A.奇函数非偶函数B.偶函数非奇函数C.既是奇函数又是偶函数D.非奇非偶函数【答案】B【解析】略8.设非空集合满足:当,给出如下三个命题:①若;②若③若;其中正确的命题的个数为()A.0个B.1个C.2个D.3个【答案】D【解析】略二、填空题1.若数列满足(,为常数),则称数列为调和数列.记数列=" " .【答案】20【解析】略2.若等边的边长为,平面内一点满足,则=_________.【答案】-2【解析】略3.已知变量满足,设, 若当取得最大值时对应的点有无数个,则值为.【答案】【解析】略4.在△中,内角的对边分别是,若,,则A角大小为.【答案】【解析】略5.若某空间几何体的三视图如图所示,则该几何体的体积为.【答案】1【解析】略6.已知是定义在上不恒为零的函数,对于任意的,都有成立.数列满足,且.则数列的通项公式__________________ .【答案】【解析】略三、解答题1.如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(1)若,求的值;(2)设函数,求的值域.【答案】(1)(2)【解析】(本小题满分13分)解:(1)由已知可得…………………………2分……………………3分…………………………4分(2)……………………6分………………………………7分………………………………8分………………………………9分………………………………12分的值域是………………………………13分2.在等比数列{}中,,公比,且,与的等比中项为2.(1)求数列{}的通项公式;(2)设,数列{}的前项和为,当最大时,求的值.【答案】(1)(2)n=8或n=9【解析】略3.(本小题满分13分)正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否存在一点,使?证明你的结论.【答案】(1)略(2)(3)在线段BC上存在点P使AP⊥DE【解析】(本小题满分13分)解:法一:(1)如图:在△ABC中,由E、F分别是AC、BC中点,得EF//AB,又AB平面DEF,EF平面DEF.∴AB∥平面DEF.(2)∵AD⊥CD,BD⊥CD∴∠ADB是二面角A—CD—B的平面角∴AD⊥BD ∴AD⊥平面BCD取CD的中点M,这时EM∥AD ∴EM⊥平面BCD过M作MN⊥DF于点N,连结EN,则EN⊥DF∴∠MNE是二面角E—DF—C的平面角…………6分在Rt△EMN中,EM=1,MN=∴tan∠MNE=,cos∠MNE=………………………8分(3)在线段BC上存在点P,使AP⊥DE……………………10分证明如下:在线段BC上取点P。
使,过P作PQ⊥CD与点Q,∴PQ⊥平面ACD ∵在等边△ADE中,∠DAQ=30°∴AQ⊥DE∴AP⊥DE…………………………13分法二:(2)以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,则A(0,0,2)B(2,0,0)C(0,……4分平面CDF的法向量为设平面EDF的法向量为则即所以二面角E—DF—C的余弦值为…8分(3)在平面坐标系xDy中,直线BC的方程为设…………12分所以在线段BC上存在点P,使AP⊥DE ………………14分另解:设又…………………12分把所以在线段BC上存在点P使AP⊥DE (13)4.(本小题满分13分)已知函数(1)当时,求曲线处的切线方程;(2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求.【答案】(1)y="x" - 2(2)【解析】(本小题满分13分)(1)解:当a=1,b=2时,因为f’(x)=(x-1)(3x-5)…………..2分故 (3)f(2)="0, " (4)所以f(x)在点(2,0)处的切线方程为y="x" - 2 ...........5分(2)证明:因为f′(x)=3(x-a)(x-), (7)由于a<b.故a<.所以f(x)的两个极值点为x=a,x=………..9分不妨设x1=a,x2=,因为x3≠x1,x3≠x2,且x3是f(x)的零点,故x3=b. (10)又因为-a=2(b-),x4=(a+)=,所以a,,,b依次成等差数列,所以存在实数x4满足题意,且x4=. (13)5.(本小题满分14分)设数列的前项和为,且.(1)求数列的通项公式;(2)设,数列的前项和为,求证:.【答案】(1)(2)略【解析】(本小题满分14分)解:当时,.……1分当时,.……3分∵不适合上式,∴…4分(2)证明: ∵.当时,当时,,①.②①-②得:得,……8分此式当时也适合.∴N.∵,∴.……10分当时,,∴.……12分∵,∴.故,即.综上,.……………..14分6.(本小题满分14分)已知函数(1)当时,求函数的单调区间;(2)求函数在区间上的最小值.【答案】(1)单调递减区间是,(2)当时,【解析】(1)解:⑴当时, ,.由得, 解得或.注意到,所以函数的单调递增区间是.由得,解得,注意到,所以函数的单调递减区间是.⑵当时,,,由得,解得,注意到,所以函数的单调递增区间是.由得,解得或,由,所以函数的单调递减区间是.综上所述,函数的单调递增区间是,;单调递减区间是,.┅┅┅┅5分(2)当时,,所以………7分设.⑴当时,有, 此时,所以,在上单调递增.所以………… 9分⑵当时,.令,即,解得或(舍);令,即,解得.①若,即时, 在区间单调递减,所以.②若,即时, 在区间上单调递减, 在区间上单调递增,所以.③若,即时, 在区间单调递增,所以.…………..13分综上所述,当或时, ;当时, ;当时, .┅┅┅┅14分。