高三数学高职班月考题.

合集下载

2020—2021学年度中职高三数学月考试题卷(有答案)

2020—2021学年度中职高三数学月考试题卷(有答案)

2020—2021学年度中职高三数学月考试题卷姓名________________ 准考证号________________本试题卷共三大题,共4页。

满分120分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔填写在答题卡和试卷上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题用0.5毫米黑色字迹的签字笔将答案写在答题卡规定位置上。

3.所有试题均需在答题卡上作答,在试卷和草稿纸上作答无效。

4.考试结束后,将试卷和答题卡一并交回。

一、选择题(本大题共20小题,每小题3分,共60分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错选、多选或未选均无分。

1.已知命题p:对∀x∈R,都有x2>0,则⌝p是________.()A.∃x0∈R,使得x20<0B.∃x0∈R,使得x20≤0C.∀x0∈R,都有x20<0D.∀x∈R,都有x2≤02.已知函数f(x)是偶函数,且其定义域是[3a,a+4],则a的值为________.()A.1B.-1C.2D.-23.若二次函数f(x)=(a-2)x2+(a2-4)x+2是偶函数,则a=________.()A.2B.-2C.±2D.无法确定4.设命题p∨q和⌝q都是真命题,则________. ()A.p真q假B.p假q真C.p假q假D.p真q真5.满足{1,2}⊂≠A⊆{1,2,3,4}的集合A有________. ()A.1个B.2个C.3个D.4个6.若函数f(x)=3x2+(a-1)x+5在区间(-∞,1]上是减函数,则a的取值范围是________.()A.{-5}B.(-∞,-5]C.{5}D.[5,+∞)7.若函数y=f(x)(x∈R)是偶函数,且在区间[0,+∞)上是增函数,则下列关系正确的是________. ()A.f(-1)>f(2)>f(-3)B.f(2)>f(-1)>f(-3)C.f(-3)>f(2)>f(-1)D.f(-3)>f(-1)>f(2)8.已知函数f(x)=4x2-mx+5在区间[2,+∞)上是增函数,在区间(-∞,2)上是减函数,则m的值是________. ()A.8B.-8C.16D.-169.下列函数中是偶函数的是________. ()A.y=cos xB.y=sin xC.y=(x-1)2D.y=a x10.已知奇函数f(x)在区间[3,7]上是增函数,且最小值为5,那么函数f(x)在区间[-7,-3]上是________. ()A.增函数且最小值为-5B.增函数且最大值为-5C.减函数且最小值为-5D.减函数且最大值为-511.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使f(x)<0的x的取值范围是________. ()A.(-∞,2]B.(-2,2)C.(-∞,2)∪(2,+∞)D.(2,+∞)12.若集合M={x|x≤5},且a=2,则下列关系式中正确的是________.()A.a⊆MB.a⊆/MC.{a}∈MD.{a}⊆M13.若x2+y2+4x+6y+13=0,则x-y等于________.()A.-1B.0C.1D.214.若关于x的不等式ax2+2ax-1<0解集是R,则实数a的取值集合是________. ()A.(-1,0)B.(-1,0]C.(-∞,-1)D.(-∞,0)∪(0,-1]15.下列函数中,在区间[0,+∞)内为增函数的是________.()A.y=12x⎛⎫⎪⎝⎭B.y=1x C.y=x2D.y=12log x16.若二次函数y=ax2+bx+c的图象如图所示,则________.()A.a>0,b>0,c<0B.a>0,b>0,c>0C.a>0,b<0,c<0D.a>0,b<0,c>017.已知函数f(x)是奇函数,当x>0时,f(x)=x2+2,则f(-1)的值是________.()A.-3B.-1C.1D.318.若奇函数y=f(x)在(0,+∞)上的图象如图所示,则该函数在(-∞,0)上的图象可能是________.()19.已知集合A ={x |-2<x ≤1},B ={x ∈Z |-1<x <2},则A ∩B 等于________. ( )A .{x |-1<x ≤1}B .{x |-2<x <2}C .{0,1}D .{-1,0,1}20.若关于x 的方程x 2+ax +b =0的根分别是2,-3,则不等式ax 2+5x +b <0的解集是 ________. ( )A .(-6,1)B .(-1,6)C .(-3,2)D .(-2,3)二、填空题(本大题共5小题,每小题4分,共20分)21.已知函数f (x )是奇函数,且当x ≥0时,f (x )=x +x 2,则当x <0时,f (x )=________.22.函数y =2x 2-6x +5在区间[-2,3]上的最大值为________.23.已知集合A ={x |-3<x <1},B ={x |x >a },且满足A ⊆B ,则a 的取值范围是________.24.已知下列四个命题:①若a >b ,c >d ,则a +c >b +d ;②若a >b ,c >d ,则ac >bd ;③若a >b ,c >d ,则a -c >b -d ;④若a >b ,c >d ,则a -d >b -c .其中正确命题的序号是________.25. 已知函数f (x )=200x x x x ⎧⎨⎩,≥+1<,,则f [f (-2)]=________.三、解答题(本大题共5小题,共40分。

福建省2021届高三数学高职招考第一次月考试题

福建省2021届高三数学高职招考第一次月考试题

福建省华安县第一中学2020-2021届高三数学高职招考第一次月考试题考试时间:120分钟 总分:150分一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( )(A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)22.已知命题p :x ∃∈R ,20x ->,命题q :x ∀∈R ,x x <,则下列说法正确的是( ) A .命题p q ∨是假命题 B .命题p q ∧是真命题 C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题3.已知()222,03,0x x f x x x ⎧-≥=⎨-+<⎩,若()2f a =,则a 的取值为( )A. 2B. -1或2C. 1±或2D. 1或2 4.“1cos22α=”是“()6k k Z παπ=+∈”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 5.已知sin(π+α)=53,且α是第四象限角,那么cos( α -π2)的值是 ( ) A . B .54 C .-54 D .±54 6.函数()22log xf x x =+的零点个数为( )A. 0B. 1C. 2D. 37.将函数y=f (x )图像上的每一点的纵坐标保持不变,横坐标变为原来的21,再将其图像沿x 轴向左平移6π个单位长度,得到的曲线与y=sin2x 的图像相同,则f(x)的解析式为( )A.y=sin(4x-3π)B.y=sin(x-6π)C.y=sin(4x+3π)D.y=sin(x-3π)8.函数2ln xy x=的图象大致为( ) A. B.C. D.9.已知函数()()sin (0,)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A.4π B. 2π C. 2π- D. 3π- 10.已知f(x)=x 3+ax 2+(a+6)x+1有极大值和极小值,则a 的取值范围为( ) A . (-1,2) B .(-3,6) C .(-∞,-3) (6,+∞) D .(-∞,-1) (2,+∞) 11.已知cos( α +6π) = 33,则sin( 2α - 6π) 的值为( )A.31B.- 31C.33D.-3312.设()'f x 是函数()f x 的导函数,且()()()'f x f x x >∈R ,()1e f =(e 为自然对数的底数),则不等式()ln f x x <的解集为( )A .()0,eB .()0e ,C .1e e 2⎛⎫ ⎪⎝⎭,D .()e,e二、填空题:本题共4小题,每小题5分,共20分。

高职数学试题试卷及答案

高职数学试题试卷及答案

高职数学试题试卷及答案一、选择题(每题2分,共10分)1. 下列哪个数是自然数?A. -3B. 0C. 1.5D. π2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 33. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^24. 已知集合A = {1, 2, 3},B = {2, 3, 4},A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 等差数列的第5项是15,第1项是5,求公差d:A. 2B. 3C. 4D. 5二、填空题(每题2分,共10分)6. 若a + b = 10,a - b = 4,则a = __________。

7. 将分数\(\frac{3}{4}\)化为最简分数是 __________。

8. 一个直角三角形的两条直角边分别为3和4,其斜边长为__________。

9. 函数y = log_2(x)的定义域是 __________。

10. 一个圆的半径为5,其周长为 __________。

三、简答题(每题10分,共20分)11. 证明:若a > b > 0,则a^3 > b^3。

12. 解不等式:2x - 5 > 3x + 1。

四、计算题(每题15分,共30分)13. 计算下列定积分:\(\int_{0}^{1} (2x + 1)dx\)。

14. 求函数f(x) = 3x^2 - 2x + 1的极值。

五、解答题(每题15分,共30分)15. 解方程组:\[\begin{cases}x + y = 4 \\2x - y = 2\end{cases}\]16. 已知数列{an}的通项公式为an = 2n - 1,求前n项和Sn。

六、论述题(每题15分,共15分)17. 论述函数的连续性与可导性之间的关系。

答案:一、选择题1. B2. C3. B4. B5. B二、填空题6. 77. \(\frac{3}{4}\)8. 59. \((0, +\infty)\)10. \(10\pi\)三、简答题11. 证明略。

高职高考数学试卷月考

高职高考数学试卷月考

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. -√3C. πD. 0.1010010001…2. 已知等差数列 {an} 的前n项和为 Sn,若 S3=9,S6=36,则第4项 a4 等于()A. 6B. 7C. 8D. 93. 函数 y=2x-1 的图象上,x 的取值范围是()A. x≤0B. x≥0C. x≠0D. x>04. 下列命题中,正确的是()A. 若 a^2=b^2,则 a=bB. 若 a^2=b^2,则a=±bC. 若 a^2=b^2,则 |a|=|b|D. 若 a^2=b^2,则 ab=05. 在△ABC中,∠A=45°,∠B=60°,则∠C的大小为()A. 30°B. 45°C. 60°D. 75°6. 已知函数 y=3x^2+2x-1,若 x=2,则 y 的值为()A. 11B. 9C. 7D. 57. 下列不等式中,正确的是()A. 2x+3<5B. 2x+3>5C. 2x+3≤5D. 2x+3≥58. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab-b^2D. (a-b)^2=a^2-2ab-b^210. 下列函数中,为一次函数的是()A. y=2x^2-3x+1B. y=x^3-2x+1C. y=3x+5D. y=2/x二、填空题(每题5分,共50分)1. 等差数列 {an} 的公差为d,首项为a1,第n项 an 等于__________。

2. 若 a、b、c 成等比数列,则 b^2=__________。

3. 函数y=√(x^2-1) 的定义域为__________。

职业中学高三年级月考数学试题

职业中学高三年级月考数学试题

职业中学高三年级月考数学试题(满分为150分 考试用时120分钟)第Ⅰ卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的.)1、设集合},|{},,,1|{22R x x y y N R y R x y x x M ∈==∈∈=+=,则集合N M I =A .MB .N C.((2222⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭D.∅2、已知向量m 2),2,1(),3,2(-+-==与若平行,则m 等于A .-2B .2C .-21D .21 3、在下列电路图中,表示开关A 闭合是灯泡B 亮的必要但不充分条件的线路图是4、等差数列}{n a 的前n 项和为11821,,,a a a d a S n ++若变化时当是一个定值,那么下列各数中也为定值的是A 、S 13B 、S 15C 、S 7D 、S 85、已知A 是△ABC 的一个内角,且32cos sin =+A A ,则△ABC 是A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定6、函数lg ||x y=的图象大致是 A 、 B 、 C 、 D 、 7、已知函数y=2sin (ωx )在,34ππ⎡⎤-⎢⎥⎣⎦上单调递增,则实数ω的取值范围是 ABC.ABCB.A BC D.BA.A CA 、30,2⎛⎤ ⎥⎝⎦ B 、(]0,2 C 、(]0,1 D 、30,4⎛⎤ ⎥⎝⎦8、由2开始的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n 组有n 个数,则第n 组的首项为 A. n 2-n B. n 2-n +2 C. n 2+n D. n 2+n +29、函数)(x f 的图象与函数xx g ⎪⎭⎫⎝⎛=21)(的图象关于直线x y =对称,则)2(2x x f -的单调递增区间是 A 、[)+∞,1 B 、(]1,∞- C 、(]1,0 D 、[)2,110、己知q p q p ϖϖϖϖ,,3||,22||==的夹角为︒45,则以q p b q p a ϖϖϖϖϖϖ3,25-=+=为邻边的平行四边形的对角线长为 A 、15 B 、15 C 、14 D 、16 11、已知定义在R 上的函数y =f (x )满足下列三个条件: ①对任意的x ∈R 都有);()4(x f x f =+②对于任意的2021≤<≤x x ,都有12()()f x f x <; ③)2(+=x f y 的图象关于y 轴对称. 则下列结论中,正确的是 A .)7()5.6()5.4(f f f << B .)5.6()7()5.4(f f f << C .)5.6()5.4()7(f f f <<D .)5.4()5.6()7(f f f <<12、如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“黄金点”。

职高高三数学试题及答案

职高高三数学试题及答案

职高高三数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 4a + 4 = 0 \) 和 \( b^2 - 4b + 4 = 0 \),则 \( a + b \) 的值为:A. 4B. -4C. 2D. -2答案:A3. 函数 \( y = \frac{1}{x} \) 的图象在点 \( (1, 1) \) 处的切线方程是:A. \( y = x \)B. \( y = -x + 2 \)C. \( y = x - 1 \)D. \( y = -x + 1 \)答案:D4. 已知 \( \sin(\alpha) = \frac{1}{2} \),\( \alpha \) 为锐角,则 \( \cos(\alpha) \) 的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( -\frac{\sqrt{3}}{2} \)D. \( -\frac{1}{2} \)答案:A二、填空题(每题5分,共20分)1. 已知 \( \tan(\alpha) = 2 \),则 \( \sin(\alpha) \) 的值为________。

答案:\( \frac{2\sqrt{5}}{5} \)2. 函数 \( y = \sqrt{x} \) 的定义域为 ________。

答案:\( [0, +\infty) \)3. 等差数列 \( 3, 7, 11, \ldots \) 的第 \( n \) 项为 ________。

答案:\( 4n - 1 \)4. 已知 \( \cos(\alpha) = \frac{3}{5} \),\( \alpha \) 为锐角,则 \( \sin(\alpha) \) 的值为 ________。

2020年福建省福州市交通高级职业中学高三数学理月考试题含解析

2020年福建省福州市交通高级职业中学高三数学理月考试题含解析

2020年福建省福州市交通高级职业中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:A2. 阅读如图所示的程序框图,运行相应的程序,则输出的结果是( )A. B. C.D.参考答案:B3. △ABC中,“”是“”的()条件.A.充要条件B.必要不充分C.充分不必要D.既不充分也不必要参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:在三角形中若,则<A<π,则,“”是“”的充要条件,故选:A.4. 已知函数,若,则a为()A.1 B.C.D.参考答案:D5. 若当时,函数始终满足,则函数的图象大致为( )参考答案:B略6. 设D为△ABC所在平面内一点,且=3,则=()A.+ B.+C.+ D.+参考答案:A【考点】向量加减混合运算及其几何意义.【分析】根据向量的三角形法则进行转化求解即可.【解答】解:∵∴==(﹣),则=+=+(﹣)=,故选:A7. 已知函数f(x)的图象与函数的图象关于x轴对称,则f(x)=()A. B. C. D.参考答案:A【分析】由点是函数上任意一点,则点在函数的图像上,列出方程,即可得到正确答案.【详解】设点是函数上任意一点,则点在函数的图像上即所以函数的解析式为:故选:A【点睛】本题主要考查了函数图像的对称性,属于中档题.8. 等比数列()A. B. C.2 D.4参考答案:答案:C 9. 已知双曲线的右顶点为A,抛物线的焦点为F,若在E的渐近线上存在点P,使得,则E的离心率的取值范围是().A. (1,2)B.C. (2,+∞)D.参考答案:B【分析】由已知可得以为直径的圆与渐近线有公共点,得出的不等量关系,结合,即可求解.【详解】抛物线的焦点为,双曲线的右顶点为,在的渐近线上存在点,使得,不妨设渐近线方程为,则以为直径的圆与渐近线有公共点,即的中点到直线的距离,即.故选:B.【点睛】本题考查双曲线的简单几何性质,应用直线与圆的位置关系是解题的关键,考查计算求解能力,属于中档题.10.某仪器显示屏上的每个指示灯均以红光或蓝光来表示不同的信号,已知一排有个指示灯,每次显示其中的个,且恰有个相邻的。

高职高考数学试卷月考三

高职高考数学试卷月考三

一、选择题(每题5分,共25分)1. 下列函数中,定义域为全体实数的是()A. y = √xB. y = x^2C. y = |x|D. y = 1/x2. 已知函数f(x) = x^2 - 3x + 2,则f(-1)的值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,则S5的值为()A. 20B. 25C. 30D. 354. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆心坐标为()A. (2, 3)B. (3, 2)C. (1, 1)D. (0, 0)5. 已知直角三角形的两条直角边长分别为3和4,则斜边长为()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 已知函数f(x) = 2x - 3,若f(x) + 2 = 0,则x = ________。

7. 已知等比数列{an}的第一项a1 = 2,公比q = 3,则第n项an = ________。

8. 已知数列{an}的前n项和为Sn,若a1 = 1,公差d = 2,则S4 = ________。

9. 已知圆的方程为x^2 + y^2 - 6x - 4y + 9 = 0,则圆的半径为 ________。

10. 已知直角三角形的两条直角边长分别为5和12,则斜边长与直角边的比为________。

三、解答题(每题10分,共40分)11. 已知函数f(x) = x^2 - 4x + 3,求函数的解析式、对称轴、顶点坐标及函数的增减性。

12. 已知等差数列{an}的前n项和为Sn,若a1 = 5,公差d = 3,求第10项an 及前10项和S10。

13. 已知数列{an}的通项公式为an = 2n - 1,求前n项和Sn。

14. 已知圆的方程为x^2 + y^2 - 6x - 4y + 9 = 0,求圆心坐标、半径及圆的标准方程。

15. 已知直角三角形的两条直角边长分别为5和12,求斜边长及斜边上的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学高职班月考题
命题人:赖静
一、选择题:(每题5分,共75分)
1、如果数集那么( 。

A、 B、 C、 D、
2、若集合A={(0,2),(0,4)},则集合A中元素的个数是()。

A、1个B、2个C、3个D、4个
3、适合条件{1,2} M{1,2,3,4}的集合M的个数为()。

A、2 B、3 C、4 D、5
4、下列关系中正确的是()。

(1{0}=;(2)0;(3){a};(4){a}{a,b};(5{a}{a}
A、(1(2)(3)
B、(3)(5
C、(3)(4 (5 D 、(1(2)(5
5、下列判断正确的是()。

A. 若p是真命题,则:“p且q”一定为真
B. 若“p且q”是假命题,则:p一定为假
C. 若“p且q”是真命题,则:p一定为真
D. 若p是假命题,则:“p且q”不一定为假
6、设,则
A、 B、 C、 D、
7、设命题P:对实数,都有,则为()。

A、对实数,都没有
B、一个实数,使
C、一个实数,使
D、对实数,都没有
8、是的()。

A、充要条件
B、充分非必要条件
C、必要非充分条件
D、既不充分也不必要条件
9、平行四边形是矩形的一个充分但不必要的条件为()。

A、邻边垂直且相等
B、内角为直角
C、对角线相等
D、对角线垂直
10、下列四个式子中最小值为2的是()。

A、 B、
C、 D、
11、如果时,那么必有()。

A、 B、 C、 D、
12、已知不等式的解集是或,则不等式
的解集是( .
A、或
B、
C、或
D、
13、已知集合中的三个元素可构成的三条边长,那么一定不是( .
A、锐角三角形
B、直角三角形
C、钝角三角形
D、等腰三角形
14、设全集,集合,,则=( .
A、 B、 C、 D、
15、下列命题中,正确的是()。

A、若则
B、若则
C、若则
D、若则
班级:________________ 学号:__________ 姓名:_______________
二、填空题:(每题5分,共25分)
1、不等式的解集是(-2,3),则的值是。

2、数与数集的关系是。

3、不等式 |x+1| 的解集为。

4、已知集合,,则= 。

5、不等式的整数解的个数是 .
三、解答题:(共50分)
1、已知集合,求,
(10分
2、解不等式:(15分)
(1)、(2)、
3、一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,问这个矩形
的长、宽各为多少时,菜园的面积最大?最大面积是多少?(15分)
4、已知,且,求证:(10分)。

相关文档
最新文档