新七年级初一数学下册 二元一次方程组试题及答案

合集下载

新七年级下册数学 二元一次方程组试卷及答案

新七年级下册数学 二元一次方程组试卷及答案
A. B. C. D.
10.方程组 中,若未知数x、y满足x-y>0,则m的取值范围是( )
A.m>1B.m<1C.m>-1D.m<-1
11.甲、乙两人同求方程ax-by=7的整数解,甲正确地求出一个解为 ,乙把ax-by=7看成ax-by=1,求得一个解为 ,则a,b的值分别为( )
A. B.
C. D.
(1)求 、 两点的坐标;
(2)将线段 平移到 ,点 的对应点为 ,如图1所示,若三角形 的面积为 ,求点 的坐标;
(3)平移线段 到 ,若点 、 也在坐标轴上,如图2所示. 为线段 上的一动点(不与 、 重合),连接 、 平分 , .求证: .
28.阅读下列材料,然后解答后面的问题.
已知方程组 ,求x+y+z的值.
7.下列方程组是三元一次方程组的是()
A. B. C. D.
8.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了 ,下坡用了 ,根据题意可列方程组()
A. B.
C. D.
9.三元一次方程组 的解是()
∴m<1.
故选B.
11.B
解析:B
【解析】
把甲的解代入ax-by=7可得a+b=7,把乙的解代入可得a-2b=1,由它们构成方程组可得 ,解方程组得 ,故选B.
12.D
解析:D
【分析】
由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是 的系数,第二个数是 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.

七年级初一数学下册第二学期 二元一次方程组测试题及答案(共五套)

七年级初一数学下册第二学期 二元一次方程组测试题及答案(共五套)

七年级初一数学下册第二学期二元一次方程组测试题及答案(共五套) 一、选择题1.二元一次方程组22x yx y+=⎧⎨-=-⎩的解是()A.2xy=⎧⎨=-⎩B.2xy=⎧⎨=⎩C.2xy=⎧⎨=⎩D.2xy=-⎧⎨=⎩2.下列各方程中,是二元一次方程的是()A.25 3xy xy-=+B.x+y=1 C.2115x y=+D.3x+1=2xy3.下列各组值中,不是方程21x y-=的解的是()A.0,12xy=⎧⎪⎨=-⎪⎩B.1,1xy=⎧⎨=⎩C.1,xy=⎧⎨=⎩D.1,1xy=-⎧⎨=-⎩4.下列方程组中是二元一次方程组的是()A.12xyx y=⎧⎨+=⎩B.52313x yyx-=⎧⎪⎨+=⎪⎩C.20135x zx y+=⎧⎪⎨-=⎪⎩D.5723zz y=⎧⎪⎨+=⎪⎩5.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x yx y+⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是()A.2114327x yx y+=⎧⎨+=⎩B.21437x yx y+=⎧⎨+=⎩C.2274311x yx y+=⎧⎨+=⎩D.2114327y xy x+=⎧⎨+=⎩6.已知方程组2728x yx y+=⎧⎨+=⎩,则5510x y-+的值是( )A.5 B.-5 C.15 D.257.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩8.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( ) A .329557230x y x y +=⎧⎨+=⎩ B .239557230x y x y +=⎧⎨+=⎩ C .329575230x y x y +=⎧⎨+=⎩ D .239575230x y x y +=⎧⎨+=⎩9.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>10.由方程组 可得出x 与y 的关系式是( )A .x+y=9B .x+y=3C .x+y=-3D .x+y=-911.若关于x ,y 的二元一次方程组432x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2 B .10 C .2- D .412.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x y x y =⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩二、填空题13.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′,则a =_____,m =_____,n =_____.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,则点F 的坐标为_____.14.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.15.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.16.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______. 17. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 18.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____. 19.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)20.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x xy -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪⎨-=-⎪⎩(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.21.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.22.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 23.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 24.若是满足二元一次方程的非负整数,则的值为___________.三、解答题25.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 26.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 27.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系. 28.阅读下列材料,然后解答后面的问题. 已知方程组372041027x y z x y z ++=⎧⎨++=⎩,求x+y+z 的值.解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③, 把③代入①得,x+y+z=6. 仿照上述解法,已知方程组6422641x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值.29.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。

七年级初一数学下学期 二元一次方程组试卷及答案

七年级初一数学下学期 二元一次方程组试卷及答案

七年级初一数学下学期 二元一次方程组试卷及答案一、选择题1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=2.下列各方程中,是二元一次方程的是( ) A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .254.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩5.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是( ).A .35a b =⎧⎨=⎩B .35a b =⎧⎨=-⎩C .41a b =⎧⎨=-⎩D .41a b =⎧⎨=⎩6.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( ) A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩7.方程()()218235m nm x n y ---++=是二元一次方程,则( )A .23m n =⎧⎨=⎩B .23m n =-⎧⎨=-⎩C .23m n =⎧⎨=-⎩D .23m n =-⎧⎨=⎩8.已知10a b +=,6a b -=,则22a b -的值是( ) A .12B .60C .60-D .12-9.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩10.已知|x+y -1|+(x -y+3)2=0,则(x+y)2019的值是( )A .22019B .-1C .1D .-2201911.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:212.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173B .888C .957D .69二、填空题13.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.14.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.15.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a xb yc a x b y c +-=⎧⎨+-=⎩的解为__________. 16.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 17.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______.18.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.19.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.20.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________ 21.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 22.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____. 23.若是满足二元一次方程的非负整数,则的值为___________.24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 26.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=, 即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.28.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?29.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n . (3)若AM =BN ,MN =43BM ,求m 和n 值.30.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 31.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ;(2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 27m n =,若),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和. 32.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围;(2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.33.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)34.a 取何值时(a 为整数),方程组2420x ay x y +=⎧⎨-=⎩的解是正整数,并求这个方程组的解.35.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?36.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.3.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728x y x y +=⎧⎨+=⎩①② ①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5. 故选A. 【点睛】本题考查了用加减法解二元一次方程组.4.A解析:A 【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答 【详解】设这所学校现初中在校生x 人,小学在校生y 人,则30008%11%300010%x y x y +=⎧⎨+=⨯⎩故选A 【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程5.C解析:C 【分析】首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案. 【详解】∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩故选:C . 【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.6.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元, ∴0.6xy,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=,∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.7.D解析:D 【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【详解】由题意得21181m n ⎧-=⎨-=⎩且2030m n -≠⎧⎨+≠⎩,解得2m =-,3n =, 故选D . 【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.8.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.9.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.10.C解析:C 【分析】由绝对值和平方的非负性可得1030x y x y +-=⎧⎨-+=⎩,再解方程组代入原式进行计算即可. 【详解】解:根据题意可得10? 30? x y x y +-=⎧⎨-+=⎩①②,用①加上②可得,2x+2=0,解得x=-1,则y=2, 故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组.11.C解析:C【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值.【详解】∵4520430x y z x y z -+=⎧⎨+-=⎩①② ∴由①×3+②×2,得2x y =由①×4+②×5,得3x z =∴:::2:31:2:3x y z x x x ==故选:C .【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.12.A解析:A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案.【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.二、填空题13.100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,解析:100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键. 14.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x+⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.15.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b yc a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩,故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.16.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB ,AD=AC+CD ,BC=CD+DB ,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.17.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A 型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.18.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x yx y-=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x my n=⎧⎨=⎩代入方程组得:20234m nm n-=⎧⎨+=⎩①②,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.19.5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.20.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.21.【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 解析:3215 【解析】 【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.22.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.23.0或6【解析】由2x+3y=12得y=12-2x3,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.解析:0或6【解析】由2x+3y=12得y=,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.24.520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题25.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.26.(1)原方程组的解为32x y =⎧⎨=⎩;(2)22420x y += 【分析】(1)根据题意,利用整体的思想进行解方程组,即可得到答案;(2)根据题意,利用整体的思想进行解方程组,即可得到答案.【详解】解:()13259419x y x y -=⎧⎨-=⎩①② 将方程②变形得:()332219x y y -+=③把方程①代入③得:35219y ⨯+=,所以2,y =将2y =代入①得3x =,所以原方程组的解为32x y =⎧⎨=⎩; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②, 把方程①变形,得到223(4)550x xy y xy ++-=③,然后把②代入③,得325550xy ⨯-=,∴5xy =,∴22425520x y +=-=;【点睛】本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数.27.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩ (4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-,11()(4 1.5)4822MNOB S BM ON OB t t t ∴=+⋅=⨯-+⨯=+四边形,。

七年级数学下册 二元一次方程组测试题及答案(共五套) 百度文库

七年级数学下册 二元一次方程组测试题及答案(共五套) 百度文库

七年级数学下册 二元一次方程组测试题及答案(共五套) 百度文库一、选择题1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=2.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( ) A .15B .﹣15C .16D .﹣163.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23C .16-D .164.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( ) A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩5.同时适合方程2x+y=5和3x+2y=8的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .31x y ==-⎧⎨⎩6.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了( ) A .16题B .17题C .18题D .19题7.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =8.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁9.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣210.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②11.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( )A .9B .6C .3D .112.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣13二、填空题13.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.14.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 15.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.16.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.17.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .18.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________19.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.20.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.21.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.22.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本. 23.关于x ,y 的二元一次方程组5323x y x y a+=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.24.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.三、解答题25.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.26.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.27.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)28.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.29.已知12xy=⎧⎨=⎩是二元一次方程2x y a+=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?x013y62030.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.B解析:B【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,∴2227a bb a=,=+⎧⎨+⎩解得14ab-⎧⎨⎩=,=∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.3.A解析:A【分析】根据方程的解满足方程,课的关于k的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-2 3 ,故选A.【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k方程是解题关键.4.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.5.B解析:B 【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择. 【详解】解:方法一:把各个选项的答案依次代入,只有B 答案适合方程组; 方法二:由题意,得25,328x y x y +=⎧⎨+⎩①=,②①×2-②得,x=2, 代入①得,2×2+y=5,y=1故原方程组的解为2,1.x y =⎧⎨=⎩故选:B . 【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.6.D解析:D 【分析】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +,根据“不答的题比答错的题多2道”以及“总分是74分”,列出方程组解出即可. 【详解】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +, 根据题意得:()25?–2474x y y x y ⎧+=+⎨-=⎩,解得:192x y =⎧⎨=⎩,故小杰他答对了19题,故选:D . 【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.B解析:B 【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值.【详解】解:根据题意,∵2x y a =⎧⎨=⎩是方程25x y +=的一个解,∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.8.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.9.C解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=,代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10.B解析:B 【分析】根据等式基本性质进行分析即可. 【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确. 故选B. 【点睛】考核知识点:二元一次方程.11.C解析:C 【分析】根据二元一次方程组的解及解二元一次方程组即可解答. 【详解】 解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩ 解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C . 【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.12.D解析:D 【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求. 【详解】解:根据题中的新定义得:2201842019x y y x -=⎧⎨+=-⎩①②,①+②得:3x+3y =﹣1, 则x+y =﹣13. 故选:D . 【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题 13.51 【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积. 【详解】解:设小长方形的长、宽分别为、, 依题意得: ,即, 解得:, , ,解析:51 【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y , 依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩,818S∴=⨯=小长方形,729DC DE EC ∴=+=+=, 11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.14.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27, 解得:3(98)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .15.【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z =32(舍) 即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.16.19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az,整理得:4z=3y+6x ①, 当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz ,整理得:z=3x ②,由①②可得:y=2x ,∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x ,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 17.【解析】【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm ,可得到两个关于x 、y 的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:768 43【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:64332 2532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.18.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y +=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 19.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。

新七年级初一数学下学期 二元一次方程组测试题及答案(共五套) 百度文库

新七年级初一数学下学期 二元一次方程组测试题及答案(共五套) 百度文库

新七年级初一数学下学期二元一次方程组测试题及答案(共五套) 百度文库一、选择题1.阅读理解:a,b,c,d是实数,我们把符号a bc d称为22⨯阶行列式,并且规定:a bad b cc d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xyDxDDyD⎧=⎪⎪⎨⎪=⎪⎩,其中1122aDabb=,1122xbaDc b=,1122ya cDa c=.问题:对于用上面的方法解二元一次方程组3137x yx y-=⎧⎨+=⎩时,下面的说法错误..的是().A.311013D-==B.10xD=C.方程组的解为12xy=⎧⎨=⎩D.20yD=-2.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x人,鸡的价钱是y钱,可列方程组为().A.7384x yx y-=⎧⎨+=⎩B.7384x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374x yx y+=⎧⎨-=⎩3.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2 B.4 C.6 D.84.若关于x,y的方程组()348217x ymx m y+=⎧⎨+-=⎩的解也是二元一次方程x-2y=1的解,则m 的值为( )A .52B .32C .12D .15.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( )A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-= 6.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ).A .3B .-3C .-4D .47.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣28.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩9.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-= B .-1x y = C .132x y=+D .5xy =10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 11.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩12.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( )A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩二、填空题13.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.14.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.15.若m=m =________.16.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 17.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.19.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.20.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.21.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 22.若(x ﹣y +3)2+=0,则x +y 的值为______. 23.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 26.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.27.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.28.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.29.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 30.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.31.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案如果您需要使用本文档,请点击下载按钮下载!二元一次方程组解法练题精选一.解答题(共16小题)1.求适合2.解下列方程组1)2)3)4)3方程组:的x,y的值.4.解方程组:5.解方程组:如果您需要使用本文档,请点击下载按钮下载!6.已知关于x,y的二元一次方程y=kx+b的解有1)求k,b的值.2)当x=2时,y的值.3)当x为何值时,y=3?7.解方程组:1)2)8.解方程组:9.解方程组:10.解下列方程组:1)和.如果您需要使用本文档,请点击下载按钮下载!(2)11.解方程组:1)2)12.解二元一次方程组:1)2)13.在解方程组时,因为大意,甲看错了方程组中的a,而得解为。

乙看错了方程组中的b,而得解为.1)甲把a算作了什么,乙把b算作了什么?2)求出原方程组的精确解.如果您需要使用本文档,请点击下载按钮下载!14.15.解下列方程组:1)2)16.解下列方程组:(1)2)如果您需求使用本文档,请点击下载按钮下载!二元一次方程组解法练题精选(含答案)参考答案与试题剖析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),获得一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得。

由(1)×2得:3x﹣2y=2(3)。

由(2)×3得:6x+y=3(4)。

3)×2得:6x﹣4y=4(5)。

5)﹣(4)得:y=﹣。

把y的值代入(3)得:x=。

点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组1)2)如果您需求使用本文档,请点击下载按钮下载!(3)4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;3)(4)应先去分母、去括号化简方程组,再进一步接纳相宜的办法求解.解答:解:(1)①﹣②得,﹣x=﹣2。

新七年级数学下册第二学期 二元一次方程组试题及答案

新七年级数学下册第二学期 二元一次方程组试题及答案

y
2
,则
a,b
的值分别为(
)
a 2 A. b 5
a 5 B. b 2
a 3 C. b 5
a 5 D. b 3
x 1,
ax by 1,
9.如果{ 是二元一次方程组{
的解,那么关于
m 的方程
a2m+2
016
b =2
y2
bx ay 2
017 的解为( )
A.-1 B.1 C.0 D.-2
,则方程组
33aa12xx
2b1y 7c1 2b2 y 7c2
的解是(
)
x 21
A.
y
28
x 9
B.
y
8
x 7
C.
y
14
D.
x y
9 7 8
7
8.甲、乙两人同求方程
ax-by=7
的整数解,甲正确地求出一个解为
x
y
1 1
,乙把
ax-
x 1
by=7
看成
ax-by=1,求得一个解为
代入方程
2x
ky
7
,通过计算即可得到答案.
【详解】
x 4

y
5
是方程
2x
ky
7
的解
∴把
x
y
4 5
代入方程
2x
ky
7
,得:
24 k 5 7
∴ k 3
故选:C. 【点睛】 本题考查了二元一次方程和一元一次方程的知识;求解的关键是熟练掌握二元一次方程和 一元一次方程的性质,从而完成求解.
5.D
18.已知 a1 、 a2 、 a3 、…、 an 是从 1 或 0 中取值的一列数(1 和 0 都至少有一个),若

(完整版)初一数学下册二元一次方程组试卷及答案

(完整版)初一数学下册二元一次方程组试卷及答案

一、选择题1.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩2.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本3.下列方程组中,是二元一次方程组的是( )A .02x y =⎧⎨=⎩B .28x y y z +=⎧⎨+=⎩C .21xy y =⎧⎨=⎩D .2103x x y ⎧-=⎨+=⎩4.若关于x 、y 的方程组2335x y ax by +=⎧⎨-=-⎩和32111x y bx ay -=⎧⎨-=⎩有相同的解,则2021()a b +的值为( ) A .1-B .0C .1D .20215.已知关于x ,y 的二元一次方程组343x y ax y a +=-⎧⎨-=⎩,给出下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,2a =-; ②当1a =时,方程组的解也是方程42x y a +=+的解; ③无论a 取什么实数,2x y +的值始终不变; ④若用x 表示y ,则322xy =-+; A .①②③B .①②④C .①③④D .②③④6.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩7.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个①当5a =时,方程组的解是1020x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a = ③不存在一个实数a 使得x y =; ④若23722a y -=,则2a =. A .1B .2C .3D .48.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为( ) A .23和12B .12和23C .24和12D .12和249.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .210.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩二、填空题11.有一片开心农场,蔬菜每天都在匀速生长,如果每天有20名游客摘菜,6天就能摘完;如果每天有17名游客摘菜,9天就能摘完(规定每名游客每天摘菜量相同),那么每天有14名游客摘菜,___天就能摘完.12.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.13.甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k )个,乙每次摸5个或(5-k )个(k 是常数,且0<k <3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球__________个.14.若关于x 、y 的二元一次方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的解为3,2x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩的解为________.15.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩________.16.关于x 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,是一元一次方程;关于,x y 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,它是二元一次方程.17.某商场地下停车场有5个出口,5个入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个入口和2个出口,8小时车库恰好停满;如果开放4个入口和2个出口,1.6小时车库恰好停满.2021年五一节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放3个入口和2个出口,则从早晨7点开始经过______小时车库恰好停满.18.已知x ,y 满足方程组22331x y kx y k +=⎧⎨+=-⎩.给出下列结论:①若方程组的解也是23x y +=的解,则2k =;②若方程组的解满足2xy=-,则0k =;③无论k 为何值,282x y ⋅=;④若()()0x y x y +-=,则12k =.正确的是________.(填序号) 19.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.20.若2a m +2n b 7+a 5b n ﹣2m +2的运算结果是3a 5b 7,则2m 2+3mn +n 2的值是 ___.三、解答题21.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h ++=,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.22.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --+-.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.23.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.24.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数.25.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.26.历史上的数学巨人欧拉最先把关于x 的多项式用记号f(x)来表示.例如f(x)=x 2+3x -5,把x =某数时多项式的值用f(某数)来表示.例如x =-1时多项式x 2+3x -5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x 2-3x +1,分别求出g(-1)和g(-2);(2)已知h(x)=ax 3+2x 2-ax -6,当h(12)=a ,求a 的值;(3)已知f(x)=2+3kx a -6x bk --2(a ,b 为常数),当k 无论为何值,总有f(1)=0,求a ,b 的值.27.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?28.如图,学校印刷厂与A ,D 两地有公路、铁路相连,从A 地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D 地批发,已知公路运价1.5元/(t •km ),铁路运价1.2元/(t •km ).这两次运输支出公路运费4200元,铁路运费26280元. (1)白纸和作业本各多少吨?(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?29.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x ,较小的两位数为y ,回答下列问题: (1)可得到下列哪一个方程组?A .68,1010990.x y x y y x +=⎧⎨+-+=⎩ B .()()68,1010990.x y x y y x +=⎧⎨+-+=⎩C .()()68,100100990.x y x y y x +=⎧⎨+-+=⎩D .()()1068,100100990.x y x y y x +=⎧⎨+-+=⎩(2)解所确定的方程组,求这两个两位数. 30.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想” 解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .2.D解析:D 【分析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可. 【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得:5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩ 故答案为D. 【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.3.A解析:A 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案. 【详解】A 、符合二元一次方程组的定义,故本选项正确;B 、本方程组中含有3个未知数,故本选项错误;C 、第一个方程式的xy 是二次的,故本选项错误;D 、x 2是二次的,故本选项错误. 故选:A . 【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题的关键.4.A解析:A 【分析】将方程组中不含,a b 的两个方程联立,求得,x y 的值,代入,含有,a b 的两个方程中联立求得,a b 的值,再代入代数式中求解即可. 【详解】 根据题意2333211x y x y +=⎧⎨-=⎩①② ①⨯2+②⨯3得:3x = 将3x =代入①得:1y =-将31x y =⎧⎨=-⎩代入51ax by bx ay -=-⎧⎨-=⎩得: 3531a b b a +=-⎧⎨+=⎩③④ ③-④⨯3得:1b = 将1b =代入④得:2a =- 当21a b =-=,时, 20212021(()1)1a b +=-=-故选A . 【点睛】本题考查了解二元一次方程组,乘方运算,理解题意中方程组有相同解的意义是解题的关键.5.C解析:C 【分析】根据方程组的解法可以得到x +y =2+a ,①令x +y =0,即可求出a 的值,验证即可,②由①得x +y =0,而x +y =4+2a ,求出a 的值,再与a =1比较得出答案,③解方程组可求出方程组的解,再代入x +2y 求值即可,④用含有x 、y 的代数式表示a ,进而得出x 、y 的关系, 【详解】解:关于x ,y 的二元一次方程组343x y a x y a +=-⎧⎨-=⎩①②,①+②得,2x +2y =4+2a , 即:x +y =2+a ,(1)①当方程组的解x ,y 的值互为相反数时,即x +y =0时,即2+a =0, ∴a =﹣2,故①正确,(2)②原方程组的解满足x +y =2+a , 当a =1时,x +y =3,而方程x +y =4+2a 的解满足x +y =6, 因此②不正确,(3)方程组343x y a x y a +=-⎧⎨-=⎩①②,解得,211x a y a =+⎧⎨=-⎩,∴x +2y =2a +1+2-2a =3, 因此③是正确的,(4)方程组343x y a x y a +=-⎧⎨-=⎩①②,由方程①得,a =4﹣x ﹣3y 代入方程②得, x -y =3(4-x -3y ), 即;322x y =-+, 因此④是正确的, 故选:C . 【点睛】本题考查二元一次方程组的解法和应用,正确的解出方程组的解是解决问题的关键.6.A解析:A 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩,61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.7.B解析:B 【分析】①把a =5代入方程组求出解,即可作出判断;②由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ③若x =y ,代入方程组,变形得关于a 的方程,即可作出判断; ④根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:①把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故①错误;②当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,整理,得82(3)35(4)x a x a =⎧⎨=-⎩,由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故②正确;③若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∴不存在一个实数a 使得x =y ,故③正确;④352(5)25(6)x y a x y a -=⎧⎨-=-⎩,(5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∴原方程组的解为2515x a y a =-⎧⎨=-⎩,∵23722a y -=,∴2a ﹣3y =7,把y =15﹣a 代入得:2a ﹣45+3a =7,解得:a =525,故④错误; ∴正确的选项有②③两个.故选:B .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.8.A解析:A【分析】设鸡有x 只、兔有y 只,由等量关系:鸡兔35只,共有足94足,列方程组,解之即可.【详解】解:设鸡有x 只、兔有y 只,故居题意得:352494x y x y +=⎧⎨+=⎩, 解得:2312x y =⎧⎨=⎩, 答鸡和兔的数量分别为23和12.故选择:A .【点睛】本题考查列方程组解应用题,掌握列方程组解应用题的方法,抓住等量关系:鸡兔35只,共有足94足列方程组是解题关键.9.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.B解析:B【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 二、填空题11.18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程解析:18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程组6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③,可解得x 的值即为所求. 【详解】解:首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完,依题意得 6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③, 由②﹣①得:11b c =④ 由③﹣②得:()()914153xb xc ﹣=﹣⑤ 将④代入⑤得:()()91114153xc x c ⨯﹣=﹣, 解得:18x =故答案是:18.【点睛】本题考查方程组的应用,有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知数辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求.”12.30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k=9a+7=7b+4=5c+2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得:k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数)∴9a +7=5c +2,∴9a =5(c -1),∴a 是5的倍数.不妨设a =5m (m 为正整数),∴k =45m +7=7b +4,∴b =4533(1)677m m m ++=+, ∵b 和m 都是正整数,∴m 的最小值为6.∴a =5m =30.故答案为:30.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.13.110【详解】设甲取了x 次4个球,取了(16-x )次(3-k )个球,乙取了y 次5个球,取了(17-y )次(5-k )个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x )=2解析:110【详解】设甲取了x 次4个球,取了(16-x )次(3-k )个球,乙取了y 次5个球,取了(17-y )次(5-k )个球,依题意k =1,2,当k =1时,甲总共取球的个数为4x +2(16-x )=2x +32,乙总共取球的个数为5y +4(17-y )=y +68,当k =2时,甲总共取球的个数为4x +(16-x )=3x +16,乙总共取球的个数为5y +3(17-y )=2y +51,根据最终两人所摸出的球的总个数恰好相等可得:①2x +32=y +68,即y =2x -34,由x ≤16,2≤y ≤17且x 、y 为正整数,不合题意,舍去; ②2x +32=2y +51,即2x +2y =19,因x ≤16,2≤y ≤17且x 、y 为正整数,不合题意,舍去;③3x +16=y +68,即y =3x -52,因x ≤16,2≤y ≤17且x 、y 为正整数,不合题意,舍去; ④3x +16=2y +51,即2353y x += ,因x ≤16,2≤y ≤17且x 、y 为正整数,可得x =13,y =2或x =15,y =5;所以当x =13,y =2,球的个数为3×13+16+2×2+51=110个;当x =15,y =5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.【点睛】本题主要考查了二元一次方程的整数解,解题时根据实际情况先确定k 的值,然后表示出甲取得球的数目和乙取得球的数目,根据最终两人所摸出的球的总个数恰好相等列出二元一次方程,求整数解即可,注意分4种情况.14.【分析】把代入,结合所求的方程组即可得到关于,的方程,求解即可.【详解】解:把代入得:又∵∴故答案为:【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于,的方程是解题的解析:21x y =⎧⎨=⎩【分析】把32x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩,结合所求的方程组即可得到关于x ,y 的方程,求解即可. 【详解】解:把32x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩得:1112223232a b c a b c +=⎧⎨+=⎩ 又∵111222(1)2,(1)2a x b y c a x b y c ++=⎧⎨++=⎩ ∴1322x y +=⎧⎨=⎩⇒21x y =⎧⎨=⎩故答案为:21 xy=⎧⎨=⎩【点睛】本题主要考查了二元一次方程的解,结合两个方程组得到关于x,y的方程是解题的关键.15.2【分析】根据题意,将代入二元一次方程组,得到关于m、n的二元一次方程组,求出后代入即可.【详解】将代入二元一次方程组,得,解得,,,,,故答案为:2.【点睛】本题主要考查解析:2【分析】根据题意,将21xy=⎧⎨=⎩代入二元一次方程组81mx nynx my+=⎧⎨-=⎩,得到关于m、n的二元一次方程组,求出后代入即可.【详解】将21xy=⎧⎨=⎩代入二元一次方程组81mx nynx my+=⎧⎨-=⎩,得28 21m nn m+=⎧⎨-=⎩,解得32mn=⎧⎨=⎩,=2,故答案为:2.本题主要考查了解二元一次方程组,算术平方根,解题关键是熟练掌握二元一次方程组的解法.16.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.【详解】解:∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.17.2【分析】设1个进口1小时开进辆车,1个出口1小时开出辆,根据题意列出方程组求得、,进一步代入求得答案即可.【详解】设1个进口1小时开进辆车,1个出口1小时开出辆,车位总数为,由题意得,解解析:2【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据题意列出方程组求得x、y,进一步代入求得答案即可.设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得()8(22)80%1.64280%x y a x y a-=⎧⎨-=⎩, 解得:5320a x a y ⎧=⎪⎪⎨⎪=⎪⎩, 则360%322520a a a ⎛⎫÷⨯-⨯= ⎪⎝⎭小时, 答:从早晨7点开始经过2小时车库恰好停满.故答案为:2.【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 18.②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:,①×3-②得,∵方程组的解也是x+2y=3的解,∴,解得:,∴k=3,故①错误;∵方程解析:②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:22331x y k x y k +=⎧⎨+=-⎩①②, ①×3-②得31x y +=,∵方程组的解也是x +2y =3的解,∴3123x y x y +=⎧⎨+=⎩,解得:72x y =⎧⎨=-⎩, ∴k =3,故①错误;∵方程组的解满足2x y=-, ∴2x y =-,∴20x y k +==,故②正确;∵由①可得:31x y +=,∴()33328222222yx y x x y x y +⋅=⋅=⋅==,故③正确; ∵()()0x y x y +-=,∴x +y =0或x -y =0,∴y =-x 或x =y ,则()()22331x x k x x k ⎧+⨯-=⎪⎨+⨯-=-⎪⎩或22331x x k x x k +=⎧⎨+=-⎩, 解得:1212x k ⎧=-⎪⎪⎨⎪=⎪⎩或1434x k ⎧=⎪⎪⎨⎪=⎪⎩,故④错误; 故答案为:②③.【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的方法和二元一次方程的解的定义.19.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.20.2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵的运算结果是,∴解得:∴故答案为:2.【点睛】本题考查合并同解析:2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵275222m n n m a b a b +-++的运算结果是573a b ,∴25227m n n m +=⎧⎨-+=⎩ 解得:13m n =-⎧⎨=⎩∴2223m mn n ++()()22213133=⨯-+⨯-⨯+299=-+2=故答案为:2.【点睛】本题考查合并同类项,涉及到解二元一次方程组,解题的关键是根据同类项的定义求得m 、n 的值. 三、解答题21.(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析【分析】(1)利用非负数的性质求出a ,b 的值,可得结论.(2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1)|3|0a +,又|3|0a+10,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴.理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.22.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <,83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E作//EF CD,交y轴于点F,如图所示,则ECD CEF∠=∠,2BCE ECD∠=∠,33BCD ECD CEF∴∠=∠=∠,过点O作//OG AB,交PE于点G,如图所示,则OGP BPE∠=∠,PE平分OPB∠,OPE BPE∴∠=∠,OGP OPE∴∠=∠,由平移得//CD AB,//OG FE∴,FEP OGP∴∠=∠,FEP OPE∴∠=∠,CEP CEF FEP∠=∠+∠,CEP CEF OPE∴∠=∠+∠,CEF CEP OPE∴∠=∠-∠,3()BCD CEP OPE∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.23.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM的中点,1322=-n m;(3)4mn=⎧⎨=⎩或62mn=-⎧⎨=-⎩或9515mn⎧=-⎪⎪⎨⎪=-⎪⎩.【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M 是A 、N 的中点,n =2m +3;②当A 点在M 、N 点中点时,n =﹣6﹣m ;③N 是M 、A 的中点时,n 32m -+=; (3)由已知可得|m +3|=|n ﹣1|,n ﹣m 43=|m +3|,分情况求解即可. 【详解】(1)MN =n ﹣m .故答案为:n ﹣m ;(2)分三种情况讨论:①M 是A 、N 的中点,∴n +(-3)=2m ,∴n =2m +3;②A 是M 、N 点中点时,m +n =-3×2,∴n =﹣6﹣m ;③N 是M 、A 的中点时,-3+m =2n ,∴n 32m -+=;(3)∵AM =BN ,∴|m +3|=|n ﹣1|.∵MN 43=BM , ∴n ﹣m 43=|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩或3133412m n n m m +=-+⎧⎨-=--⎩,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩或35m n =⎧⎨=-⎩. ∵n >m ,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.24.(1)50130αβ︒︒⎧∠=⎨∠=⎩;(2)//AB CD ,理由详见解析;(3)40° 【分析】(1)利用加减消元法,通过解二元一次方程组可求出∠a 和β∠的度数;(2)利用求得的∠a 和β∠的度数可得到180αβ∠+∠=︒,于是根据平行线的判定可判断AB ∥EF ,然后利用平行的传递性可得到AB ∥CD ;(3)先根据垂直的定义得到90CAE ∠=︒,再根据平行线的性质计算C ∠的度数.【详解】解(1)解方程组223080αββα︒︒⎧+=⎨∠-∠=⎩①②, ①-②得:3150α∠=︒ ,解得:50α∠=︒把50α∠=︒代入②得:5080β∠-︒=︒解得:130β∠=︒;(2)//AB CD ,理由:∵50α∠=︒,130β∠=︒,180αβ︒∴∠+∠=,//AB EF ∴(同旁内角互补,两直线平行),又 CD//EF ,//AB CD ∴;(3)AC AE ⊥,90CAE ︒∴∠=//AB CD180C CAB ︒∴∠+∠=180905040C ︒∴∠=︒-︒-︒=.【点睛】本题考查了平行线的性质与判定、解二元一次方程组,熟练掌握平行线的性质和判定定理是解题关键.25.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【分析】根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数;根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.26.(1)g(-1)=2 g(-2)=-1 (2)a =-4 (3)a =132,b =-4. 【解析】【分析】(1)将x=-1和x=-2分别代入可得出答案; (2)将x=12代入可得关于a 的一元一次方程,解出即可; (3)由f(1)=0,把x=1代入可得关于a 、b 、k 的方程,根据无论k 为何值时,都成立就可求出a 、b 的值.【详解】(1)由题意得:g (-1)=-2×(-1)2-3×(-1)+1=2;g (-2)=-2×(-2)2-3×(-2)+1=-1;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新七年级初一数学下册二元一次方程组试题及答案一、选择题1.方程组5213310x yx y+=⎧⎨-=⎩的解是()A.31xy=⎧⎨=-⎩B.13xy=-⎧⎨=⎩C.31xy=-⎧⎨=-⎩D.13xy=-⎧⎨=-⎩2.二元一次方程组7317x yx y+=⎧⎨+=⎩的解是()A.52xy=⎧⎨=⎩B.25xy=⎧⎨=⎩C.61xy=⎧⎨=⎩D.16xy=⎧⎨=⎩3.已知559375a ba b+=⎧⎨+=⎩,则-a b等于()A.8 B.83C.2 D.14.已知22xy=-⎧⎨=⎩是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣55.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.10011003x yx y+=⎧⎪⎨+=⎪⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩6.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为()A.(4,44) B.(5,44) C. (44,4) D. (44,5)7.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁8.设1a,2a,…,2018a是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173B .888C .957D .699.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y ,可列方程组为( )A .7385y x y x =-⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385x yx y +=⎧⎨-=⎩D .7385y x y x =+⎧⎨=+⎩10.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩11.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②12.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .9二、填空题13.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..14.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____. 15.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元. 16.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.17.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.18.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.19.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________20.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道. 21.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.22.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.23.关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.24.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题25.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.26.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.27.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?28.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 29.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.30.已知:平面直角坐标系中,A (a ,3)、B (b ,6)、C (c ,1),a 、b 、c 都为实数,并且满足3b -5c =-2a -18,4b -c =3a +10 (1) 请直接用含a 的代数式表示b 和c(2) 当实数a 变化时,判断△ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a 变化时,若线段AB 与y 轴相交,线段OB 与线段AC 交于点P ,且S △PAB >S △PBC ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用代入消元法即可求解. 【详解】 解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.2.A解析:A 【分析】方程组利用加减消元法求出解即可. 【详解】 解:7317x y x y +=⎧⎨+=⎩①②,②﹣①得:2x =10, 解得:x =5,把x =5代入①得:y =2,则方程组的解为52x y =⎧⎨=⎩.故选:A . 【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.3.C解析:C 【分析】把两个方程的左右两边分别相减,求出a-b 的值是多少即可. 【详解】 解:559375a b a b +⎧⎨+⎩=①=②①-②,可得 2(a-b )=4, ∴a-b=2. 故选:C . 【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.4.B解析:B 【分析】把22x y =-⎧⎨=⎩代入是方程kx +2y =﹣2得到关于k 的方程求解即可. 【详解】解:把22x y =-⎧⎨=⎩代入方程得:﹣2k +4=﹣2, 解得:k =3, 故选B . 【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.C解析:C 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩故选:C . 【点睛】本题考查了二元一次方程组及其应用,首先选取两个量作为未知数,再根据已知条件列出两个方程,再将两个二元一次方程组合起来便构成了二元一次方程组.6.A解析:A 【分析】设粒子运动到A 1,A 2,…A n 时所用的时间分别为a 1,a 2,…a n ,则a 1=2,a 2=6,a 3=12,a 4=20,…,由a n -a n-1=2n ,则a 2-a 1=2×2,a 3-a 2=2×3,a 4-a 3=2×4,…,a n -a n-1=2n ,以上相加得到a n -a 1的值,进而求得a n 来解,再找到运动方向的规律即可求解. 【详解】 由题意,设粒子运动到A 1,A 2,…,A n 时所用的间分别为a 1,a 2,…,a n , 则a 1=2,a 2=6,a 3=12,a 4=20,…, a 2-a 1=2×2, a 3-a 2=2×3, a 4-a 3=2×4, …, a n -a n-1=2n , 相加得:a n -a 1=2(2+3+4+…+n )=n 2+n-2, ∴a n =n (n+1).∵44×45=1980,故运动了1980秒时它到点A 44(44,44);又由运动规律知:A 1,A 2,…,A n 中,奇数点处向下运动,偶数点处向左运动. 故达到A 44(44,44)时向左运动40秒到达点(4,44), 即运动了2020秒.所求点应为(4,44). 故选:A . 【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n 的递推关系式a n -a n-1=2n 是本题的突破口,对运动规律的探索知:A 1,A 2,…A n 中,奇数点处向下运动,偶数点处向左运动是解题的关键.7.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.A解析:A 【解析】分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可. 详解:根据题意可得:7385y x y x =-⎧⎨=+⎩.故选:A.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系.10.C解析:C【解析】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得. 详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.11.B解析:B 【分析】根据等式基本性质进行分析即可. 【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确. 故选B. 【点睛】考核知识点:二元一次方程.12.C解析:C 【分析】利用加减消元法解方程组即可. 【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③, ①+②+③得: 3x+3y+3z=90. ∴x+y+z=30 ④ ②-①得: y+z-2x=0 ⑤ ④-⑤得: 3x=30 ∴x=10 故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.二、填空题13.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.14.15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,∴x =15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.15.824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每解析:824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++∵43120x y +≤∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元).故答案为:824.【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.16.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.17.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方 解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x x x -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=, 设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12, 故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.18.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴=综上所述方程组的解是43445 xyz⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.19.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可. 【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 20.【分析】本题可设x道难题,y道中档题,z道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x道难题,y道中档题,z道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z=180②,①×2-②,得x-z=20,所以难题比容易题多20道.【详解】设x道难题,y道中档题,z道容易题。

相关文档
最新文档