日本生物质发电概述及项目案例浅析
生物质发电设备简介介绍

通过采用先进的生物质发电技术和环保措施,该电厂取得了显著的经济效益和社会效益。具体表现在:能源利用 效率提高、运行成本降低、污染物减排效果明显等方面。同时,该电厂也得到了政府和社会的广泛认可和支持, 进一步提高了企业的知名度和竞争力。
THANKS
感谢观看
02
生物质发电是一种高效、环保的能源利用方式,可以减少对化石燃料的依赖,降 低温室气体排放,同时促进农村经济发展。
生物质发电的分类
生物质发电根据其使用场景和工艺流程 的不同,可以分为以下几类
4. 生物质-煤混合燃烧发电:将生物质燃 料与煤炭混合后燃烧,利用产生的热能 发电。
3. 压缩成型发电:将生物质燃料进行压 缩成型,制成颗粒状或棒状燃料,再进 行燃烧发电。
蒸汽轮机发电的设备。
优点:能量密度高、便于储存和 运输、燃烧稳定。
缺点:技术难度较大,需要高温 裂解条件,投资成本较高。
垃圾焚烧发电设备
垃圾焚烧发电是将城市垃圾 送入垃圾焚烧炉进行燃烧, 产生蒸汽驱动蒸汽轮机发电
的设备。
优点:垃圾资源化利用、减 少填埋占地、减少环境污染
。
缺点:技术要求高、运行管 理难度大、投资成本高。
服务化转型
从单纯的产品销售转向提供整体解决方案和 服务,包括设备运行维护、燃料供应等,提 高客户满意度和附加值。
06
案例分析
Chapter
案例一
1. 设备选型
该生物质发电厂主要选用国内先进的生物质发电机 组,总装机容量达到50兆瓦。其中,燃料主要由农 作物废弃物、林业废弃物等组成,通过密闭式皮带 输送系统进入锅炉进行燃烧。
缺点:燃烧过程中产生的污染较大,对环境影响较大。
气化发电设备
01
生物质气化技术的应用案例分析

生物质气化技术的应用案例分析随着全球对可再生能源的需求不断增长,生物质气化技术作为一种具有潜力的能源转换方式,正逐渐受到广泛关注。
生物质气化是将生物质原料(如木材、农业废弃物、秸秆等)在高温和缺氧的条件下转化为可燃气体的过程。
这些可燃气体可以用于发电、供热、生产化学品等多个领域,为解决能源短缺和环境问题提供了可行的途径。
下面将通过几个具体的应用案例来深入分析生物质气化技术的实际应用效果和发展前景。
一、生物质气化在发电领域的应用在某偏远山区,由于地理位置的限制,接入传统电网的成本极高,且供电稳定性差。
为了解决当地居民的用电问题,采用了生物质气化发电技术。
当地丰富的林业废弃物和农作物秸秆成为了理想的生物质原料。
该项目建设了一座中型生物质气化发电厂,其工艺流程包括原料预处理、气化反应、气体净化和发电等环节。
首先,将收集来的生物质原料进行破碎和干燥处理,以提高气化效率。
然后,在气化炉中,生物质在高温下与有限的氧气发生反应,生成含有一氧化碳、氢气、甲烷等成分的合成气。
经过净化系统去除杂质和有害物质后,合成气被送入燃气轮机或内燃机进行发电。
通过这个项目,不仅为当地居民提供了稳定可靠的电力供应,还减少了对传统化石能源的依赖,降低了碳排放。
同时,利用当地的废弃物作为原料,还为农民增加了额外的收入,促进了当地经济的发展。
然而,在实际运行中也面临一些挑战。
例如,生物质原料的供应具有季节性,需要合理规划储存和采购;气化过程中产生的焦油会对设备造成腐蚀和堵塞,需要定期维护和清理;发电效率相对较低,需要进一步优化工艺和设备以提高能源转化效率。
二、生物质气化在供热领域的应用在北方的一个城镇,冬季供暖是一个重要的民生问题。
为了减少对煤炭等传统能源的依赖,降低供暖成本和环境污染,引入了生物质气化供热系统。
该系统以周边农村的农作物秸秆为主要原料,通过生物质气化炉将其转化为可燃气体。
这些气体经过简单的净化处理后,直接送入供热锅炉燃烧产生热能,然后通过热力管网输送到居民家中。
大野木升司.JPbiomass

2.日本生物质资源情况
在日本,生物质资源的种类较多,大致分为三大类: 废弃物类、未利用类以及资源性农作物。 2-1.废弃物类生物质 在生活生产活动中产生的副产品和废弃物(生活垃圾、 工业废物等)。如图所示,这几年扩大利用的是建筑 废木材。2005年产生量有460万吨,其中60%被利用于 纸浆原材料、热能等,特别是这两年,和燃烧用材料 结合在一起用于大规模生物质发电的情况日益增多了。 以前,这种能源利用以造纸行业和水泥行业为主,但 这几年以木屑为燃料的发电项目也越来越多。
日本生物质能源综合战略?中央政府主要支持措施2003年生物质利用先进项目2005年生物质体系建设补贴2006年跨地区合作等生物质利用推广项目2007年地区生物质利用补贴生物质城市建设前期调研支持项目生物质燃料利用示范试点项目2008年软纤维素利用技术转化项目在地区生物质利用补贴上设立未利用生物质资源的有效利用优先项目到目前为止77个项目受各种中央政府支持措施
4.日本秸秆利用情况
表 现在日本水稻秸秆用途比重
用途 比 重 (%) 目的和需求
还田 堆肥 多用途材料 饲料 畜舍垫材 秸秆手工艺品 焚烧处理
61.5 10.1 4.0 11.6 6.5 1.3 4.6
农业利用。作为肥料还原,低成本。有污染的可能性。 农业利用。肥料 农业利用。其他农业材料 养殖利用。 养殖利用。 工艺。 处理。灰渣还原给农田
甘蔗渣利用的例子
利用甘蔗渣的衣服
甘蔗渣发电厂 利用甘蔗渣食物纤维的减肥食品 (日本自然资源株式会社)
5.小结
在日本,水稻秸秆和稻壳的主要利用方 式是低价值的。由于成本和技术经济性 的问题,焚烧发电或热能利用还不成为 主流的利用方式。在日本南方产生的甘 蔗渣的用途有各种各样的,今后将扩大 该资源的利用和开发高价值的利用方式。
生物质发电成本分析及案例

生物质发电投资分析我国的生物质资源非常丰富,据统计,目前每年仅农作物产生的秸秆量就达7亿t,预计到2010年会增至8亿t。
现有秸秆大约有1.45亿t用做畜牧饲料,0.91亿t用做还田肥料,0.14亿t用做工业原料,2.8亿t作为农民传统的生活燃料,剩余的秸秆几乎全部被焚烧,极大地浪费了生物质资源;开发利用生物质能,对于国家能源安全、CO2减排和社会可持续发展都具有重要意义。
一、生物质发电技术生物质发电技术主要包括生物质直接燃烧发电、气化发电以及与煤混合燃烧发电等技术。
(一)生物质直接燃烧发电生物质直接燃烧发电是指把生物质原料送入适合生物质燃烧的特定锅炉中直接燃烧,产生蒸汽,带动蒸汽轮机及发电机发电。
已开发应用的生物质锅炉种类较多,如木材锅炉、甘蔗渣锅炉、稻壳锅炉、秸秆锅炉等。
生物质直接燃烧发电的关键技术包括原料预处理,生物质锅炉防腐,提高生物质锅炉的多种原料适用性及燃烧效率、蒸汽轮机效率等技术。
生物质直接燃烧发电技术中的生物质燃烧方式包括固定床燃烧或流化床燃烧等方式。
固定床燃烧对生物质原料的预处理要求较低,生物质经过简单处理甚至无须处理就可投入炉排炉内燃烧。
流化床燃烧要求将大块的生物质原料预先粉碎至易于流化的粒度,其燃烧效率和强度都比固定床高。
另外,由于我国的生物质种类多,成分复杂,收集运输困难,而且主要的农业废弃物受到农业生产和季节性的影响不能保证全年供应,所以与燃煤锅炉对燃料单一性的要求不同,生物质锅炉要求能适应多种生物质原料,以保证燃料供应的稳定性。
我国的生物质锅炉和小型蒸汽轮机技术已基本成熟,但设备规模较小,参数较低,与进口设备相比效率较低。
生物质直接燃烧发电技术比较成熟,在大规模生产条件下具有较高的效率。
该技术在我国应用较少,因为它要求生物质资源集中,数量巨大,如果大规模收集或运输生物质,将提高原料成本,因此该技术比较适于现代化大农场或大型加工厂的废物处理。
表1所示为6MW和25MW生物质直接燃烧发电技术指标。
生物质气化技术的应用案例与分析

生物质气化技术的应用案例与分析随着全球能源需求的不断增长和对环境保护的日益重视,生物质气化技术作为一种可再生能源利用方式,正逐渐受到广泛关注。
生物质气化是指将生物质原料(如木材、农作物秸秆、废弃物等)在一定的温度和压力条件下,通过热化学转化过程,将其转化为可燃气体的技术。
这种技术不仅可以实现生物质资源的高效利用,还能减少对传统化石能源的依赖,降低温室气体排放,具有重要的经济和环境意义。
一、生物质气化技术的原理与特点生物质气化的基本原理是在缺氧或有限氧气供应的条件下,生物质原料发生热解和部分氧化反应,生成含有一氧化碳、氢气、甲烷等成分的合成气。
其主要反应包括热解反应、燃烧反应和还原反应。
生物质气化技术具有以下几个显著特点:1、原料来源广泛:包括各种农业废弃物、林业剩余物、城市生活垃圾等,资源丰富且可再生。
2、能源转化效率较高:相比直接燃烧,气化过程能够更有效地释放生物质中的能量。
3、环境友好:减少了二氧化碳、二氧化硫等污染物的排放。
4、应用灵活:所产生的合成气可用于发电、供热、生产化学品等多种领域。
二、应用案例(一)生物质气化发电在_____地区,建设了一座以生物质气化技术为核心的发电厂。
该发电厂以当地丰富的农作物秸秆和林业废弃物为原料,通过气化炉将生物质转化为合成气,然后利用燃气轮机进行发电。
这座发电厂的装机容量达到了_____兆瓦,年发电量约为_____千瓦时。
与传统的燃煤发电相比,每年可减少二氧化碳排放_____吨,二氧化硫排放_____吨。
同时,该项目还为当地农民提供了额外的收入来源,促进了农业废弃物的资源化利用。
(二)生物质气化供热在_____工业园区,采用了生物质气化供热系统。
该系统以园区周边的木材加工剩余物为燃料,通过气化设备产生合成气,然后将其输送到热交换器中为园区内的企业提供热能。
该供热系统的供热能力达到了_____兆瓦,满足了园区内_____家企业的生产用热需求。
通过使用生物质气化供热,园区内的企业每年可节省能源成本约_____%,同时减少了对传统化石能源的依赖,降低了环境污染。
生物质能发电简介介绍

• 加强国际合作与交流:生物质能发电是一个全球性的议题,各国之间应加强国 际合作与交流,共同研究和解决生物质能发电领域的技术难题和市场挑战,推 动全球能源结构的绿色转型。
尽管生物质能发电具有诸多优点,但 在实际应用中仍存在一些问题和挑战 ,如生物质原料的收集、运输和储存 等。
未来生物质能发电的研究方向
• 提高转化效率:未来的研究应致力于提高生物质能发电的转化效率,降低发电 成本,提高其在能源市场中的竞争力。
• 创新生物质原料:除了传统的农林废弃物等生物质原料外,未来可以研究利用 更多类型的生物质原料,如城市固体废弃物、工业废水等。
THANKS
感谢观看
04
生物质能发电的前景与挑战
生物质能发电的发展前景
1 2
可再生能源重要来源
生物质能作为一种可再生能源,在全球能源消费 中占据重要地位,其发电领域具有广阔的发展空 间。
多元化利用
生物质能发电不仅可解决能源问题,还可实现废 弃物的资源化利用,促进循环经济发展。
3
技术创新驱动
随着技术的进步,生物质能发电效率不断提高, 成本降低,为其大规模应用提供了有力支持。
生物质能发电的意义
01 环保意义
生物质能发电利用废弃物资源,减少了对化石燃 料的依赖,降低了温室气体排放,有助于环境保 护和可持续发展。
02 能源安全意义
生物质能是可再生能源,通过生物质能发电可以 降低能源对外依存度,提高国家能源安全水平。
03 农村经济发展意义
日燃烧棉花桔杆500吨生物发电可研报告

日燃烧棉花桔杆500吨生物发电可研报告一、引言生物发电技术是一种利用生物质资源来发电的环保能源技术,具有可再生、低碳排放等优势。
本报告旨在研究利用日燃烧棉花桔杆进行生物发电的可行性和效益。
二、背景棉花桔杆是棉花生产过程中产生的剩余物,具有丰富的纤维素和半纤维素,是一种理想的生物质资源。
通过燃烧棉花桔杆发电,既可以减少废弃物的排放,又可以利用其能量来产生电力。
三、技术路线1. 收集棉花桔杆:在棉花生产过程中,将剩余的棉花桔杆进行收集,保证原料的充足供应。
2. 原料处理:对收集到的棉花桔杆进行切割和破碎处理,以提高燃烧效率。
3. 生物发酵:将处理后的棉花桔杆进行生物发酵,产生甲烷气体。
4. 燃烧发电:将产生的甲烷气体用作燃料,通过燃烧产生蒸汽驱动发电机,发电。
5. 废弃物处理:将燃烧后的棉花桔杆残渣进行处理,如制成有机肥料等,实现资源化利用。
四、可行性分析1. 资源丰富:棉花桔杆作为棉花生产的副产品,资源丰富,可以满足发电所需的原料。
2. 环保低碳:生物发电技术使用可再生的生物质资源,相对于化石燃料发电,其排放的二氧化碳减少,对环境友好。
3. 经济效益:利用棉花桔杆进行发电可以有效降低能源成本,提高能源利用效率。
4. 地方经济发展:生物发电技术的引入可以促进当地经济发展,提高就业率。
五、风险评估1. 原料供应风险:棉花桔杆的收集和处理需要一定的成本和人力投入,原料供应不足可能影响发电的稳定性。
2. 燃烧排放风险:虽然生物发电技术相对环保,但燃烧过程中仍会产生一定的气体排放,需要采取相应的排放控制措施。
3. 经济可行性风险:生物发电技术的经济可行性需要综合考虑原料成本、发电成本以及电力市场情况等因素。
六、市场前景随着国家对可再生能源的重视和支持力度的加大,生物发电技术有望在能源领域得到广泛应用。
利用棉花桔杆进行生物发电不仅可以解决棉花生产过程中的废弃物问题,还可以为当地提供清洁能源,具有良好的市场前景。
生物质发电项目环境成本核算与应用探析

现代营销上旬刊2024.04一、国内外文献综述(一)生物质发电现状研究生物质能源的合理利用是低碳转型发展的重要途径之一。
据初步统计,仅农作物秸秆一项,年产生量超过10亿吨,农林废弃和种植专用能源作物总能源潜力折合约3.45亿吨标准煤/年,为生物质发电提供了良好的物质基础。
生物质能源有利于节能减排,是基于光合作用固定CO2的唯一一种可再生碳基能源,随着农业生产和城市生活以废弃的形式产生,具有多方面的优点。
一方面,可以解决蒸汽集中供应城市的供暖问题。
另一方面,在农业大省,这种分布式清洁供暖方式成本较低,可以就地取材,可行性较强,是具有一定优势的生物质发电项目。
(二)环境成本理论综述经济发展环境费用的国际研究始于20世纪70年代。
1971年,美国麻省理工学院(MIT)尝试量化计算经济增长与资源环境压力的对应关系,提出了生态需求指数的概念。
1993年,联合国统计署与世界银行合作,修订的国民经济账户体系框架将环境与资源成本纳入其中,标志着绿色GDP在世界范围内的正式确立。
挪威、美国、荷兰、德国、芬兰等国家相继建立了绿色GDP核算体系,开展自然资源核算、污染环境损失成本核算、环境污染实物量核算、环保投入产出核算。
1996—1999年,北京大学通过资源—经济—环境综合核算方法,建立了环境经济综合核算框架体系,为我国环境经济核算奠定了基础。
1997年,郭道扬从资源补偿角度定义环境成本,提出“绿色成本”是发展“绿色经济”的“绿色通道”,强调绿色发展对环境的影响,引起学术界对环境成本的重视与探讨。
1998年,王立彦基于空间影响,将环境成本分为内部环境成本和外部环境成本,认为内部环境成本可以计量,外部环境成本无法准确计量。
2003年,李静江将环境成本分为环境污染预防成本、环境治理成本和环境损失成本。
中国环境规划院等完成了2004—2010年全国环境经济核算研究报告,核算内容基本遵循联合国发布的SEEA体系,但不包括自然资源耗减成本的核算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日本生物质发电概述及项目案例浅析
发表时间:2019-07-23T10:33:43.383Z 来源:《工程管理前沿》2019年第09期作者:矫良李德恩余德超
[导读] 本文简述了日本的生物质发电的现状、市场情况和当地政府的补贴政策以及近期的大型生物质发电项目动向。
中国建材国际工程集团有限公司上海 200063
摘要:本文简述了日本的生物质发电的现状、市场情况和当地政府的补贴政策以及近期的大型生物质发电项目动向。
重点介绍了以转基因大豆油直接燃烧的生物质发电技术。
结合日本的生物质项目案例对其经济可行性进行浅析,以期为国内开发商或投资商参与日本生物质发电市场提供一定参考。
关键词:日本生物质发电转基因大豆油
引言
日本是一个工业化程度非常高的发达国家,人口众多,工业和居民用电量都很大,2007年,日本电力的基本情况有:天然气24%,核电21%,石油20%,煤炭16%,水电和其他新能源19%【1】。
日本又是个自然资源十分匮乏的国家,火力发电和重油发电所依赖的煤炭、石油、天然气等化石能源90%以上依赖国外进口,发电成本相对较高。
尤其是2011年日本的大地震和海啸引发的福岛核电危机事件后,日本关停了国内全部核电站(51座),但是这些核电站关闭之后,有大量工厂企业和3550万人口的日本东京首都圈面临着严重的电力短缺问题。
日本企业内部的节电意识非常强烈,对夏季的用电都有非常严格的规定,只有当日气温必须超过一定的温度值办公室才能开启空调,从这个实例可以从侧面反映出日本用节电措施应对缺电的现状。
自福岛核危机事件以来,日本政府面对重重阻力和各种争议才重启了4座核电站,不及原来全部核电容量的10%,恢复投运的核电电力很难达到危机前的水平,导致非常大的电力供应缺口出现。
除了用电需求外,还为了满足《京都议定书》和《巴黎气候协议》的减排标准,日本政府在未来必须推出更多的其他类型的新能源以取代因核电停运产生的电力缺口和污染排放较高的火电电力。
日本政府提倡的其他类型的新能源有:地热能、水力、风能、小型的分布式太阳能、生物质能等。
然而,光伏发电因为只有白天发电夜间不能发电,日本国土面积狭小,大规模安装土地受到限制;虽然在光伏电站中应用储能系统可以解决白天发电晚上用电的问题,但依然存在规模化应用和成本过高等的瓶颈限制。
风力发电存在对风资源选址和远距离输电限制等不足。
相比而言,生物质发电的白天和夜间可以不间断发电、成本较低等优势就显现出来。
日本政府计划到2025年将生物质发电的比例增加到原来的1.5倍,2030年增加到原来的2-2.5倍。
生物质能作为一种可再生的能源,具有取之不尽,用之不竭的特点。
目前,全球范围内生物质燃料占一次能源总量的14%,仅次于石油、煤和天然气,并将成为未来可再生能源的主要组成部分,生物质能源将在日本的能源结构中占有更高的比例。
在亚洲及太平洋地区的发展中国家,木材和秸秆仍然是生物质发电的主要燃料,生物质资源的高效清洁利用将成为发展中国家广大的农村地区能源消费的发展趋势。
生物质资源是可再生资源,充分开发并利用生物质资源,在能源安全、控制全球碳排放、农业可持续发展等方面具有重要的意义。
一、日本能源政策和市场概况
1.日本能源政策
日本历史上的能源供需经历了两次重大变革。
一是1970—2010年间对石油严重依赖;二是2011年日本大地震引发的福岛核危机,出现严重的电力供应问题。
在此背景下,2015年,日本政府制定了2030年新能源政策和目标为:液化天然气27%、煤炭26%、可再生能源(水力、地热能和生物质能)22-24%、核电20-22%、石油3%【2】。
《日本的承诺(草案)》中明确规定了实现减排 26%的基本方针政策。
其中提到增加可再生能源的利用,并降低火力发电的电力供应占总目标的 21.9%(摘自:日本敲定 2030 年温室气体减排目标法制日报/2015 年/7 月/21 日/第 009 版环球法治)到2024年,新能源和可再生能源的比例至少要达到24%。
到2050年,生物质可再生能源的发电比例要达到总发电量的15%。
日本外相河野太郎甚至提议2030年实现碳排放量减少26%,比可再生能源所占的比例还要高4%。
日本各大电力公司会与生物质发电PPA项目公司签订20年的政府保障购电合同,固定购买电价(FIT24~40日元/kwh不含税)、固定每年发电量,以此确保投资人的每年有可以预期的固定的生物质发电收益。
2.日本生物质发电市场
表1所列生物质发电项目来看,多数都在未来的2-3年内即将投运且装机容量越来越大的生物质发电项目。
这些项目的投资方或者参股方除了日本当地的电力公司外,也不乏东芝、三菱、三井、丸红等日本大企业的身影,由此可以预期,日本不久的将来会兴起建设生物质发电项目的热潮。
二、生物质发电技术路线与生物质柴油的优点
生物质发电技术目前已发展成为世界上技术成熟可规模化应用的成熟的可再生能源技术。
当前,主要的生物质发电技术路线包括以下四种:
(1)生物质气化发电;
(2)生物质直接燃烧发电;
(3)生物质+煤混合燃烧发电
(4)沼气发电。
本文重点介绍生物质直接燃烧发电技术,以转基因大豆油为基础的生物柴油,其有以下优点:
1)含水率较高,最大可达30%-45%。
水分有利于降低油的黏度、提高稳定性,因为处理技术的差异,可能会略微降低油的热值;2)润滑性能好;3)优良的环保特性:硫含量低,二氧化硫和硫化物的排放低、生物柴油的生物降解性高达98%,降解速率是普通柴油的2倍,可大大减轻意外泄漏时对环境的污染;4)较好的低温发动机启动性能;5)较好的安全性能:闪点高,运输、储存、使用方面安全;6) 十六烷值高,燃烧性能好于柴油;7) 无须大改动柴油机,可直接使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。
生物柴油是优质的石油柴油代用品,所以生物柴油的发电原理和石油柴油的发电原理基本一样,无需改变发电装置。
有关的数据表明,采用生物柴油后排放的气体中有毒有机物排放量仅为十分之一,颗粒物为普通柴油的20%,一氧化碳和二氧化碳排放量仅为石油柴油的10%,无硫化物和铅及有毒物的排放;混合生物柴油可将排放含硫物浓度从500 PPM(百万分之一)降低到5 PPM。
生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。
生物柴油是一种清洁、优质的可再生性能源,在世界石油储造持续减少的今天,开发生物柴油具有极其重大的意义。
采用生物柴油后排放的气体中有毒有机物排放量仅为十分之一,颗粒物为普通柴油的20%,一氧化碳和二氧化碳排放量仅为石油柴油的10%,无硫化物和铅及有毒物的排放;混合生物柴油可将排放含硫物浓度从500PPM(百万分之一)降低到5PPM。
一百多年以来,生物柴油生产技术日趋成熟。
从最初的稀释混合法等到后来的酸碱催化法,再到酶解法和超临界法,越来越先进的技术被开发出来,生物柴油获得率不断提高,稳定性也越来越高且反应时间不断缩短。
三、项目案例浅析
本文以项目案例的形式重点介绍当前日本市场所采用的生物质直接燃烧发电技术,可参考图1本生物质发电厂的三维效果图。
四、项目经济性初探(以转基因大豆油为燃料)
本转基因大豆油生物质发电项目,采用美国进口转基因大豆油为燃料,并基于一种特有的融合处理技术对转基因大豆油进行处理,可以大幅度降低成本,并能满足生物质发电锅炉燃料的技术要求,有效的降低了系统的发电成本,显著的提高了项目的经济性。
在不考虑项目开发、财务成本、运维成本和利润的情况下,2年即可收回投资成本,即初步IRR可达40-50%。
五、结语
文章基于对日本当前生物质发电市场情况的概述和日本政府的生物质发电规划,并结合日本某地的转基因大豆油生物质发电实例的经济可行性分析,为国内的开发商或者投资运营商进军日本生物质发电市场提供一定的参考和指引。
参考文献
【1】陈海嵩.日本能源供需现状及能源结构演变分析【J】.能源经济,2009(5):25 【2】橘川武郎,杨雪婷.日本电力结构计划与问题分析【J】.东北亚学刊,2016(1):56。