百校联盟2019届TOP20二月联考Ⅰ卷文科数学答案

合集下载

2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题(带答案解析)

2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题(带答案解析)

绝密★启用前2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.集合{}2|320A x x x =-+>,则A =R ð( ) A .{|2x x >或1}x < B .{}|12x x << C .{|2x x ≥或1}x ≤ D .{|12}x x ≤≤2.已知复数431iz i+=+,则z =( ) A .2B .52C D .3.已知n S 为等比数列{}n a 的前n 项和,23a =,313S =,则6a =( ) A .243或127B .81或181C .243D .1274.已知P 为椭圆22:19x C y +=上一点,()0,4Q ,则P ,Q 两点间的最大距离是( ) A .3B .5C .D .5.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为( )……装…………………订…………○…线…………○……※不※※要※※在※※订※※线※※内※※答※※题※※……装…………………订…………○…线…………○……A .150B .177.8C .183.3D .2006.已知[]x 表示不超过x 的最大整数,执行如图所示的程序框图,若输入的x 值为2.4,则输出z 的值为( )A .1.2B .0.6C .0.4D .0.4-7.某几何体的三视图如图所示,则该几何体的体积为( )A .13B .1C .3D .328.已知偶函数()f x 满足(1)(1)f x f x +=-,且当[]0,1x ∈时,()21xf x =-,若函数()y f x kx =-()0k >有六个零点,则( ) A .15k =B .11,75k ⎛⎫∈ ⎪⎝⎭C .11,53k ⎛⎫∈ ⎪⎝⎭D .17k =9.已知双曲线22:13y C x -=的左右焦点分别为1F ,2F ,过1F 作斜率为k ()0k >的直线l 与双曲线C 的左右两支分别交于A ,B 两点,若22AF BF =,则直线l 的斜率为( )A .4B .5C .58D .3510.函数()sin 221f x x x =++的图象向右平移6π个单位长度后得到函数()g x 的图象,当()0,1a ∈时,方程|()|g x a =在区间[]0,2π上所有根的和为( ) A .6πB .8πC .10πD .12π11.在四面体A BCD -中,AC BC AD BD ====,AB CD x ==,则四面体A BCD -体积的最大值为()A .12B .23C .13D .3412.函数2()(23)1f x ax a x a =--++与1()1g x x =-的图象有三个交点,则实数a 的取值范围为( ) A .()18,0-B .1415,27⎛⎫- ⎪⎝⎭C .1418,27⎛⎫- ⎪⎝⎭ D .14(18,0)0,27⎛⎫- ⎪⎝⎭U第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知向量(2,3)a =,(1,2)b =-r,若()()a b a mb +⊥-rrrr()m R ∈,则m =_____________.14.532x x ⎛⎫- ⎪⎝⎭的展开式中3x 项的系数为____________(用数字作答).15.已知变量x ,y 满足约束条件10220240x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则目标函数1yz x =+的最大值为______.16.如图,ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足()cos (2cos cos )b c A a B C +=--,b c =,设AOB θ∠=()0θπ<<,24OA OB ==,则四边形OACB 面积的最大值为__________.○…………订……………○……※※订※※线※※内※※○…………订……………○……三、解答题17.已知n S为等差数列{}n a的前n项和,35a=,749=S.(1)求数列{}n a的通项公式;(2)设2nn nab=,nT为数列{}n b的前n项和,求证:3nT<.18.如图,在直三棱柱111ABC A B C-中,4AC=,3AB=,14AA=,AB AC⊥.(1)证明:1A C⊥平面1ABC;(2)在线段11A B上是否存在点D,使得平面DBC与平面11AAC C所成的锐二面角为45︒,若存在,求出线段1A D的长度;若不存在,说明理由.19.新能源汽车正以迅猛的势头发展,越来越多的企业不断推出纯电动产品,某汽车集团要对过去一年推出的四款纯电动车型中销量较低的A车型进行产品更新换代.为了了解这种车型的外观设计是否需要改进,该集团委托某调查机构对大众做问卷调查,并从参与调查的人群中抽取了400人进行抽样分析,得到如下表格:(单位:人)(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为大众对A型车外观设计的喜欢与年龄有关?(2)现从所抽取的中年人中按是否喜欢A 型车外观设计利用分层抽样的方法抽取5人,再从这5人中随机选出3人赠送五折优惠券,求选出的3人中至少有2人喜欢该集团A 型车外观设计的概率;(3)将频率视为概率,从所有参与调查的人群中随机抽取20人赠送礼品,记其中喜欢A 型车外观设计的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20.已知动点Q 在x 轴上方,且到定点()0,1F 距离比到x 轴的距离大1. (1)求动点Q 的轨迹C 的方程;(2)过点()1,1P 的直线l 与曲线C 交于A ,B 两点,点A ,B 分别异于原点O ,在曲线C 的A ,B 两点处的切线分别为1l ,2l ,且1l 与2l 交于点M ,求证:M 在定直线上. 21.已知函数()ln(1)1axf x x x =+-+()a R ∈. (1)若当0x >时,()0f x >恒成立,求a 的取值范围; (2)比较20172019与20182018的大小.22.已知极坐标系的极点与直角坐标系的原点重合,轴与x 轴的正半轴重合.曲线C 的极坐标方程:4cos ρθ=,直线l 的参数方程2112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于不同的两点A ,B ,()2,1-M ,求11||||AM BM +的值.(1)当3a =时,解不等式()0f x <;(2)若存在实数x ,使得()4f x ≥成立,求a 的取值范围.参考答案1.D 【解析】 【分析】求出集合A 的值,可得A R ð的值. 【详解】解:由题意:{}{}2|320| 2 1A x x x x x x =-+>=><或,所以{}|12R C A x x =≤≤,故选:D. 【点睛】本题主要考查补集的概念,属于基础题,求出集合A 是解题的关键. 2.A 【解析】 【分析】根据复数的运算,化简复数7122z i =-,再利用复数模的运算公式,即可求解. 【详解】由题意,复数()()()()43143771111222i i i i z i i i i +-+-====-++-,所以2z ===, 故选A . 【点睛】本题主要考查复数模长的计算,其中解答中根据复数的运算法则进行化简是解决本题的关键,着重考查了运算与求解能力,属于基础题. 3.A 【解析】 【分析】设数列{}n a 的公比为q ,由23a =,313S =,列出关于1a 与q 的方程组,可得1a 与q 的值,可得答案. 【详解】解:设数列{}n a 的公比为q ,则()1213113a q a q q =⎧⎪⎨++=⎪⎩,解之得113a q =⎧⎨=⎩,或1913a q =⎧⎪⎨=⎪⎩ 所以5613243a =⨯=或56119327a ⎛⎫=⨯=⎪⎝⎭. 故选:A. 【点睛】本题主要考查等比数列基本量的计算及等比数列的性质,属于基础题,求出1a 与q 的值是解题的关键. 4.D 【解析】 【分析】设点()00,P x y ,可得220019x y +=,且011y -≤≤,可得PQ 的距离用0y 表示,由二次函数的性质可得其最大值. 【详解】解:设点()00,P x y ,可得220019x y +=,且011y -≤≤,则PQ ===≤max ||PQ =故选:D. 【点睛】本题主要考查椭圆的简单性质,属于基础题型,设点()00,P x y 并求出0y 的取值范围代入PQ 的距离公式进行计算是解题的关键.5.C 【解析】 【分析】根据中位数两侧的频率相等且为0.5进行计算可得答案.【详解】解:因有50%的居民用电量小于或等于中位数,居民用电量小于150度的频率为(0.00240.0036)500.30+⨯=,150~200度之间的频率为0.0060500.30⨯=,所以中位数为150~200度之间的23处,即215050183.33+⨯≈. 故选:C. 【点睛】本题主要考查频率分布直方图的性质及中位数的概念与性质,属于基础而题型. 6.D 【解析】程序运行时,变量值依次为 2.4,1y x ==,满足0x ≥, 1.2x =,1.2,0y x ==,满足0x ≥,0.6x =,0.6,1y x ==-,不满足0x ≥,执行10.60.4z x y =+=-+=-,故选D .7.A 【解析】 【分析】由三视图可得几何体的直观图,计算可得其体积. 【详解】解:由三视图知该几何体是高为1的四棱锥,其底面是边长为1的正方形,直观图如图,所以体积2111133V =⨯⨯=. 故选:A. 【点睛】本题主要考查由三视图还原为直观图及空间几何体的体积,其中得出该几何体是底面是边长为1的正方形,高为1的四棱锥是解题的关键. 8.B 【解析】 【分析】由已知可得()f x 为周期函数且2T =,作出函数()y f x =与y kx =的图象,由函数()y f x kx =-()0k >有六个零点,数形结合可求出k 的取值范围.【详解】解:由题意:()f x 为偶函数,故()()f x f x =-,且(1)(1)f x f x +=-, 故可得:(2)[1(1)]()()f x f x f x f x +=-+=-=, ()f x 为周期函数且2T =, 由[]0,1x ∈时,()21xf x =-,作出函数()y f x =与y kx =的图象,如图函数()y f x kx =-()0k >有六个零点, 当两图象在区间()5,7上有一个交点时满足条件,故可得:()()550770f k f k ⎧-⎪⎨-⎪⎩><,可得150170k k -⎧⎨-⎩><,1175k <<,所以11,75k ⎛⎫∈ ⎪⎝⎭.故选:B. 【点睛】本题主要考查函数的周期性与函数零点的性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题. 9.B 【解析】 【分析】因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,由双曲线的性质可得12AF x =-,12BF x =+,2F M ==,求出x 的值,可得12tan MF F ∠的值,可得直线l 的斜率. 【详解】解:如图,因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,因为212AF AF -=,则12AF x =-,又因为122BF BF -=,则12BF x =+,11||4AB BF AF =-=,则||||2AM BM ==,则2F M ==x =,所以2121tan F M MF F F M∠===l. 故选:B. 【点睛】本题主要考查双曲线的简单性质,直线与双曲的位置关系,考查了学生的计算能力,属于中档题. 10.C 【解析】 【分析】求出()g x 的解析式,画出函数()y g x =与函数y a =的图象,可得方程|()|g x a =在区间[]0,2π上所有根的和.【详解】解:()sin 2212sin 213f x x x x π⎛⎫=++=++ ⎪⎝⎭,向右平移6π个单位长度后得到()2sin 21g x x =+.画出函数()y g x =与函数y a =的图象如图,共有8个交点,其中交点A ,D 和B ,C 关于34x π=对称,交点E ,H 和F ,G 关于74x π=对称,所以32A D B C x x x x π+=+=,72E HFG x x x x π+=+=,故所有交点横坐标之和为10π,则方程|()|g x a =在区间[]0,2π上所有根的和为10π.故选:C. 【点睛】本题主要考查三角函数的平移及正弦函数的图像与性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题. 11.B 【解析】 【分析】根据已知条件的对称性,把四面体放入长方体中,可得2222x a b ==,2262x c -=,故可得4163A BCD V abc abc abc -=-=,由不等式的性质可得其最大值. 【详解】解析一:根据已知条件的对称性,把四面体放入长方体中,如图设OA a =,OB b =,OD c =,则222222233a b x a c b c ⎧+=⎪+=⎨⎪+=⎩,所以2222x a b ==,2262x c -=,又4163A BCD V abc abc abc -=-= 所以()()3222222222211112246936236439A BCD x x x V a b c x x x -⎛⎫++-==-≤= ⎪⨯⨯⎝⎭, 所以23A BCD V -≤,当且仅当22122x x =-,即2x =时取等号. 故选:B. 解析二:如图,分别取AB ,CD 的中点E ,F ,连接CE ,DE ,EF ,则有AB CE ^,AB DE ⊥,得AB ⊥平面CDE ,又CE DE =,所以EF CD ⊥,所以222234x DE AD AE =-=-,222232x EF DE DF =-=-,所以1132A BCD V x -=⨯,令t =(t ∈,2262x t =-,()23116263A BCD V t t t t -=-=-+,2()1V t t '=-+,当()0,1t ∈时,()0V t '>,当(t ∈时,()0V t '<,故当1t =,即2x =时,A BCD V -有最大值为12(1)133V =-+=. 故选:B. 【点睛】本题主要考查空间几何体体积的求法,涉及不等式的性质的相关知识,属于中档题. 12.D 【解析】 【分析】由题意可得()()0f x g x -=得,分离参数可得32143(1)(1)1a x x x =-----,设设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点,对()h t 求导,由导数的性质可得()h t 的极大值与极小值,可得实数a 的取值范围. 【详解】解:由题意可得()()0f x g x -=得,32143(1)(1)1a x x x =-----.设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点.2()383h t t t '=--,由()0h t '>得3t >或13t <-;由()0h t '<得133t -<<. 所以()h t 的极大值为114327h ⎛⎫-= ⎪⎝⎭,极小值为()318h =-,又()00h =, 所以当180a -<<或14027a <<时,函数2()(23)1f x ax a x a =--++与1()1g x x =-的图象有三个交点, 故选:D. 【点睛】本题主要考查利用导数求函数的单调性与极值,利用导数求解参数的取值范围,考查学生的综合计算能力,属于中档题. 13.9 【解析】 【分析】先求出a b +rr 与a mb -r r ,然后利用向量垂直的坐标表示列式求解可得m 的值.【详解】解:因为()()a b a mb +⊥-r r r r ,所以()()0a b a mb +⋅-=r r r r,即(3,1)(2,32)0m m ⋅-+=,即63320m m -++=,解得9m =, 故答案为:9. 【点睛】本题主要考查向量的坐标表示及向量垂直的性质,属于基础题型,注意运算准确. 14.80-【解析】 【分析】求出532x x ⎛⎫- ⎪⎝⎭展开式的通项公式,可得展开式为3x 时r 的值,代入可得展开式中3x 项的系数. 【详解】解:532x x ⎛⎫- ⎪⎝⎭展开式的通项公式为()531541552C (2)C rrrr r rr T x xx --+⎛⎫=-=- ⎪⎝⎭, 由1543r -=得3r =,所以532x x ⎛⎫- ⎪⎝⎭的展开式中3x 项的系数为335(2)80C -=-,故答案为:80-. 【点睛】本题主要考查二项展开式的性质及求二项展开式特定项的系数,属于基础题型. 15.2 【解析】 【分析】作出不等式组表示的平面区域,可得目标函数1yz x =+,表示平面区域内的点与()1,0D -连线的斜率,可得当取区域内的点取()0,2A 时斜率最大,可得最大值. 【详解】解:作出不等式组表示的平面区域,如图ABC ∆,目标函数1yz x =+,表示平面区域内的点与()1,0D -连线的斜率,由图可知,区域内的点取()0,2A 时斜率最大,所以max 2020(1)z -==--,故答案为:2. 【点睛】本题主要考查线性规划的基本概念及求线性目标函数的最值问题,属于基础题型,作出不等式组表示的平面区域后利用目标函数1yz x =+的几何意义求解是解题的关键.16.8+ 【解析】 【分析】由()cos (2cos cos )b c A a B C +=--,由正弦定理化简可得sin sin 2sin C B A +=,可得2b c a +=,又b c =,所以ABC ∆为等边三角形,可得21sin 2AOB ABC OACB S S S OA OB AB θ∆∆=+=⋅⋅四边形 ,化简可得8sin 3OACB S πθ⎛⎫=-+ ⎪⎝⎭四边形θ的取值范围,可得四边形OACB 面积的最大值.【详解】解:由()cos (2cos cos )b c A a B C +=--,以及正弦定理得:sin cos sin cos 2sin sin cos sin cos B A C A A A B A C +=--, sin cos sin cos sin cos sin cos 2sin B A A B C A A C A +++=,sin()sin()2sin A B A C A +++=,sin sin 2sin C B A +=由正弦定理得:2b c a +=,又b c =,所以ABC ∆为等边三角形,()2221sin 4sin 2cos 244AOB ABC OACB S S S OA OB AB OA OB OA OB θθθ∆∆=+=⋅⋅+=++-⋅⋅四边形4sin 8sin 3πθθθ⎛⎫=-+=-+ ⎪⎝⎭()0,θπ∈Q ,2,333πππθ⎛⎫∴-∈- ⎪⎝⎭,当且仅当32ππθ-=,即56πθ=时,OACB S 四边形取最大值8+. 【点睛】本题主要考查三角恒等变化及正弦定理、余弦定理解三角形及三角函数的性质,考查学生的综合计算能力,需牢记并灵活运用各定理解题,属于中档题. 17.(1)21n a n =-;(2)证明见解析 【解析】 【分析】(1)设数列{}n a 的公差为d ,由已知列出关于1a 与d 的方程组,解之可得数列{}n a 的通项公式;(2)由(1)可得2122n n n n a n b -==,由裂项相消法可得n T 的表达式,可证明3n T <. 【详解】解:(1)设数列{}n a 的公差为d ,则由已知得112572149a d a d +=⎧⎨+=⎩,解之得,11a =,2d =,所以1(1)21n a a n d n =+-=-.(2)2122n n n n a n b -==, 所以135212482n nn T -=++++L , 1113523212481622n n n n n T +--=+++⋯++, 两式相减得11111111212224822n n n n T -+-=+++++-L ,故212123333222n n n nn n T --+=--=-<. 【点睛】本题主要考查等差数列的基本性质及通项公式的求法、裂项相消法求数列的和,属于基础题型.18.(1)证明见解析;(2)存在,13A D = 【解析】 【分析】(1)易得11A C AC ⊥,同时由直三棱柱的性质可得平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥,故可得1A C ⊥平面1ABC ;(2)分别以AB u u u r ,AC u u u r,1AA u u u r方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -, 设1A D a =()03a ≤≤,则(),4,4D a ,()03a ≤≤,由空间向量法可得a 的值. 【详解】(1)由已知可得四边形11AAC C 为正方形,所以11A C AC ⊥, 因为几何体111ABC A B C -是直三棱柱, 所以平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥, 因为1AC AB A =I ,所以1A C ⊥平面1ABC ,(2)如图,由已知AB ,AC ,1AA 两两垂直,分别以AB u u u r ,AC u u ur ,1AA u u u r 方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -,则()0,0,0A ,()3,0,0B ,()0,4,0C ,设1A D a =()03a ≤≤,则(),4,4D a ,所以(3,0,4)BD a =-u u u r ,(,4,4)CD a =-u u u r,设平面BCD 的一个法向量为(),,n x y z =r,则(3,0,4)(,,)(3)40BD n a x y z a x z ⋅=-⋅=-+=u u u r r,()(,4,4),,440CD n a x y z ax y z ⋅=-⋅=-+=u u u r r,取4x =,得()4,3,3n a =-r,平面11AAC C 的一个法向量为()1,0,0m =r.所以cos,||||2m nm nm n⋅〈〉===r rr rr r解得3a=()0,3a∈,所以3a=-所以线段11A B上存在点D,且13A D=DBC与平面11AAC C所成的锐二面角为45︒.【点睛】本题主要考查线面垂直的判定定理与性质定理及二面角的求法,考查学生的空间想象能力与计算能力,属于中档题.19.(1)能;(2)710;(3)()11E X=,99()20D X=【解析】【分析】(1)计算2K的值,对照临界值表可得答案;(2)由分层抽样的知识可得,其中抽取的5人中,3人喜欢A型车外观设计,2人不喜欢A 型车外观设计,分别计算出从何5人中抽取3人的事件数与3人中至少有2人喜欢该集团A 型车外观设计的事件数,可得其概念;(3)从所有参与调查的人群中随机抽取1人,喜欢A型车外观设计的概率2201140020P==,可得11~20,20X B⎛⎫⎪⎝⎭,可得X的数学期望和方差.【详解】解:(1)22400(10080100120)4004.040 3.84122018020020099K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.05的前提下认为大众对A型车外观设计的喜欢与年龄有关.(2)从所抽取的中年人中利用分层抽样的方法再抽取5人,其中3人喜欢A型车外观设计,2人不喜欢A型车外观设计.记事件C表示选出的3人中至少有2人喜欢A型车外观设计,则()21332335710C C CP CC⨯+==.(III )从所有参与调查的人群中随机抽取1人,喜欢A 型车外观设计的概率2201140020P ==, 则11~20,20X B ⎛⎫ ⎪⎝⎭, 所以11()201120E X =⨯=,111199()201202020D X ⎛⎫=⨯⨯-=⎪⎝⎭. 【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、二项分布的期望与方差,考查学生的综合分析与计算能力,属于中档题.20.(1)24x y =()0y ≠;(2)证明见解析【解析】 【分析】(1)设(,)Q x y (0)y >,由到定点()0,1F 距离比到x 轴的距离大1,可得1y =,化简可得点Q 的轨迹C 的方程;(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立,设()11,A x y ,()22,B x y ,可得12x x +,12x x 的值,又24x y =,所以2x y '=,可得切线1l 的方程,同理可得切线2l 的方程,求出交点坐标,可得其在定直线上. 【详解】解:(1)设(,)Q x y (0)y >,1y =,化简得24x y =()0y ≠, 故轨迹C 的方程为24x y =()0y ≠.(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立得24440x kx k -+-=, 设()11,A x y ,()22,B x y ,则124x x k +=,1244x x k =-, 又24x y =,所以2x y '=, 所以切线1l 的方程为()1112x y x x y =-+, 即21124x x y x =-, 同理切线2l 的方程为22224x x y x =- 联立得1222x x x k +==,1214x x y k ==-. 两式消去k 得220x y --=,当1k =时,2x =,0y =,所以交点M 的轨迹为直线220x y --=,去掉()2,0点.因而交点M 在定直线上.【点睛】本题主要考查轨迹方程的求法,直线与抛物线的位置关系等知识,考查学生的综合计算能力,属于难题.21.(1)1a ≤;(2)2017201820192018<【解析】【分析】(1)求出()f x 的定义域,对其求导,令()0f x '=,得1x a =-,分1a ≤与1a >进行讨论,可得()0f x >恒成立时,a 的取值范围;(2)设ln(1)()x g x x +=(0)x >,对其求导,可得2ln(1)1()x x x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+,可得()g x 在()0,∞+上是减函数,故可得ln(20181)ln(20171)20182017++<,可得答案.【详解】解:(1)()f x 的定义域为1x >-,2211()1(1)(1)a x a f x x x x +-'=-=+++, 令()0f x '=,得1x a =-,①当1a ≤时,()0,x ∈+∞时,()0f x '>,所以()f x 单调递增,则()()00f x f >=, 所以1a ≤时满足条件,②当1a >时,()0,1x a ∈-时,()0f x '<,()1,x a ∈-+∞时,()0f x '>,得(1)(0)0f a f -<=,即存在1x a =-使得()0f x >不成立,故1a >不符合题意,所以满足条件的a 的取值范围为1a ≤.(2)设ln(1)()x g x x+=(0)x >, 则2ln(1)1()x x x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+, 所以当0x >时,()0g x '<,即()g x 在()0,∞+上是减函数,因为20182017>,所以ln(20181)ln(20171)20182017++< 即2017ln 20192018ln 2018<,即12018207l ln 201918n 20<所以2017201820192018<.【点睛】本题主要考查利用导数求函数的单调区间与极值,导数在恒成立求参问题中的应用,考查学生的综合计算能力,属于难题.22.(1)224x y x +=;(2【解析】【分析】(1)将方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得答案;(2))易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立,可得12t t +,12t t 的值,可得12121212121111||||t t t t AM BM t t t t t t +-+=+==-, 代入可得答案.【详解】解:(1)方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得:224x y x +=.(2)易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立得22121422t ⎛⎫⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 整理得230t t --=,所以121t t +=,123t t =-, 所以12121212121111||||t t t t AM BM t t t t t t +-+=+==-,123===. 【点睛】本题主要考查极坐标方程转化为直角坐标方程及简单曲线的极坐标方程的应用,考查学生的计算能力,属于基础题.23.(1){|2}x x >;(2)(,3][1,)-∞-⋃-+∞【解析】【分析】(1)将3a =代入()f x ,分2x -≤,23x -<<,3x ≥进行讨论,可得解不等式的解集; (2)由题意要使得()4f x ≥成立,即|||2|1x a x --+≥,由绝对值不等式的性质可得|||2||()(2)|2x a x x a x a --+≤--+=+,故只需21a +≥,可得a 的取值范围.【详解】解:(1)当3a =时,()3|2|3f x x x =-++-,()0f x <等价于23230x x x ≤-⎧⎨++-+<⎩或233230x x x -<<⎧⎨---+<⎩,或33230x x x ≥⎧⎨--+-<⎩, 解得x ∈∅或23x <<或3x ≥,所以原不等式的解集为{|2}x x >.(2)()4f x ≥成立,即|||2|1x a x --+≥成立. 因为|||2||()(2)|2x a x x a x a --+≤--+=+, 只需21a +≥,即21a +≥或21a +≤-,解得1a ≥-或3a ≤-.所以a 的取值范围是(,3][1,)-∞-⋃-+∞.【点睛】本题主要考查绝对值不等式的解法与性质,体现分类讨论与等价转化的思想,考查了运算求解能力,属于中档题.。

全国名校联考2019届高三上学期第二次联考数学(文)答案(PDF版)

全国名校联考2019届高三上学期第二次联考数学(文)答案(PDF版)
19.考点:数据处理、独立性检验 解析: (1) [0.0005 (20 140) 0.0025 (40 120) 0.013 (60 100)
0.018 80] 20 80 ;…………3 分
2 [0.0005 2 602 0.0025 2 402 0.013 2 202 ] 20 440 ……5 分
1 ax 1 0 ,得 0 x x a 1 ax 1 0 ,得 x x a
∴ f ( x ) 的单调增区间为 (0, ) ,令 f '( x ) 0 ,即 ∴ f ( x ) 的单调减区间为 ( , ) .
1 a
1 a
…………(4 分)
综上所述:当 a 0 时, f ( x ) 的单调增区间为 (0, ) ; 当 a 0 时, f ( x ) 的单调增区间为 (0, ) ,单调减区间为 ( , ) ………… (5 分)

c
3a 2c c 3 b( a 2 c 2 ) b 0 ,…………10 分 a2 c2 a2 c2
2 2
化简得 a 5c ,…………11 分
【高三第二次联考·文科 数学 第 5 页 (共 8 页) 】
即e
5 …………(12 分) 5 1 1 ax . ………… (1 分) a x x
当 PD
42 3 3 2 2 时, PB PC 取最小值…………12 分 1 4 2
18.考点:面面垂直的判定、等体积法求点面距(文) 解析: (1)
BH AD H BH 面ACD BH CD CD 面ABD AB CD CD 面ACD AD CD AB 面ABD AB BC AB 面BCD 面ABC 面BCD BC CD C AB 面ABC AB CD

2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题(解析版)

2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题(解析版)

2019届百校联盟高三TOP20二月联考(全国1卷)数学(理)试题一、单选题1.集合{}2|320A x x x =-+>,则A =R ð( ) A .{|2x x >或1}x < B .{}|12x x << C .{|2x x ≥或1}x ≤ D .{|12}x x ≤≤【答案】D【解析】求出集合A 的值,可得A R ð的值. 【详解】解:由题意:{}{}2|320| 2 1A x x x x x x =-+>=><或,所以{}|12R C A x x =≤≤,故选:D. 【点睛】本题主要考查补集的概念,属于基础题,求出集合A 是解题的关键. 2.已知复数431iz i+=+,则z =( )A .2B .52C D .【答案】A【解析】根据复数的运算,化简复数7122z i =-,再利用复数模的运算公式,即可求解. 【详解】由题意,复数()()()()43143771111222i i i i z i i i i +-+-====-++-,所以z ===, 故选A . 【点睛】本题主要考查复数模长的计算,其中解答中根据复数的运算法则进行化简是解决本题的关键,着重考查了运算与求解能力,属于基础题.3.已知n S 为等比数列{}n a 的前n 项和,23a =,313S =,则6a =( ) A .243或127B .81或181C .243D .127【答案】A【解析】设数列{}n a 的公比为q ,由23a =,313S =,列出关于1a 与q 的方程组,可得1a 与q 的值,可得答案.【详解】解:设数列{}n a 的公比为q ,则()1213113a q a q q =⎧⎪⎨++=⎪⎩,解之得113a q =⎧⎨=⎩,或1913a q =⎧⎪⎨=⎪⎩ 所以5613243a =⨯=或56119327a ⎛⎫=⨯=⎪⎝⎭. 故选:A. 【点睛】本题主要考查等比数列基本量的计算及等比数列的性质,属于基础题,求出1a 与q 的值是解题的关键.4.已知P 为椭圆22:19x C y +=上一点,()0,4Q ,则P ,Q 两点间的最大距离是( ) A .3 B .5 C.D.【答案】D【解析】设点()00,P x y ,可得220019x y +=,且011y -≤≤,可得PQ 的距离用0y 表示,由二次函数的性质可得其最大值. 【详解】解:设点()00,P x y ,可得220019x y +=,且011y -≤≤,则PQ ===≤max ||PQ =故选:D. 【点睛】本题主要考查椭圆的简单性质,属于基础题型,设点()00,P x y 并求出0y 的取值范围代入PQ 的距离公式进行计算是解题的关键.5.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为( )A .150B .177.8C .183.3D .200【答案】C【解析】根据中位数两侧的频率相等且为0.5进行计算可得答案. 【详解】解:因有50%的居民用电量小于或等于中位数,居民用电量小于150度的频率为(0.00240.0036)500.30+⨯=,150~200度之间的频率为0.0060500.30⨯=,所以中位数为150~200度之间的23处,即215050183.33+⨯≈. 故选:C. 【点睛】本题主要考查频率分布直方图的性质及中位数的概念与性质,属于基础而题型. 6.已知[]x 表示不超过x 的最大整数,执行如图所示的程序框图,若输入的x 值为2.4,则输出z 的值为( )A .1.2B .0.6C .0.4D .0.4-【答案】D【解析】程序运行时,变量值依次为 2.4,1y x ==,满足0x ≥, 1.2x =,1.2,0y x ==,满足0x ≥,0.6x =,0.6,1y x ==-,不满足0x ≥,执行10.60.4z x y =+=-+=-,故选D .7.某几何体的三视图如图所示,则该几何体的体积为( )A .13B .1C .3D .32【答案】A【解析】由三视图可得几何体的直观图,计算可得其体积. 【详解】解:由三视图知该几何体是高为1的四棱锥,其底面是边长为1的正方形,直观图如图,所以体积2111133V =⨯⨯=. 故选:A. 【点睛】本题主要考查由三视图还原为直观图及空间几何体的体积,其中得出该几何体是底面是边长为1的正方形,高为1的四棱锥是解题的关键.8.已知偶函数()f x 满足(1)(1)f x f x +=-,且当[]0,1x ∈时,()21xf x =-,若函数()y f x kx =-()0k >有六个零点,则( ) A .15k =B .11,75k ⎛⎫∈ ⎪⎝⎭C .11,53k ⎛⎫∈ ⎪⎝⎭D .17k =【答案】B【解析】由已知可得()f x 为周期函数且2T =,作出函数()y f x =与y kx =的图象,由函数()y f x kx =-()0k >有六个零点,数形结合可求出k 的取值范围. 【详解】解:由题意:()f x 为偶函数,故()()f x f x =-,且(1)(1)f x f x +=-, 故可得:(2)[1(1)]()()f x f x f x f x +=-+=-=, ()f x 为周期函数且2T =, 由[]0,1x ∈时,()21xf x =-,作出函数()y f x =与y kx =的图象,如图函数()y f x kx =-()0k >有六个零点, 当两图象在区间()5,7上有一个交点时满足条件,故可得:()()550770f k f k ⎧-⎪⎨-⎪⎩><,可得150170k k -⎧⎨-⎩><,1175k <<,所以11,75k ⎛⎫∈ ⎪⎝⎭.故选:B. 【点睛】本题主要考查函数的周期性与函数零点的性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题.9.已知双曲线22:13y C x -=的左右焦点分别为1F ,2F ,过1F 作斜率为k ()0k >的直线l 与双曲线C 的左右两支分别交于A ,B 两点,若22AF BF =,则直线l 的斜率为( ) A .10B 15 C .58D .35【答案】B【解析】因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,由双曲线的性质可得12AF x =-,12BF x =+,222164F M x x =-=-x 的值,可得12tan MF F ∠的值,可得直线l 的斜率.【详解】 解:如图,因为22AF BF =,则取AB 中点M ,连接2F M ,可得2F M AB ⊥,设22AF BF x ==,因为212AF AF -=,则12AF x =-,又因为122BF BF -=,则12BF x =+,11||4AB BF AF =-=,则||||2AM BM ==,则222164F M x x =-=-10x =,所以2121615tan 510F M MF F F M∠===,即直线l 15. 故选:B. 【点睛】本题主要考查双曲线的简单性质,直线与双曲的位置关系,考查了学生的计算能力,属于中档题.10.函数()sin 2321f x x x =++的图象向右平移6π个单位长度后得到函数()g x 的图象,当()0,1a ∈时,方程|()|g x a =在区间[]0,2π上所有根的和为( ) A .6π B .8πC .10πD .12π【答案】C【解析】求出()g x 的解析式,画出函数()y g x =与函数y a =的图象,可得方程|()|g x a =在区间[]0,2π上所有根的和.【详解】解:()sin 23212sin 213f x x x x π⎛⎫=++=++ ⎪⎝⎭,向右平移6π个单位长度后得到()2sin 21g x x =+.画出函数()y g x =与函数y a =的图象如图,共有8个交点,其中交点A ,D 和B ,C 关于34x π=对称,交点E ,H 和F ,G 关于74x π=对称,所以32A D B C x x x x π+=+=,72E HFG x x x x π+=+=,故所有交点横坐标之和为10π,则方程|()|g x a =在区间[]0,2π上所有根的和为10π. 故选:C. 【点睛】本题主要考查三角函数的平移及正弦函数的图像与性质,考查学生的计算能力,体现了数形结合的数学思想,属于中档题.11.在四面体A BCD -中,3AC BC AD BD ====,AB CD x ==,则四面体A BCD -体积的最大值为( )A .12B .23C .13D .34【答案】B【解析】根据已知条件的对称性,把四面体放入长方体中,可得2222x a b ==,2262x c -=,故可得4163A BCD V abc abc abc -=-=,由不等式的性质可得其最大值. 【详解】解析一:根据已知条件的对称性,把四面体放入长方体中,如图设OA a =,OB b =,OD c =,则222222233a b xa cb c⎧+=⎪+=⎨⎪+=⎩,所以2222xa b==,2262xc-=,又4163A BCDV abc abc abc-=-=所以()()3222222222211112246936236439A BCDx x x V a b c x x x-⎛⎫++-==-≤=⎪⨯⨯⎝⎭,所以23A BCDV-≤,当且仅当22122x x=-,即2x=时取等号.故选:B.解析二:如图,分别取AB,CD的中点E,F,连接CE,DE,EF,则有AB CE^,AB DE⊥,得AB⊥平面CDE,又CE DE=,所以EF CD⊥,所以222234xDE AD AE=-=-,222232xEF DE DF=-=-,所以2113322A BCDxV x x-=⨯-,令232xt=-(3t∈,2262x t=-,()23116263A BCDV t t t t-=-=-+,2()1V t t'=-+,当()0,1t∈时,()0V t'>,当(3t∈时,()0V t'<,故当1t=,即2x=时,A BCDV-有最大值为12(1)133V=-+=.故选:B.【点睛】本题主要考查空间几何体体积的求法,涉及不等式的性质的相关知识,属于中档题. 12.函数2()(23)1f x ax a x a=--++与1()1g xx=-的图象有三个交点,则实数a的取值范围为()A.()18,0-B.1415,27⎛⎫- ⎪⎝⎭C.1418,27⎛⎫- ⎪⎝⎭D.14(18,0)0,27⎛⎫- ⎪⎝⎭U【解析】由题意可得()()0f x g x -=得,分离参数可得32143(1)(1)1a x x x =-----,设设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点,对()h t 求导,由导数的性质可得()h t 的极大值与极小值,可得实数a 的取值范围. 【详解】解:由题意可得()()0f x g x -=得,32143(1)(1)1a x x x =-----.设11t x =-,则0t ≠,设()3243h t t t t =--,由已知得()y h t =与y a =有三个交点.2()383h t t t '=--,由()0h t '>得3t >或13t <-; 由()0h t '<得133t -<<. 所以()h t 的极大值为114327h ⎛⎫-= ⎪⎝⎭,极小值为()318h =-,又()00h =, 所以当180a -<<或14027a <<时,函数2()(23)1f x ax a x a =--++与1()1g x x =-的图象有三个交点, 故选:D. 【点睛】本题主要考查利用导数求函数的单调性与极值,利用导数求解参数的取值范围,考查学生的综合计算能力,属于中档题.二、填空题13.已知向量(2,3)a =r ,(1,2)b =-r ,若()()a b a mb +⊥-r r r r()m R ∈,则m =_____________.【答案】9【解析】先求出a b +rr 与a mb -r r ,然后利用向量垂直的坐标表示列式求解可得m 的值.【详解】解:因为()()a b a mb +⊥-r r r r ,所以()()0a b a mb +⋅-=r r r r,即(3,1)(2,32)0m m ⋅-+=,即63320m m -++=,解得9m =,【点睛】本题主要考查向量的坐标表示及向量垂直的性质,属于基础题型,注意运算准确.14.532 xx ⎛⎫-⎪⎝⎭的展开式中3x项的系数为____________(用数字作答).【答案】80-【解析】求出532xx⎛⎫-⎪⎝⎭展开式的通项公式,可得展开式为3x时r的值,代入可得展开式中3x项的系数.【详解】解:532xx⎛⎫-⎪⎝⎭展开式的通项公式为()531541552C(2)Crrr r r rrT x xx--+⎛⎫=-=-⎪⎝⎭,由1543r-=得3r=,所以532xx⎛⎫-⎪⎝⎭的展开式中3x项的系数为335(2)80C-=-,故答案为:80-.【点睛】本题主要考查二项展开式的性质及求二项展开式特定项的系数,属于基础题型. 15.已知变量x,y满足约束条件10220240x yx yx y--≤⎧⎪+-≥⎨⎪-+≥⎩,则目标函数1yzx=+的最大值为______.【答案】2【解析】作出不等式组表示的平面区域,可得目标函数1yzx=+,表示平面区域内的点与()1,0D-连线的斜率,可得当取区域内的点取()0,2A时斜率最大,可得最大值. 【详解】解:作出不等式组表示的平面区域,如图ABC∆,目标函数1yz x =+,表示平面区域内的点与()1,0D -连线的斜率,由图可知,区域内的点取()0,2A 时斜率最大,所以max 2020(1)z -==--,故答案为:2. 【点睛】本题主要考查线性规划的基本概念及求线性目标函数的最值问题,属于基础题型,作出不等式组表示的平面区域后利用目标函数1yz x =+的几何意义求解是解题的关键. 16.如图,ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足()cos (2cos cos )b c A a B C +=--,b c =,设AOB θ∠=()0θπ<<,24OA OB ==,则四边形OACB 面积的最大值为__________.【答案】83+【解析】由()cos (2cos cos )b c A a B C +=--,由正弦定理化简可得sin sin 2sin C B A +=,可得2b c a +=,又b c =,所以ABC ∆为等边三角形,可得213sin 2AOB ABC OACB S S S OA OB AB θ∆∆=+=⋅⋅四边形 ,化简可得8sin 533OACB S πθ⎛⎫=-+ ⎪⎝⎭四边形θ的取值范围,可得四边形OACB 面积的最大值. 【详解】解:由()cos (2cos cos )b c A a B C +=--,以及正弦定理得:sin cos sin cos 2sin sin cos sin cos B A C A A A B A C +=--, sin cos sin cos sin cos sin cos 2sin B A A B C A A C A +++=,sin()sin()2sin A B A C A +++=,sin sin 2sin C B A +=由正弦定理得:2b c a +=,又b c =,所以ABC ∆为等边三角形,()222133sin 4sin 2cos 244AOB ABC OACB S S S OA OB AB OA OB OA OB θθθ∆∆=+=⋅⋅+=++-⋅⋅四边形4sin 8sin 3πθθθ⎛⎫=-+=-+ ⎪⎝⎭()0,θπ∈Q ,2,333πππθ⎛⎫∴-∈- ⎪⎝⎭,当且仅当32ππθ-=,即56πθ=时,OACB S 四边形取最大值8+. 【点睛】本题主要考查三角恒等变化及正弦定理、余弦定理解三角形及三角函数的性质,考查学生的综合计算能力,需牢记并灵活运用各定理解题,属于中档题.三、解答题17.已知n S 为等差数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式; (2)设2nn n a b =,n T 为数列{}n b 的前n 项和,求证:3n T <. 【答案】(1)21n a n =-;(2)证明见解析【解析】(1)设数列{}n a 的公差为d ,由已知列出关于1a 与d 的方程组,解之可得数列{}n a 的通项公式; (2)由(1)可得2122n n n n a n b -==,由裂项相消法可得n T 的表达式,可证明3n T <. 【详解】解:(1)设数列{}n a 的公差为d ,则由已知得112572149a d a d +=⎧⎨+=⎩,解之得,11a =,2d =,所以1(1)21n a a n d n =+-=-.(2)2122n n n n a n b -==, 所以135212482n nn T -=++++L , 1113523212481622n n n n n T +--=+++⋯++, 两式相减得11111111212224822n n n n T -+-=+++++-L ,故212123333222n n n nn n T --+=--=-<. 【点睛】本题主要考查等差数列的基本性质及通项公式的求法、裂项相消法求数列的和,属于基础题型.18.如图,在直三棱柱111ABC A B C -中,4AC =,3AB =,14AA =,AB AC ⊥.(1)证明:1A C ⊥平面1ABC ;(2)在线段11A B 上是否存在点D ,使得平面DBC 与平面11AAC C 所成的锐二面角为45︒,若存在,求出线段1A D 的长度;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,137A D =【解析】(1)易得11A C AC ⊥,同时由直三棱柱的性质可得平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥,故可得1A C ⊥平面1ABC ;(2)分别以AB u u u r ,AC u u ur ,1AA u u u r 方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -,设1A D a =()03a ≤≤,则(),4,4D a ,()03a ≤≤,由空间向量法可得a 的值. 【详解】(1)由已知可得四边形11AAC C 为正方形,所以11A C AC ⊥, 因为几何体111ABC A B C -是直三棱柱, 所以平面ABC ⊥平面11AAC C ,又AB AC ⊥,所以AB ⊥平面11AAC C ,得1AB A C ⊥, 因为1AC AB A =I ,所以1A C ⊥平面1ABC ,(2)如图,由已知AB ,AC ,1AA 两两垂直,分别以AB u u u r ,AC u u ur ,1AA u u u r 方向为x ,y ,z 轴正方向建立空间直角坐标系A xyz -,则()0,0,0A ,()3,0,0B ,()0,4,0C ,设1A D a =()03a ≤≤,则(),4,4D a ,所以(3,0,4)BD a =-u u u r ,(,4,4)CD a =-u u u r,设平面BCD 的一个法向量为(),,n x y z =r,则(3,0,4)(,,)(3)40BD n a x y z a x z ⋅=-⋅=-+=u u u r r,()(,4,4),,440CD n a x y z ax y z ⋅=-⋅=-+=u u u r r,取4x =,得()4,3,3n a =-r,平面11AAC C 的一个法向量为()1,0,0m =r. 所以22cos ,||||634m n m n m n a a ⋅〈〉===-+r rr rr r 解得37a =±()0,3a ∈,所以37a =-所以线段11A B 上存在点D ,且137A D =DBC 与平面11AAC C 所成的锐二面角为45︒. 【点睛】本题主要考查线面垂直的判定定理与性质定理及二面角的求法,考查学生的空间想象能力与计算能力,属于中档题.19.新能源汽车正以迅猛的势头发展,越来越多的企业不断推出纯电动产品,某汽车集团要对过去一年推出的四款纯电动车型中销量较低的A 车型进行产品更新换代.为了了解这种车型的外观设计是否需要改进,该集团委托某调查机构对大众做问卷调查,并从参与调查的人群中抽取了400人进行抽样分析,得到如下表格:(单位:人)喜欢不喜欢合计(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为大众对A 型车外观设计的喜欢与年龄有关?(2)现从所抽取的中年人中按是否喜欢A 型车外观设计利用分层抽样的方法抽取5人,再从这5人中随机选出3人赠送五折优惠券,求选出的3人中至少有2人喜欢该集团A 型车外观设计的概率;(3)将频率视为概率,从所有参与调查的人群中随机抽取20人赠送礼品,记其中喜欢A 型车外观设计的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(1)能;(2)710;(3)()11E X =,99()20D X =【解析】(1)计算2K 的值,对照临界值表可得答案;(2)由分层抽样的知识可得,其中抽取的5人中,3人喜欢A 型车外观设计,2人不喜欢A 型车外观设计,分别计算出从何5人中抽取3人的事件数与3人中至少有2人喜欢该集团A 型车外观设计的事件数,可得其概念;(3)从所有参与调查的人群中随机抽取1人,喜欢A 型车外观设计的概率2201140020P ==,可得11~20,20X B ⎛⎫ ⎪⎝⎭,可得X 的数学期望和方差.【详解】解:(1)22400(10080100120)4004.040 3.84122018020020099K ⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.05的前提下认为大众对A 型车外观设计的喜欢与年龄有关.(2)从所抽取的中年人中利用分层抽样的方法再抽取5人,其中3人喜欢A 型车外观设计,2人不喜欢A 型车外观设计.记事件C 表示选出的3人中至少有2人喜欢A 型车外观设计,则()21332335710C C C P C C ⨯+==. (III )从所有参与调查的人群中随机抽取1人,喜欢A 型车外观设计的概率2201140020P ==, 则11~20,20X B ⎛⎫ ⎪⎝⎭, 所以11()201120E X =⨯=,111199()201202020D X ⎛⎫=⨯⨯-=⎪⎝⎭. 【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、二项分布的期望与方差,考查学生的综合分析与计算能力,属于中档题.20.已知动点Q 在x 轴上方,且到定点()0,1F 距离比到x 轴的距离大1. (1)求动点Q 的轨迹C 的方程;(2)过点()1,1P 的直线l 与曲线C 交于A ,B 两点,点A ,B 分别异于原点O ,在曲线C 的A ,B 两点处的切线分别为1l ,2l ,且1l 与2l 交于点M ,求证:M 在定直线上.【答案】(1)24x y =()0y ≠;(2)证明见解析【解析】(1)设(,)Q x y (0)y >,由到定点()0,1F 距离比到x 轴的距离大1,可得1y =,化简可得点Q 的轨迹C 的方程;(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立,设()11,A x y ,()22,B x y ,可得12x x +,12x x 的值,又24x y =,所以2xy '=,可得切线1l 的方程,同理可得切线2l 的方程,求出交点坐标,可得其在定直线上.【详解】解:(1)设(,)Q x y (0)y >,1y =,化简得24x y =()0y ≠, 故轨迹C 的方程为24x y =()0y ≠.(2)由题意可知,直线l 的斜率存在且不为1,设直线l 的方程为(1)1y k x =-+(1)k ≠与24x y =联立得24440x kx k -+-=, 设()11,A x y ,()22,B x y , 则124x x k +=,1244x x k =-,又24x y =,所以2x y '=,所以切线1l 的方程为()1112x y x x y =-+, 即21124x x y x =-,同理切线2l 的方程为22224x x y x =-联立得1222x x x k +==,1214x xy k ==-.两式消去k 得220x y --=, 当1k =时,2x =,0y =,所以交点M 的轨迹为直线220x y --=,去掉()2,0点. 因而交点M 在定直线上. 【点睛】本题主要考查轨迹方程的求法,直线与抛物线的位置关系等知识,考查学生的综合计算能力,属于难题.21.已知函数()ln(1)1axf x x x =+-+()a R ∈. (1)若当0x >时,()0f x >恒成立,求a 的取值范围; (2)比较20172019与20182018的大小.【答案】(1)1a ≤;(2)2017201820192018<【解析】(1)求出()f x 的定义域,对其求导,令()0f x '=,得1x a =-,分1a ≤与1a >进行讨论,可得()0f x >恒成立时,a 的取值范围;(2)设ln(1)()x g x x+=(0)x >,对其求导,可得2ln(1)1()xx x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+,可得()g x 在()0,∞+上是减函数,故可得ln(20181)ln(20171)20182017++<,可得答案.【详解】解:(1)()f x 的定义域为1x >-,2211()1(1)(1)a x af x x x x +-'=-=+++, 令()0f x '=,得1x a =-,①当1a ≤时,()0,x ∈+∞时,()0f x '>,所以()f x 单调递增,则()()00f x f >=, 所以1a ≤时满足条件,②当1a >时,()0,1x a ∈-时,()0f x '<,()1,x a ∈-+∞时,()0f x '>, 得(1)(0)0f a f -<=,即存在1x a =-使得()0f x >不成立,故1a >不符合题意, 所以满足条件的a 的取值范围为1a ≤. (2)设ln(1)()x g x x+=(0)x >, 则2ln(1)1()xx x g x x -++'=, 由(1)得1a =,0x >时,有()ln(1)01x f x x x =+->+,即ln(1)01x x x -+<+, 所以当0x >时,()0g x '<,即()g x 在()0,∞+上是减函数, 因为20182017>,所以ln(20181)ln(20171)20182017++<即2017ln 20192018ln 2018<,即12018207l ln 201918n 20< 所以2017201820192018<.【点睛】本题主要考查利用导数求函数的单调区间与极值,导数在恒成立求参问题中的应用,考查学生的综合计算能力,属于难题.22.已知极坐标系的极点与直角坐标系的原点重合,轴与x 轴的正半轴重合.曲线C 的极坐标方程:4cos ρθ=,直线l的参数方程22112x y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于不同的两点A ,B ,()2,1-M ,求11||||AM BM +的值.【答案】(1)224x y x +=;(2)3【解析】(1)将方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得答案;(2))易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立,可得12t t +,12t t 的值,可得12121212121111||||t t t t AM BM t t t t t t +-+=+==-, 代入可得答案. 【详解】解:(1)方程4cos ρθ=两边都乘以ρ得,可得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入可得:224x y x +=.(2)易知M 点在直线l 上,A ,B 在M 点的两侧,直线l 的参数方程与曲线C 的直角坐标方程联立得2212142222t t ⎛⎫⎛⎫⎛⎫-+-+=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭整理得230t t --=, 所以121t t +=,123t t =-,所以12121212121111||||t t t t AM BM t t t t t t +-+=+==-,12===.【点睛】本题主要考查极坐标方程转化为直角坐标方程及简单曲线的极坐标方程的应用,考查学生的计算能力,属于基础题.23.已知函数()3|2|||f x x x a =-++-a R ∈. (1)当3a =时,解不等式()0f x <;(2)若存在实数x ,使得()4f x ≥成立,求a 的取值范围. 【答案】(1){|2}x x >;(2)(,3][1,)-∞-⋃-+∞【解析】(1)将3a =代入()f x ,分2x -≤,23x -<<,3x ≥进行讨论,可得解不等式的解集;(2)由题意要使得()4f x ≥成立,即|||2|1x a x --+≥,由绝对值不等式的性质可得|||2||()(2)|2x a x x a x a --+≤--+=+,故只需21a +≥,可得a 的取值范围. 【详解】解:(1)当3a =时,()3|2|3f x x x =-++-,()0f x <等价于23230x x x ≤-⎧⎨++-+<⎩或233230x x x -<<⎧⎨---+<⎩,或33230x x x ≥⎧⎨--+-<⎩, 解得x ∈∅或23x <<或3x ≥, 所以原不等式的解集为{|2}x x >.(2)()4f x ≥成立,即|||2|1x a x --+≥成立. 因为|||2||()(2)|2x a x x a x a --+≤--+=+, 只需21a +≥,即21a +≥或21a +≤-, 解得1a ≥-或3a ≤-.所以a 的取值范围是(,3][1,)-∞-⋃-+∞. 【点睛】本题主要考查绝对值不等式的解法与性质,体现分类讨论与等价转化的思想,考查了运算求解能力,属于中档题.第 21 页共 21 页。

2019届百师联盟全国高三模拟考(一)全国I卷文科数学试题(带答案解析)

2019届百师联盟全国高三模拟考(一)全国I卷文科数学试题(带答案解析)

2019届百师联盟全国高三模拟考(一)全国I 卷文科数学试题第I 卷(选择题)一、单选题1.已知复数z 满足()14i z i -=,则z =( )A .B .2C .4D .3 2.已知集合{}20,2131x A xB x x x +⎧⎫=≤=-≤⎨⎬-⎩⎭则()RC A B ⋂( ) A .[]1,2 B .()[),21,2-∞-U C .()[],21,2-∞-⋃D .(]1,2 3.已知命题:p []02,2x ∃∈-,2430x x -+≥,则p ⌝为( )A .[]02,2x ∃∉-,2430x x -+<B .[]02,2x ∀∉-,2430x x -+<C .[]2,2x ∀∈-,2430x x -+<D .[]2,2x ∀∈-,2430x x -+≥ 4.设α为锐角,若3cos 45πα⎛⎫+= ⎪⎝⎭,则5sin 12πα⎛⎫+ ⎪⎝⎭的值为( )A .310+BC .410D .410- 5.“角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )6.已知双曲线2222:1x yCa b-=(0a>,0b>)的渐近线与圆()22314x y+-=相切,则双曲线C的离心率为()A B.2 C D7.为研究某咖啡店每日的热咖啡销售量y和气温x之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(x轴表示气温,y轴表示销售量),由散点图可知y与x的相关关系为()A.正相关,相关系数r的值为0.85B.负相关,相关系数r的值为0.85C.负相关,相关系数r的值为0.85-D.正相关,相关负数r的值为0.85-8.函数32sin()xx xg xe-=的图象大致为()A.B.C.D.9.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A .83B .163C .43D .810.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( )A .2B .2-C .1D .1-11.已知集合{}{}3,*,2,*n M x x n N N x x n n N ==∈==∈,将集合M N ⋃的所有元素从小到大一次排列构成一个新数列{}n c ,则12335...c c c c ++++=( ) A .1194 B .1695 C .311 D .1095 12.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.已知a =r a r 在b r ,则a r 与b r 的夹角为_________.14.抛物线2:2C x py =(0p >)的焦点到准线的距离为4,则抛物线的准线方程为___________.15.已知ABC ∆内角、、A B C 的对边分别为,4,a b c a b ABC ==∆、、外接圆的面积为4π,则ABC ∆的面积为_________.16.在三棱锥P ABC -中,三条侧棱PA PB PC 、、两两垂直,1,4PB PA PA PC =++=,则三棱锥P ABC -外接球的表面积的最小值为________.三、解答题17.已知{}n a 为各项均为整数的等差数列,n S 为{}n a 的前n 项和,若3a 为213a 和13a 的等比中项,749=S .(1)求数列{}n a 的通项公式;(2)若12n n n b a a +=,n T 为数列{}n b 的前n 项和,求n T . 18.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,2ABC π∠=,PE ⊥面ABCD ,3AD AE =,22AB BC AE ===,3PC =.(1)在线段PD 上是否存在点F ,使//CF 面PAB ,说明理由;(2)求三棱锥C PAE -的体积.19.某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:(1)(i )将22⨯列联表补充完整;(ii )据此列联表判断,能否有99%的把握认为“日平均走步数和性别是否有关”? (2)从样本中的运动达人中抽取7人参加“幸运抽奖”活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++ 20.已知椭圆()2222:10x y C a b a b+=>>,左、右焦点为12F F 、,点P 为C 上任意一点,若1PF 的最大值为3,最小值为1.(1)求椭圆C 的方程;(2)动直线l 过点2F 与C 交于P Q 、两点,在x 轴上是否存在定点A ,使22PAF QAF ∠=∠成立,说明理由.21.已知函数1()ln 1a f x x x+=-+,a R ∈. (1)当2a =-时,求函数()f x 在点()2,(2)f 处的切线方程;(2)若当0x >,()3f x ≥,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求曲线C 的直角坐标方程;(2)设点M 的极坐标为1,2π⎛⎫ ⎪⎝⎭,直线l 与曲线C 的交点为,A B ,求MA MB +的值. 23.已知函数()12f x x x =--+.(1)求不等式()2f x ≤的解集A ;(2)若不等式2()2f x x x m ≤+-对x A ∈恒成立,求实数m 的取值范围.参考答案1.A【解析】【分析】由复数除法求出z ,再由模的定义计算出模.【详解】44(1)22,1(1)(1)i i i z i z i i i +===-+=--+ 故选:A .【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.2.C【解析】【分析】解不等式确定集合,A B 中的元素,再由集合的运算法则计算.【详解】 由201x x +≤-得(2)(1)010x x x +-≤⎧⎨-≠⎩,∴21x -?,即[2,1)A =-,又{|2}(,2]B x x =≤=-∞,∴(,2)[1,)R A =-∞-+∞U ð,()(,2)[1,2]R A B =-∞-I U ð.故选:C .【点睛】本题考查集合的综合运算,掌握集合运算的定义是解题基础.3.C【解析】【分析】根据特称命题的否定是全称命题可得出答案.【详解】由于特称命题的否定是全称命题,故命题:p []02,2x ∃∈-,2430x x -+≥的否定是::p ⌝[]2,2x ∀∈-,2430x x -+<.故选:C.【点睛】本题考查特称命题的否定,意在考查学生的推断能力,属于基础题.4.A【解析】【分析】 先求出sin 4πα⎛⎫+⎪⎝⎭的值, 5sin sin 1246ααπππ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,再由两角和的正弦公式计算即可.【详解】 Q α为锐角,3cos 45πα⎛⎫+= ⎪⎝⎭,∴4sin 45απ⎛⎫+== ⎪⎝⎭,∴513sin sin sin cos 1246242410ααααπππππ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.【点睛】本题考查同角三角函数间的关系,考查两角和的正弦公式,考查逻辑思维能力和计算能力,属于常考题.5.B【解析】【分析】模拟程序运行,观察变量值可得结论.【详解】循环前1,10i n ==,循环时:5,2n i ==,不满足条件1n =;16,3n i ==,不满足条件1n =;8,4n i ==,不满足条件1n =;4,5n i ==,不满足条件1n =;2,6n i ==,不满足条件1n =;1,7n i ==,满足条件1n =,退出循环,输出7i =.故选:B .【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.6.C【解析】【分析】先根据双曲线的方程求得双曲线的渐近线,再利用圆心到渐近线的距离为圆的半径求得a 和b 的关系,代入e =中求得离心率即可. 【详解】渐近线方程为0bx ay -=,r ==2213b a ∴=,3e ∴==. 故选:C.【点睛】本题考查双曲线离心率的求法,考查逻辑思维能力和计算能力,属于常考题.7.C【解析】【分析】根据正负相关的概念判断.【详解】由散点图知y 随着x 的增大而减小,因此是负相关.相关系数为负.故选:C .【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.8.B【解析】【分析】确定函数的奇偶性排除,再求一些特殊的函数值,根据其正负排除一些选项.【详解】 由32sin ()()x x x f x f x e-+-==-,知()f x 为奇函数,排除D ;12sin1(1)0f e -=<,排除C ;322732sin 38202f e -⎛⎫=> ⎪⎝⎭,排除A . 故选:B【点睛】本题考查由函数解析式选择函数图象,解题时可通过确定函数的奇偶性、单调性等性质,特殊的函数值,函数值的正负,函数值的变化趋势等由排除法得出正确选项.9.A【解析】【分析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2, 直观图如图所示,1822233V =⨯⨯⨯=. 故选:A .【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.10.D【解析】【分析】()()4f x f x =+说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由()()4f x f x =+知函数()f x 的周期为4,又()f x 是奇函数,(2)(2)f f =-,又(2)(2)f f -=-,∴(2)0f =,∴()()()()()()201820192301011f f f f f f +=+=+-=-=-. 故选:D . 【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础. 11.D 【解析】 【分析】确定{}n c 中前35项里两个数列中的项数,数列{2}n 中第35项为70,这时可通过比较确定{3}n 中有多少项可以插入这35项里面即可得,然后可求和.【详解】35n =时,23570,370,3n n ⨯=<≤,所以数列{}n c 的前35项和中,{}3n有三项3,9,27,{}2n 有32项,所以123353231 (3927322210952)c c c c ⨯++++=+++⨯+⨯=. 故选:D . 【点睛】本题考查数列分组求和,掌握等差数列和等比数列前n 项和公式是解题基础.解题关键是确定数列{}n c 的前35项中有多少项是{2}n 中的,又有多少项是{3}n中的.12.B 【解析】 【分析】函数()y f x =的图象恒在x 轴的上方,0x e x a ->在()0,∞+上恒成立.即x ex a>,即函数xe y a=的图象在直线y x =上方,先求出两者相切时a 的值,然后根据a 变化时,函数xe y a=的变化趋势,从而得a 的范围.【详解】由题0x e x a ->在()0,∞+上恒成立.即xe x a>,xe y a=的图象永远在y x =的上方,设x e y a =与y x =的切点()00,x y ,则01x x e ae xa⎧=⎪⎪⎨⎪=⎪⎩,解得a e =,易知a 越小,xey a=图象越靠上,所以0a e <<.故选:B . 【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围. 13.6π【解析】 【分析】由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小. 【详解】a r 在b r方向上的投影为cos ,cos ,2a a b a b <>=∴<>==r r r r r ,即夹角为6π. 故答案为:6π. 【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键. 14.2y =-【分析】根据题意先求出p 的值,然后再写出准线方程即可. 【详解】焦点到准线的距离为4p =,准线方程为22py =-=-. 故答案为:2y =-. 【点睛】本题考查抛物线的定义,考查对基本知识的理解和掌握,属于基础题.15.【解析】 【分析】由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,A B ,从而有C ,于是可得三角形边长,可得面积. 【详解】设外接圆半径为r ,则24,2S r r =π=π=,由正弦定理24sin sin a b r A B ===,得sin 1A B ==,,,,326A B C πππ∴===∴2c =,a =12S ac ==.故答案为: 【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键. 16.14π 【解析】 【分析】设PA x =,可表示出,PB PC ,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.设PA x =则1,4PC x PC x =+=-,由,,PA PB PC 两两垂直知三棱锥P ABC -的三条棱,,PA PB PC 的棱长的平方和等于其外接球的直径的平方.记外接球半径为r ,∴2r ==当1x =时,2min min 2=414r r S ==π=π⎝⎭表. 故答案为:14π. 【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和. 17.(1)21n a n =-;(2)221nn + 【解析】 【分析】(1)利用已知条件列出方程组,求出1a 和d 的值,进而写出通项公式即可; (2)()()1221121212121n n n b a a n n n n +===--+-+,利用裂项相消法求和即可.【详解】(1)由题得()23213177137492a a a a a S ⎧=⋅⎪⎪⎨+⎪==⎪⎩,解得112a d =⎧⎨=⎩或1073a d =⎧⎪⎨=⎪⎩,因为数列{}n a 为各项均为整数,所以112a d =⎧⎨=⎩,即21n a n =-;(2)令()()1221121212121n n n b a a n n n n +===--+-+,所以111111112113355721212121n n T n n n n =-+-+-+-=-=-+++. 【点睛】本题考查等差等比数列的性质,考查等差数列的通项公式,考查裂项相消法求和,考查逻辑思维能力和运算能力,属于常考题. 18.(1)存在,理由见解析;(2)23. 【解析】 【分析】(1)取ED 中点Q ,分别连接CQ ,QF ,CF ,易得//AB CQ ,//QF AP ,然后可证 面//CQF 面PAB ,即//CF 面PAB ;(2)过E 作//EG AB 交BC 于G ,分别求出EC ,PE 的长度,在梯形ABCD 中,作EH BC ⊥于H ,再求出EH 的长度,利用等体积法C PAE P ACE V V --=计算得解.【详解】(1)当F 为PD 上靠近D 点的三等分点时,满足//CF 面PAB , 证明如下,取ED 中点Q ,分别连接CQ ,QF ,CF ,//AD BC Q ,3AD AE =,2BC =,2AE =,AQ BC ∴=,即易得//AB CQ ,AB Ì面PAB ,CQ ⊄面PAB , 所以//CQ 面PAB ,同理可得//QF AP ,AP ⊂面PAB ,QF Ë面PAB , 所以//QF 面PAB ,又CQ QF Q ⋂=,CQ ,QF ⊂面CQF ,所以面//CQF 面PAB ,又CF ⊂面CQF ,所以//CF 面PAB ;(2)过E 作//EH AB 交BC 于H ,PE ⊥Q 面ABCD ,2ABC π∠=,EH BC ∴⊥在Rt PEC ∆中,EC =2PE ==, 所以11121223323C PAE P ACE ACE V V S PE --∆==⋅=⨯⨯⨯⨯=. 【点睛】本题考查线面平行的证法,考查利用等体积法求三棱锥体积,考查空间想象能力和运算能力,属于常考题.19.(1)(i )列联表见解析;(ii )没有;(2)1021. 【解析】 【分析】(1)(i )根据题意补全22⨯列联表;(ii )代入数据计算2K ,对照临界值做出判断即可;(2)由分层抽样方法,利用列举法求出基本事件数,计算所求的概率值. 【详解】 (1)(i )(ii )由22⨯列联表得()2210035261425 5.229 6.63560404951K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为“日平均走步数和性别是否有关”; (2)由列联表知从运动达人中抽取的男用户人数为735549⨯=,女用户人数为714249⨯=, 男用户编号a ,b ,c ,d ,e ,女用户编号m ,n ,则抽取的两位幸运用户有:(),a b ,(),a c ,(),a d ,(),a e ,(),a m ,(),a n ,(),b c ,(),b d ,(),b e ,(),b m ,(),b n ,(),c d ,(),c e ,(),c m ,(),c n ,(),d e ,(),d m ,(),d n ,(),e m ,(),e n ,(),m n ,共21种,其中男女各一位的有10种,概率为1021, 所以这2位幸运用户恰好男用户和女用户各一位的概率为1021. 【点睛】本题考查独立性检验及其计算,考查分层抽样,考查古典概率,考查逻辑思维能力和计算能力,属于常考题.20.(1)22143x y +=(2)存在;详见解析【解析】 【分析】(1)由椭圆的性质得3,1a c a c +=-=,解得,a c 后可得b ,从而得椭圆方程; (2)设()()()1122,,,,,0P x y Q x y A n ,当直线l 斜率存在时,设为()1y k x =-,代入椭圆方程,整理后应用韦达定理得1212,x x x x +,代入AP AQ k k +=0由恒成立问题可求得n .验证l 斜率不存在时也适合即得. 【详解】解:(1)由题易知1max 1min31PF a c PF a c ⎧=+=⎪⎨=-=⎪⎩解得21a c =⎧⎨=⎩,所以椭圆C 方程为22143x y +=(2)设()()()1122,,,,,0P x y Q x y A n当直线l 斜率存在时,设为()1y k x =-与椭圆方程联立得()22224384120kx k x k +-+-=,显然>0∆所以221212228412,4343k k x x x x k k -+=⋅=++ 因为22,0AP AQ PAF QAF k k ∠=∠∴+=()()()()()()1221121212110k x x n k x x n y y x n x n x n x n --+--∴+==---- 化简()()()222121222281824682120,0434343n k k n nk x x n x x n k k k --+-+++=∴-+=+++ 解得6240n -=即4n =所以此时存在定点()4,0A 满足题意 当直线l 斜率不存在时,()4,0A 显然也满足综上所述,存在定点()4,0A ,使22PAF QAF ∠=∠成立 【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法. 21.(1)1ln 214y x =++;(2)(],1e -∞--. 【解析】 【分析】(1)先求导,然后根据导数的几何意义求出切线斜率,最后由点斜式写出切线方程即可; (2)0x >,()3f x ≥,即只需min ()3f x ≥,对a 进行分类讨论, 求()f x 的最小值,解不等式求出范围即可. 【详解】(1)当2a =-时,1()ln 1f x x x=++,21()x f x x -'=,1(2)4f '∴=,()32ln 22f =+,所以切线方程为1ln 214y x =++;(2)当0x >,()3f x ≥,即只需min()3f x ≥,()21'()1x a f x x ++=+,当1a ≥-时,即10a --≤,()0f x '>,()f x ∴在()0,∞+上增,无最小值,舍去, 当1a <-时,即10a -->,()0f x '>,得1x a >--,()0f x '<,得01x a <<--, 此时()f x 在()1,1a ---上减,在()1a --+∞,上增,即()()min ()12ln 13f x f a a =--=+--≥,解得1a e ≤--, 综上(],1a e ∈-∞--. 【点睛】本题考查利用导数研究曲线上某点的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力和计算能力,属于常考题. 22.(1)()2211x y -+=(21 【解析】 【分析】(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程;(2)把M 点极坐标化为直角坐标,直线l 的参数方程是过定点M 的标准形式,因此直接把参数方程代入曲线C 的方程,利用参数t 的几何意义求解. 【详解】解:(1)2:cos C ρθ=,则22cos ρρθ=,∴222x y x +=,所以曲线C 的直角坐标方程为2220x y x +-=,即()2211x y -+=(2)点1,2M π⎛⎫⎪⎝⎭的直角坐标为()0,1M ,易知M l ∈.设,A B 对应参数分别为12,t t将12:1x t l y ⎧=-⎪⎪⎨⎪=+⎪⎩与22:20C x y x +-=联立得)21212110,1,1t t t t t t ++=∴+=⋅=120,0t t ∴<<12121MA MB t t t t +=+=+=【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题. 23.(1)3,2⎡⎫-+∞⎪⎢⎣⎭(2)114m ≤-【解析】 【分析】(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为2321m x x x ≤++--,求出2()321g x x x x =++--在3[,)2-+∞上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值. 【详解】 解:(1)1122x x x ≥⎧⎨---≤⎩或21122x x x -<<⎧⎨---≤⎩或2122x x x x ≤-⎧⎨-+++≤⎩ 解得1x ≥或312x -≤<或无解 综上不等式的解集为3,2A ⎡⎫=-+∞⎪⎢⎣⎭. (2)3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时,2()2f x x x m ≤+-,即2132x x x m -≤++- 所以只需2321m x x x ≤++--在3,2x ⎡⎫∈-+∞⎪⎢⎣⎭时恒成立即可 令22223,1()321341,12x x x g x x x x x x x ⎧++≥⎪=++--=⎨++-≤<⎪⎩, 由解析式得()g x 在3[,)2-+∞上是增函数, ∴当32x =-时,min 11()4g x =- 即114m ≤-【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

2019-2020年高三上学期第二次联考数学试卷(文科) 含解析

2019-2020年高三上学期第二次联考数学试卷(文科) 含解析

2019-2020年高三上学期第二次联考数学试卷(文科)含解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈N|e x<9},其中e为自然对数的底数,e≈2.718281828,集合B={x|0<x<2},则A∩(∁R B)=()A.{0}B.{0,1}C.{2}D.{0,2}2.已知命题p:∃x0<0,sinx0>0且tanx0>0,则命题p的否定为()A.∀x<0,sinx≤0或tanx≤0 B.∀x<0,sinx≤0且tanx≤0C.∀x≥0,sinx≤0或tanx≤0 D.∀x≥0,sinx≤0且tanx≤03.已知等差数列{a n}的前7项和为14,则=()A.e2B.e4C.e8D.e164.已知tanα=3,则=()A.B.C.D.5.已知直线x﹣y+2=0与圆(x﹣3)2+(y﹣a)2=8相切,则a=()A.1 B.2 C.1或9 D.2或86.函数在[2,4]上的最大值为()A.B.C. D.3e﹣47.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.8.已知数列{a n}的前n项和为S n,若nS n+(n+2)a n=4n,则下列说法正确的是()A.数列{a n}是以1为首项的等比数列B.数列{a n}的通项公式为C.数列是等比数列,且公比为D.数列是等比数列,且公比为9.已知命题p:函数f(x)=图象的对称中心为(0,3);命题q:若单位向量、满足|2﹣|=|+2|,则2⊥3,则下列命题是真命题的为()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬p)∧(¬q)10.在△ABC中,,则△ABC的外接圆面积为()A.B.C.2πD.11.已知点(x,y)满足,则的取值范围为()A. B. C. D.12.已知定义在R上函数f(x)的导函数为f'(x),且,若f(0)=0,则函数f(x)的单调减区间为()A.和B.C.和 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知第一限象的点(m,n)在直线9x+y=1上,则的最小值为.14.已知向量,若向量与共线,且m+n=1,则,=.15.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,且,则φ值为.16.若关于x的方程lnx+2=(a+1)x无解,则数实a的取值范围为.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{a n}中,a2=2,a2,a3+1,a4成等差数列;数列{b n}的前n项和为S n,.(1)求数列{a n}的通项公式;(2)求数列的前n项和.18.在△ABC中,sin2A+sinAsinB=6sin2B.(1)求的值;(2)若,求sinB的值.19.已知三棱柱ABC﹣A1B1C1中,AA1=B1C=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)求多面体CAA1B1C1的体积.20.已知命题;命题q:函数f(x)=x2﹣mx+3在(﹣1,1)上仅有1个零点.(1)若(¬p)∧q为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.21.在△ABC中,sin2B=sinAsinC.(1)若,,成等差数列,求cosB的值;(2)若=4,求△ABC面积的最大值.22.已知函数.(1)在下列坐标系中作出函数f(x)的大致图象;(2)将函数f(x)的图象向下平移一个单位得到函数g(x)的图象,点A是函数g(x)图象的上一点,B(4,﹣2),求|AB|的最小值.23.已知函数f(x)=e x.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)证明:f(x)>lnx+2,在(0,+∞)上恒成立.2016-2017学年江西省省级联考高三(上)第二次联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈N|e x<9},其中e为自然对数的底数,e≈2.718281828,集合B={x|0<x<2},则A∩(∁R B)=()A.{0}B.{0,1}C.{2}D.{0,2}【考点】交、并、补集的混合运算.【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可.【解答】解:集合A={x∈N|e x<9}={0,1,2},∵B={x|0<x<2},∴∁R B={x|x≤0或x≥2},∴A∩(∁R B)={0,2},故选:D2.已知命题p:∃x0<0,sinx0>0且tanx0>0,则命题p的否定为()A.∀x<0,sinx≤0或tanx≤0 B.∀x<0,sinx≤0且tanx≤0C.∀x≥0,sinx≤0或tanx≤0 D.∀x≥0,sinx≤0且tanx≤0【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:命题是特称命题,则命题的否定是∀x<0,sinx≤0或tanx≤0,故选:A3.已知等差数列{a n}的前7项和为14,则=()A.e2B.e4C.e8D.e16【考点】等差数列的前n项和;等差数列的通项公式.【分析】由等差数列{a n}的前7项和为14,得a1+a7=4,从而利用等差数列通项公式得a2+a3+a5+a6=2(a1+a7)=8,由此能求出的值.【解答】解:∵等差数列{a n}的前7项和为14,∴,解得a1+a7=4,∴a2+a3+a5+a6=2(a1+a7)=8,∴==e8.故选:C.4.已知tanα=3,则=()A.B.C.D.【考点】三角函数的化简求值.【分析】利用二倍角的正弦函数公式、同角三角函数对分子进行变换,分子分母除以cos2α,然后由同角三角函数间的基本关系化简,然后将tanα的值代入.【解答】解:∵tanα=3,∴====﹣.故选:D.5.已知直线x﹣y+2=0与圆(x﹣3)2+(y﹣a)2=8相切,则a=()A.1 B.2 C.1或9 D.2或8【考点】圆的切线方程.【分析】由直线与圆相切,得到圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于a的方程,求出方程的解即可得到a的值.【解答】解:∵圆(x﹣3)2+(y﹣a)2=8圆心为(3,a),半径为2,直线x﹣y+2=0与圆(x﹣3)2+(y﹣a)2=8相切,∴2=,即|5﹣a|=4∴a=1或q=9.故选:C.6.函数在[2,4]上的最大值为()A.B.C. D.3e﹣4【考点】利用导数求闭区间上函数的最值;函数的最值及其几何意义.【分析】求出函数的导数,求出函数的在闭区间的单调性,从而求出函数的最大值即可.【解答】解:f′(x)=,令f′(x)>0,解得:x>,令f′(x)<0,解得:x<,故f(x)在(0,)递减,在(,+∞)递增,故函数在[2,4]递增,f(x)最大值=f(4)=﹣4,故选:C.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A .B .C .D .【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.利用表面积计算公式即可得出.【解答】解:由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.∴该几何体的表面积=+2π×1×1+42×6﹣π×12=()π+96.故选:D .8.已知数列{a n }的前n 项和为S n ,若nS n +(n +2)a n =4n ,则下列说法正确的是( )A .数列{a n }是以1为首项的等比数列B .数列{a n }的通项公式为C .数列是等比数列,且公比为D .数列是等比数列,且公比为【考点】等比关系的确定.【分析】由a n =得到数列{a n }的递推式,【解答】解:当n=1时,有S 1+3a 1=4a 1=4,得:a 1=1,当n ≥2,时,由nS n +(n +2)a n =4n ,即S n +a n =4①,得:S n ﹣1+a n ﹣1=4②,①﹣②得:a n +a n ﹣a n ﹣1=0,即=,∴=••…•=•••…•=•n ,即a n =.∴=,∴数列是等比数列,且公比为.故选:C .9.已知命题p :函数f (x )=图象的对称中心为(0,3);命题q :若单位向量、满足|2﹣|=|+2|,则2⊥3,则下列命题是真命题的为( )A .(¬p )∧qB .p ∧qC .p ∨(¬q )D .(¬p )∧(¬q )【考点】命题的真假判断与应用.【分析】分析出命题p ,q 的真假,进而根据复合命题真假判断的真值表,得到答案.【解答】解:函数f (x )==+2,其图象由函数y=的图象向上平移两个单位得到, 故图象的对称中心为(0,2); 故命题p 为假命题,命题q :若单位向量、满足|2﹣|=|+2|,则|2﹣|2=|+2|2,进而可得: •=0,故2⊥3,故命题q 为真命题, 故命题(¬p )∧q 为真命题,命题p ∧q ,p ∨(¬q ),(¬p )∧(¬q )均为假命题, 故选:A .10.在△ABC中,,则△ABC的外接圆面积为()A.B.C.2πD.【考点】三角形中的几何计算.【分析】在△ABC中由正弦定理,及⇒⇒R=,即可求得面积.【解答】解:在△ABC中由正弦定理,及⇒⇒R=,则△ABC的外接圆面积为故选:B11.已知点(x,y)满足,则的取值范围为()A. B. C. D.【考点】简单线性规划.【分析】首先画出可行域,利用z的几何意义:区域内的点与(﹣1,1)连接直线的斜率的倒数,因此求最值即可.【解答】解:由已知得到平面区域如图:表示区域内的点与(﹣1,1)连接的直线斜率的倒数,当与A(2,3)连接时直线斜率最大为,与B(4,2)连接时直线斜率最小为,所以的最大值为5,最小值为,所以的取值范围为[,5];故选:A.12.已知定义在R上函数f(x)的导函数为f'(x),且,若f(0)=0,则函数f(x)的单调减区间为()A.和B.C.和 D.【考点】利用导数研究函数的单调性.【分析】先构造函数设g(x)=e x f(x),再求导,得到g′(x)=2x+1,根据f(0)=0,求出g(x),即可求出f(x),再根据导数和函数的单调性即可求出答案.【解答】解:由,得e x(f(x)+f′(x))=2x﹣1,设g(x)=e x f(x),∴g′(x)=e x(f(x)+f′(x))=2x﹣1,可设g(x)=x2﹣x+c,∵f(0)=0,∴g(0)=0,∴c=0,∴g(x)=x2﹣x,∴f(x)==,∴f′(x)=,当f′(x)≤0时,即﹣x2+3x﹣1≤0,解得x≤或x≥,故选:A二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知第一限象的点(m,n)在直线9x+y=1上,则的最小值为16.【考点】基本不等式.【分析】9m+n=1,m,n>0.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵9m+n=1,m,n>0.∴=(9m+n)=10++≥10+2=16,当且仅当n=3m=时取等号.故答案为:16.14.已知向量,若向量与共线,且m+n=1,则,=﹣12.【考点】平面向量数量积的运算.【分析】先求出,并且,这样根据与共线即可得出一个关于m,n的方程为3m+2n=0,从而联立m+n=1即可求出m,n的值,从而得出的坐标,进行数量积的坐标运算即可求出的值.【解答】解:;∵与共线;∴﹣7m+2(2m﹣n)=0;即3m+2n=0,联立m+n=1解得m=﹣2,n=3;∴;∴.故答案为:﹣12.15.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,且,则φ值为﹣.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由从点A到点B正好经过了半个周期,求出ω,把A、B的坐标代入函数解析式求出sinφ的值,再根据五点法作图,求得φ 的值.【解答】解:根据函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的图象,且,可得从点A到点B正好经过了半个周期,即=π﹣,∴ω=2.再把点A、B的坐标代入可得2sin(2•+φ )=﹣2sinφ=1,2sin(2•π+φ )=2sinφ=﹣1,∴sinφ=﹣,∴φ=2kπ﹣,或φ=2kπ﹣,k∈Z.再结合五点法作图,可得φ=﹣,故答案为:.16.若关于x的方程lnx+2=(a+1)x无解,则数实a的取值范围为(e﹣1,+∞).【考点】函数的零点与方程根的关系.【分析】方程lnx+2=(a+1)x无解可化为y=lnx+2与直线y=(a+1)x的图象没有交点,从而求实数a的取值范围【解答】解:由题意,方程lnx+2=(a+1)x无解可化为y=lnx+2与直线y=(a+1)x的图象没有交点,当直线y=(a+1)x与y=lnx+2相切时,切点为(x0,y0),则,解得a=e﹣1,所以要使关于x的方程lnx+2=(a+1)x无解,只要直线斜率a+1>e即a>e﹣1;故答案为:(e﹣1,+∞)三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{a n}中,a2=2,a2,a3+1,a4成等差数列;数列{b n}的前n项和为S n,.(1)求数列{a n}的通项公式;(2)求数列的前n项和.【考点】数列的求和.【分析】(1)根据等比数列定义和等差数列的性质求出公比q,再求出首项,即可得到数列的通项公式,(2)根据等比数列的求和公式和裂项求和分组求出即可.【解答】解:(1)设等比数列{a n}的公比为q:因为a2,a3+1,a4成等差数列,故a2+a4=2(a3+1),即a4=2a3,故q=2;因为,即a n=2n﹣1.(2)因为S n=n2+n,故当n=1时,b1=S1=2,当n≥2时,b n=S n﹣S n﹣1=n2+n﹣(n﹣1)2﹣(n﹣1)=2n,综上所述b n=2n,故==﹣,故数列的前n项和为.18.在△ABC中,sin2A+sinAsinB=6sin2B.(1)求的值;(2)若,求sinB的值.【考点】正弦定理.【分析】(1)由已知可得,解得,利用正弦定理即可得解.(2)由余弦定理及a=2b得5b2﹣c2=3b2,解得,利用余弦定理可求cosB,利用同角三角函数基本关系式可求sinB的值.【解答】解:(1)∵sin2A+sinAsinB﹣6sin2B=0,故,解得或﹣3(舍去);由正弦定理.(2)记角A、B、C的边分别为a、b、c,由余弦定理得,将,即a=2b代入,得5b2﹣c2=3b2,解得,由余弦定理得,,则.19.已知三棱柱ABC﹣A1B1C1中,AA1=B1C=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)求多面体CAA1B1C1的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)推导出AB1⊥AB.AC⊥AB.由此能证明AB⊥平面AB1C.(2)多面体CAA1B1C1的体积:.由此能求出结果.【解答】证明:(1)依题意,∠BAA1=120°,故∠ABB1=60°,在△ABB1中,AB=1,BB1=AA1=2,∠ABB1=60°,由余弦定理得,∴,∴,∴AB1⊥AB.又∵∠BAC=90°,∴AC⊥AB.又∵AC∩AB1=A,∴AB⊥平面AB1C.解:(2)∵,故AB1⊥AC,∵AB1⊥AB,AC∩AB=A,故AB1⊥平面ABC,依题意,多面体CAA1B1C1的体积:.20.已知命题;命题q:函数f(x)=x2﹣mx+3在(﹣1,1)上仅有1个零点.(1)若(¬p)∧q为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.【考点】命题的真假判断与应用.【分析】分别求出p,q为真时的m的范围,(1)由(¬p)∧q为真命题,得到p假q真,求出m的范围即可;(2)由p∨q为真命题,p∧q为假命题,得到p,q一真一假;求出m的范围即可.【解答】解:依题意,,解得m>1;对于函数f(x)=x2﹣mx+3,若△=0,则函数f(x)的零点不在(﹣1,1)上,故只需f(﹣1)f(1)<0,解得m<﹣4或m>4,(显然x=﹣1或1时,f(x)=x2﹣mx+3≠0,否则在区间(﹣1,1)上无零点).(1)若(¬p)∧q为真,则实数m满足,故m<﹣4,即实数m的取值范围为(﹣∞,﹣4).(2)若p∨q为真命题,p∧q为假命题,则p,q一真一假;若p真q假,则实数m满足,即1<m≤4;若p假q真,由(1)知,故m<﹣4,综上所述,实数m的取值范围为(﹣∞,﹣4)∪(1,4].21.在△ABC中,sin2B=sinAsinC.(1)若,,成等差数列,求cosB的值;(2)若=4,求△ABC面积的最大值.【考点】正弦定理;余弦定理.【分析】(1)根据等差数列的定义以及三角恒等变换求出sinB,从而求出cosB 的值即可;(2)求出三角形的面积的解析式,令f(x)=8sin3x,(0<x<π),根据函数的单调性求出三角形面积的最大值即可.【解答】解:(1))若,,成等差数列,则=+===,故sinB=,cosB=±;(2)若=4,即=4,b2=16sin2B,∵sin2B=sinAsinC,∴ac=b2,=b2sinB=8sin3B,(0<B<π),∴S△ABC令f(x)=8sin3x,(0<x<π),则f′(x)=24sin2xcosx,令f′(x)>0,解得:x<,令f′(x)<0,解得:x>,故f(x)在(0,π)递增,故f(x)在(0,)递增,在(,π)递减,f(x)max=f()=8,故三角形面积的最大值是8.22.已知函数.(1)在下列坐标系中作出函数f(x)的大致图象;(2)将函数f(x)的图象向下平移一个单位得到函数g(x)的图象,点A是函数g(x)图象的上一点,B(4,﹣2),求|AB|的最小值.【考点】函数的图象.【分析】(1)因为,故把函数y=的图象向上平移1个单位,可得函数的图象,如图所示.(2)计算|AB|2=,令,可得|AB|2=t2﹣4t+16,利用二次函数的性质求得它的最小值.【解答】解:(1)因为,故把函数y=的图象向上平移1个单位,可得函数的图象,故函数的大致图象如图所示:(2)依题意,函数,设,因为B(4,﹣2),故=,令,故|AB|2=t2﹣4t+16=(t﹣2)2+12≥12,当且仅当t=2时,此时方程有解,|AB|2取得最小值为12,故|AB|的最小值为.23.已知函数f(x)=e x.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)证明:f(x)>lnx+2,在(0,+∞)上恒成立.【考点】利用导数研究曲线上某点切线方程;函数恒成立问题.【分析】(1)求导数,可得切线的斜率,即可求曲线y=f(x)在(1,f(1))处的切线方程;(2)设g(x)=e x﹣lnx﹣2,则,求出函数的最小值,即可证明:f(x)>lnx+2,在(0,+∞)上恒成立.【解答】解:(1)依题意,f'(x)=e x,故f'(1)=e,故所求切线方程为y﹣e=e (x﹣1),即y=ex.(2)设g(x)=e x﹣lnx﹣2,则,设,则,所以函数在(0,+∞)上单调递增.因为,所以函数在(0,+∞)上有唯一零点x0,且.因为g'(x0)=0时,所以,即lnx0=﹣x0.当x∈(0,x0)时,g'(x)<0;当x∈(x0,+∞)时,g'(x)>0.所以当x=x0时,g(x)取得最小值g(x0).故.综上可知,不等式f(x)>lnx+2在(0,+∞)上恒成立.2017年1月20日。

2019届百师联盟新高三开学摸底考(全国II卷)文科数学试题含答案

2019届百师联盟新高三开学摸底考(全国II卷)文科数学试题含答案

2019届新高三开学摸底考 全国卷文科数学本试卷共150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}0,1,2A =,{}1,2,3B =,则A B =U ( ) A. []1,2B. []0,3C. {}1,2D. {}0,1,2,32.若复数z 满足23zi i =-,则复数z 对应点所在的象限是( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某射击运动员在比赛前进行三周的封闭训练,教练员将其每天成绩的均值数据整理,并绘成条形图如下,根据该图,下列说法错误的是:( ) A. 第三周平均成绩最好 B. 第一周平均成绩比第二平均成绩好 C. 第一周成绩波动较大 D. 第三周成绩比较稳定4.设()1sin 3πθ-=,则cos2θ=( )A. B.79C. 9-D. 79-5.已知双曲线C 过点()2,2M,且与2244xy -=有相同渐近线,则双曲线C 的方程为( )A. 22124x y -=B. 22124y x -=C. 221312x y -=D. 221312y x -=6.若定义在R 上函数()f x 当且仅当存在有限个非零自变量x ,使得()()f x f x -=,则称()f x 为类偶函数.那么下列函数中为类偶函数的是( ) A. ()4sin f x x = B. ()223x x x f =-+C. ()1xf x e =+D. ()33f x x x =-7.已知实数a ,b 满足2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,则42z a b =+的最大值为( )A. 12B. 13C. 14D. 158.如图,网格纸上小正方形边长为14,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.12B.23C.34D.569.执行下面程序框图输出S 的值为( )的的A.2542B.3764C.1730D.6710.已知曲线1C :sin 2y x =,曲线2C :cos 2y x =,则下面结论正确的是( )A. 将曲线1C 向右平移π4个单位,可得2C B. 将曲线1C 向左平移π4个单位,可得2C C. 将曲线1C 向右平移π2个单位,可得2CD. 将曲线1C 向左平移π2个单位,可得2C11.函数21x x y x++=与3sin 12x y π=+的图像有n 个交点,其坐标依次为()11,x y ,()22,x y ,L ,(),n n x y ,则()1nii i xy =+=∑( )A. 4B. 8C. 12D. 1612.已知三棱锥S ABC -中,AB AC BC ===,SB SC ⊥,平面SBC ⊥平面ABC ,则三棱锥的外接球的表面积为( ) A. 8πB. 12πC. 16πD. 18π二、填空题:本题共4小题,每小题5分,共20分13.向量()1,a m =r ,(),1b m =r ,若//a b r r,则m =__________.14.篮球运动员甲每场比赛得分的茎叶图如下:则该运动员比赛得分的方差为2s =__________.15.已知抛物线C :22y x =的焦点为F ,直线l 过F 与C 交于A ,B 两点,若AF BF =,则y 轴被以线段AB 为直径的圆截得的弦长为__________.16.在锐角ABC V 中,AD 为BC 边上的中线,且AD BC =,则tan tan tan tan A AB C+=__________. 三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作. (一)必考题:共60分.17.已知数列{}n a 中,13a =,29a =,325a =.等比数列{}n b 满足121n n n a a b +=+-. (1)求数列{}n b 的通项公式n b ; (2)证明:数列12n n a -⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式n a .18.某市一所医院在某时间段为发烧超过38C o 的病人特设发热门诊,该门诊记录了连续5天昼夜温差x (C o )与就诊人数y 的资料:(1)求(),i i x y ()1,2,,5i =L 的相关系数r ,并说明昼夜温差(C o )与就诊人数y 具有很强的线性相关关系. (2)求就诊人数y (人)关于出昼夜温差x (C o )的线性回归方程,预测昼夜温差为9C o 时的就诊人数.附:样本(),i i x y ()1,2,,i n =L 的相关系数为()()niix x y y r --=∑||0.75r >时认为两个变量有很强的线性相关关系.回归直线方程ˆˆˆybx a =+,其中()()()1122211ˆnniii ii i nni ii i x x y y x y nx yb x x xnx ====---⋅==--∑∑∑∑,ˆˆay bx =-. 5.10≈10.30≈19.已知四棱锥P ABCD -中,90ABC DAB ∠=∠=︒,22PA PB AB BC AD =====,侧面PAB ⊥底面ABCD .(1)作出平面PAB 与平面PCD 的交线l ,并证明l ⊥平面PBC ; (2)求点B 到平面PCD 的距离.20.已知椭圆()2222:10x y C a b a b +=>>的上顶点为P ,右顶点为Q ,直线PQ 与圆2245x y +=相切于点24,55M ⎛⎫⎪⎝⎭. (1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=u u u r u u u r,求证:直线l 过定点. 21.已知函数()ln f x x x a =+在0x x =处的切线方程为2y x e =- (1)求实数a 及0x 的值; (2)若()()()211g x f x k x x ⎡⎤=+-⎣⎦有两个极值点1x ,2x ,求k 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.选修4—4:坐标系与参数方程.22.在平面直角坐标系xOy 中,曲线C的参数方程是12x y ϕϕ⎧=+⎪⎨=+⎪⎩(ϕ是参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()cos sin 60k k k R ρθρθ--=∈,其倾斜角为α.(Ⅰ)证明直线l 恒过定点P ,并写出直线l参数方程;(Ⅱ)在(Ⅰ)的条件下,若直线l 与曲线C 交于A ,B 两点,求PA PB 的值.选修4-5:不等式选讲23.已知函数()12f x x x =++-,且对任意x ∈R ,()1f x +. (Ⅰ)求实数a 取值的集合A ; (Ⅱ)若实数m ,n A ∈,试比较2mn +n +的大小.的参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. D2. C3. B4. B .5. D6. D .7. C8. B .9. A 10. B 11. A .12. C .二、填空题:本题共4小题,每小题5分,共20分13. ±1 14. 40.2515. 16.43三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作. (一)必考题:共60分.17.(1)由题知:21121a a b =+-,得14b =,32221a a b =+-,得28b =所以等比数列{}n b 的公比为212b q b ==. 故其通项公式为12n n b +=.(2)由(1)可知:11221n n n a a ++=+-.111222n n n a a ++-=-+,111122122n n n n a a +++--=+,1111122n n n n a a ++--=+, 即1111122n n n na a ++---=,又1112a -= 所以数列1{}2n na -是首项是1,公差为1的等差数列. 故12n na n -=,所以21n n a n =⋅+. 18.(1)()181013127105x =++++=,()11825282717235y =++++=, 250352436510.985.1010.30r --++⨯+⨯+--==≈⨯,0.75r >,昼夜温差x (c o )与就诊人数y 具有很强的线性相关关系.(2)因为()()51(2)(5)023524(3)(6)51iii x x y y =--=-⨯-+⨯+⨯+⨯+-⨯-=∑,()52222221=(810)(1010)(1310)(1210)(710)26i i x x =--+-+-+-+-=∑,所以51ˆ 1.9626b=≈,ˆ2319.6 3.40a =-=,所以ˆ 1.96 3.40yx =+, 当9x =时,ˆ 1.969 3.4021.04y=⨯+≈, 由此可以预测昼夜温差为9C o 时的就诊人数大约为21人左右. 19.(1)延长BA 与CD 相交于点Q ,连结PQ ,如图所示:则PQ 即为平面PAB 与平面PCD 的交线l . 因为侧面PAB ⊥底面ABCD ,且AB BC ⊥, 所以BC ⊥侧面PAB又PQ ⊂侧面PAB ,所以BC PQ ⊥.在QBC V中,AD BC ∥,22BC AD ==,所以A ,D 分别为QB ,QC 的中点 所以2AQ AB AP ===,即:12AP QB =,所以PQ PB ⊥. 又PB BC B ⋂=,所以PQ ⊥平面PBC ,即l ⊥平面PBC . (2)取PB 的中点E ,连结AE ,则AE PQ ∥,由(1)知PQ ⊥平面PBC ,所以AE ⊥平面PBC ,AE = 又AD P 平面PBC ,所以A ,D 到平面PBC 的距离相等. 因为122PBC S PB BC =⋅=△,所以133D PBC PBC V S AE -=⋅=△.因为111244DPC QPC S S PQ PC ===⨯=g △△. 设点B 到平面PCD 的距离为h ,则三棱锥B PDC -的体积13B PDC PDC V S h -=⋅=△又B PDC D PBC V V --=,所以33h =,所以h =故点B 到平面PCD.20.(1)由已知OM 斜率为:2OM k =,则直线PQ 的斜率为112PQ OMk k =-=-所以直线PQ 的方程为412525y x ⎛⎫-=-- ⎪⎝⎭,即22x y +=, 令0x =,得1y =;令0y =,得2x =, 所以()0,1P ,()2,0Q ,故2a =,1b =,椭圆C 的方程2214x y +=.(2)依题意设l 的方程为y kx n =+,由2244x y y kx n⎧+=⎨=+⎩,消去y 整理得()()222418410k x knx n +++-=, ()()()2222284441116(41)kn k n k n ∆=-⨯+-=+-由>0∆,得2241k n +>,设()11,A x y ,()22,B x y ,则122841kn x x k -+=+,()21224141n x x k -=+,② 由0PA PB ⋅=u u u r u u u r,得()()1122,1,10x y x y -⋅-=,又11y kx n =+,22y kx n =+,整理得:()()()()2212121110k x x k n x x n ++-++-=,③所以()()()()2222241811104141n kn k k n n k k --+⋅+-⋅+-=++, 即25230n n --=,解得35n =-或1n =(舍去) 此时l 的方程为35y kx =-,故直线过定点30,5⎛⎫- ⎪⎝⎭21.(1)()ln 1f x x '=+,由已知得0()2f x '=, 故0ln 12x +=,所以0x e =.0()ln 2f x e e a e e =+=-,解得0a =.(2)由(1)可知()ln f x x x =,所以1()ln ()g x x k x x=+-,0x >. 22211()(1)kx x k g x k x x x++'=++=. 当0k ≥时,()0g x '>,()g x 在(0,)+∞上为增函数,()g x 没有极值点.当k 0<时,令2()h kx x x k =++,0x >, 其对称轴方程为12x k=-,214k ∆=- ①若12k ≤-时,2140k ∆=-≤,此时2()()0h x g x x'=≤, 所以()g x 在(0,)+∞上为减函数,()g x 没有极值点. ②若102k -<<时,2140k ∆=->,由()0g x '=,即()0h x =. 则()0h x =的两根为1x ,2x ,不妨设12x x <,由0(0)h k =<,101)2(h k =+>,11x =->,故1201x x <<<综上可知:求k 的取值范围是1(,0)2-. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.选修4—4:坐标系与参数方程.22.(Ⅰ)由极坐标与直角坐标互化公式cos sin x y ρθρθ=⎧⎨=⎩可得直线l 的方程为:60kx y k --=,即()6y k x =-故直线l 恒过定点P ()6,0所以直线l 的参数方程为6cos sin x t y t αα=+⎧⎨=⎩(t 是参数) (Ⅱ)由曲线C的参数方程12x y ϕϕ⎧=+⎪⎨=+⎪⎩(ϕ是参数)得曲线C 的普通方程:()()22125x y -+-=,即22240x y x y +--= 将6cos sin x t y t αα=+⎧⎨=⎩代入上式整理得:()210cos 4sin 240t t αα+-+= 设两根为12,t t ,则12=24t t由,A B 两点对应的参数分别为12,t t ,故12=24PA PB t t = 故PA PB 的值为24.选修4-5:不等式选讲23.(Ⅰ)由绝对值不等式可得()()()12123f x x x x x =++-≥+--=,当且仅当12x -≤≤时取等号13+<,解得a <<故(A =(Ⅱ)()()222222222222422mn m n m n m n m n +-+=--+=--又(,m n ∈,所以()22,0,2m n ∈, 故()()22220m n -->所以2mn n +>+。

2019-2020年高三第二次联考(二模)(文科)数学试题 含答案

2019-2020年高三第二次联考(二模)(文科)数学试题 含答案

2019-2020年高三第二次联考(二模)(文科)数学试题 含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知复数1iz i=-(其中i 为虚部单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 已知集合{}{}2|6,x R |40A x N x B x x =∈≤=∈->,则AB =( )A .{}4,5,6B .{}5,6C .{}|46x x <≤D .{}|x 046或x x <<≤3.“1x <”是 “ln 0x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.甲、乙、丙、丁四位同学各自对,A B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现,A B 两变量有更强的线性相关性 A .甲 B .乙 C .丙 D .丁5.下图为某算法的程序框图,则程序运行后输出的结果是( )A .3B .4C .5D .66.数列{}n a 中,已知121,2a S ==,且()11232,*n n n S S S n n N +-+=≥∈,则数列{}n a 为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列8.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的侧面积是( )AB .π C.2π+D.π+9.已知P 是ABC ∆所在平面内一点,20PB PC PA ++=,现将一粒黄豆随机撒在ABC ∆内,则黄豆落在PBC ∆内的概率是( ) A .14 B .13 C .12 D .2310.对于ABC ∆,有如下四个命题:①若sin 2sin 2A B =,则ABC ∆为等腰三角形;②若sin cos B A =,则ABC ∆为直角三角形;③若222sin sin sin A B C +>,则ABC ∆为锐角三角形;④若coscoscos222a b c AB C ==,则ABC ∆为等边三角形,其中正确的命题个数是( )A .1B .2C .3D .411.已知双曲线()222210,0x y a b a b-=>>的焦距长为2c ,过原点O 作圆:()222x c y b -+=的两条切线,切点分别是,A B ,且120AOB ︒∠=,那么该双曲线的离心率为( )ABC .2 D12.设()f x 是定义在()(),00,ππ-的奇函数,其导函数为()'f x ,且02f π⎛⎫= ⎪⎝⎭,当()0,x π∈时,()()'sin cos 0f x x f x x -<,则关于x 的不等式()2sin 6f x f x π⎛⎫< ⎪⎝⎭的解集为( ) A .,00,66ππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭ B .,066,πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ C .,0662,πππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭ D .,0,66πππ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用系统抽样从160名学生中抽取容量为20的样本,将160名学生随机地从1-160编号,并按编号顺序平均分成20组(1-8号,9-16号,…,153-160号),若按等距的规则从第16组抽出的号码为126,则第1组中用抽签法确定的号码是 .14.点(),P x y 在不等式组031x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(),P x y 到直线()10y kx k =->的最大距离为k = .15.已知3sin 45x π⎛⎫-=⎪⎝⎭,则sin 2x = . 16.某同学在研究函数()f x=的性质时,受到两点间的距离公式的启发,将()f x变形为()f x =()f x 表示||||PA PB +(如图),下列关于函数()f x 的描述正确的是 .(填上所有正确结论的序号)①()f x 的图象是中心对称图形;②()f x 的图象是轴对称图形;③函数()f x的值域为)+∞;④方程()()1f f x =+三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知公差大于零的等差数列{}n a ,各项均为正数的等比数列{}n b ,满足1142831,2,,a b a b a b ====.(1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,数列{}n c 的前n 项和为n S ,求证:2n S <. 18. (本小题满分12分)2016年9月20日是第28个全国爱牙日,为了迎接此节目,某地区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该地区小学六年级800名学生进行检查,按患龋齿的不换龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.(1)能否在犯错率不超过0.001的前提下,认为该地区学生的常吃零食与患龋齿有关系? (2)4名区卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率. 附:. ()()()()()22n ad bc K a b c d a c b d -=++++19. (本小题满分12分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,22,//,,90,AB EF EF AB EF FB BFC BF FC ==⊥∠==,H 为BC 的中点.(1)求证://FH 面EDB ; (2)求证:AC ⊥面EDB ; (3)求四面体B DEF -的体积.20. (本小题满分12分)已知抛物线2:E y ax =上三个不同的点()1,1A ,、C B 满足关系式0AB BC ⋅=. (1)求抛物线E 的方程;(2)求ABC ∆的外接圆面积的最小值及此时ABC ∆的外接圆的方程. 21. (本小题满分12分)已知函数()()()223x f x e x a a R =--+∈.(1)若函数()f x 的图象在0x =处的切线与x 轴平行,求a 的值; (2)若0x ≥时,()0f x ≥恒成立,求a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲如图, AB 是圆O 的直径,C 是半径OB 的中点,D 是OB 延长线上一点,且DB OB =,直线MD 与圆O 相交于点、M T (不与、A B 重合),DN 与圆O 相切于点N ,连结、、MC MB OT .(1)求证:DT DM DO DC ⋅=⋅; (2)若60DOT ∠=,试求BMC ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为2224484t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).(1)求曲线C 的普通方程;(2)过点()0,1P 的直线l 与曲线C 交于、A B 两点,求PA PB ⋅的取值范围. 24. (本小题满分10分)选修4-5:不等式选讲 已知()()0,,0,,2a b a b ∈+∞∈+∞+=. (1)求14a b+的最小值; (2)若对()14,0,,211a b x x a b∀∈+∞+≥--+恒成立,求实数x 的取值范围.2016届高中毕业班联考试卷(二)数学(文科)参考答案及评分标准1.B 解:i z 2121+-= ,故选B. 2.B 解:}6,5{}64,0|{=≤<<∈=⋂x x N x B A 或 ,故选B. 3.B 解:100ln <<⇔<x x ,故选B.4.D 解:r 越大,m 越小,线性相关性越强,故选D.5.A 解:1,1,1===T a k ;1,0,2===T a k ;1,0,3===T a k ;2,1,4===T a k ;3,1,5===T a k ,故选A. 6.D 解:)2(21≥=+n a a n n ,又112=a a不满足上式,故选D.7.A 解:x x g 2sin3)(π=,Z k k k x ∈++∈∴],34,14[,故选A.10.A 解:①B A =或2π=+B A ,错;②A B -=2π或A B +=2π,错;③只能得到C ∠为锐角,错;④2sin 2sin 2sinCB A == ,C B A ==∴,正确.故选A. 11.C 解:c b 23=,2=∴e . 12.B 解:令xx f x g sin )()(=,则)(x g 在),0(π上递减,在)0,(π-上递增,当),0(π∈x 时,πππ<<⇒<x g x g 6)6()(;当)0,(π-∈x 时,06)6()(<<-⇒->x g x g ππ;故选B.13.6 解:第1组中用抽签法确定的号码是6815126=⨯-.14.1 解:221|130|2=+--⨯k k ,0>k ,1=∴k .15.257 解:257)4(sin 21)22cos(2sin 2=--=-=x x x ππ . 16.②③ 解:)()3(x f x f =- ,)(x f ∴关于直线23=x 对称;13||||||=≥+AB PB PA ,),13[)(+∞∈∴x f .17.解: ⑴设等差数列}{n a 的公差为d )0(>d ,等比数列}{n b 的公比为q )0(>q⎩⎨⎧==3824b a b a ⎩⎨⎧=+=+⇒2271231q d q d ⎩⎨⎧==⇒21q d ……3分 n a n =∴,n n b 2= ………6分⑵n n nc 2=n n n n n S 221232221132+-++++=∴- 143222123222121++-++++=n n n n n S 2222<+-=∴n n n S …………12分18.解:⑴由题意可得列联表:828.10667.16600200640160)14010050060(80022>≈⨯⨯⨯⨯-⨯=K 故能在犯错率不超过0.001的前提下,认为该地区学生的常吃零食与患龋齿有关系. …6分种,工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率3162==P …12分 19.解:⑴设BD 与AC 交于点O ,连结OE 、OH .O 、H 分别为AC 、BC 的中点 AB OH //∴,又AB EF // EF OH //∴,又EF OH = OEFH ∴为平行四边形OE FH //∴,又⊄FH 平面BDE ,⊂OE 平面BDE//FH ∴平面BDE . …………4分 ⑵AB EF // ,FB EF ⊥FB AB ⊥∴,又BC AB ⊥ ,B BC FB =⋂ ⊥∴AB 平面BCF ,又⊂FH 平面BCF AB FH ⊥∴,又BC FH ⊥,B AB BC =⋂ ⊥∴FH 平面ABCD ,又OE FH // ⊥∴OE 平面ABCDAC OE ⊥∴,又BD AC ⊥,O OE BD =⋂⊥∴AC 平面BDE . …………8分⑶31221213131=⨯⨯⨯⨯=⨯⨯=-BF S V DEF B …………12分20.解: ⑴211⨯=a ,1=∴a ,抛物线E 的方程为2x y = …………2分 ⑵设),(211x x B ,),(222x x C ,则)1,1(211--=→x x AB ,),(212212x x x x BC --=→→→=⋅0BC AB0))(1())(1(212221121=--+--⇒x x x x x x11≠x ,21x x ≠0))(1(1211=+++∴x x x ,且11-≠x1)111(112++++-=∴x x x当011>+x 时,12-≤x ;当011<+x 时,32≥x),3[]1,(2+∞⋃--∞∈∴x …………5分→→=⋅0BC AB ,BC AB ⊥∴,从而ABC ∆的外接圆的直径为||AC 要使ABC ∆的外接圆面积最小,须||AC 最小22)1()1(||2224222222+--=-+-=x x x x x AC令22)(24+--=x x x x f ,),3[]1,(+∞⋃--∞∈x]1)12)[(1()244)(1(224)(223++-=++-=--='∴x x x x x x x x f]1,(--∞∈∴x 时,0)(<'x f ,)(x f 递减;),3[+∞∈x 时,0)(>'x f ,)(x f 递增又4)1(=-f ,68)3(=f2||min =∴AC ,此时12-=x …………9分 1=∴r ,ABC ∆的外接圆面积π=min S . …………10分 12-=x ,)1,1(-∴CA B C ∆∴的外接圆的圆心为)1,0(,半径1=rABC ∆∴的外接圆方程为1)1(22=-+y x …………12分21.解:⑴3)(2)(2+--=a x e x f x ,R x ∈)(2)(a x e x f x +-='∴ …………2分0)0(='f ,即:0)1(2=+a1-=∴a . ……… 4分⑵令)(2)(a x e x g x+-=,),0[+∞∈x0)1(2)(≥-='∴x e x g 对),0[+∞∈x 恒成立)(2)(a x e x g x +-=∴在),0[+∞内单调递增,且)1(2)0(a g += ………6分①当0)1(2≥+a ,即1-≥a 时,0)0()(2)(≥'≥+-='f a x e x f x)(x f ∴在),0[+∞上为增函数05)0(2≥-=∴a f 55≤≤-⇒a51≤≤-∴a ………8分②当012<+)(a ,即1-<a 时,0)0(<∴g 由)(2)(a x e x g x+-=在),0[+∞内单调递增知:存在唯一),0[0+∞∈x ,使得0)(2)(000=+-=a x ex g x ,即00x a e x =+. 令0)(>'x f ,得0x x >,0)(<'x f ,得00x x <≤;3)(2)()(200min 0+--==∴a x e x f x f x ……… 10分 a e x x +=003)(2)(2000+-=∴x x e e x f )3)(1(00-+-=x x e e030≤-∴x e ,即3ln 00≤<x .)1,33[ln 00--∈-=∴x e x a综上,实数a 的取值范围是]5,33[ln -. ……… 12分22.解:⑴设r OB =)0>r (,则有:r BD =,2rCB OC ==. 233r r r DA DB DM DT =⋅=⋅=⋅又23232r r r DC DO =⋅=⋅DC DO DM DT ⋅=⋅∴ …………… 5分 ⑵DC DO DM DT ⋅=⋅DMDODC DT =∴ 又CDM TDO ∠=∠ DTO ∆∴∽DCM ∆ DMC DOT ∠=∠∴ DMB DOT ∠=∠∴2030=∠∴BMC . …………… 10分23.解:⑴1)44()44()44(42222222222=++=+++-=+t t t t t t y x 又)1,1[48144222-∈+-=+-=t t t x C ∴的普通方程为1422=+y x ,)1,1[-∈x ……… 5分⑵设直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x ,α(为倾斜角,且)),43()43,0[πππα⋃∈ 代入曲线C 得:03sin 2)cos 3122=-⋅+⋅+t t αα( 设两根为21,t t ,α221cos 313+==⋅∴t t PB PA ,),43()43,0[πππα⋃∈ 故]3,43[||||∈⋅PB PA . ……… 10分24.解:⑴),0(+∞∈a ,),0(+∞∈b ,2=+b a292252222522252)41(41=+=⋅+≥++=+⋅+=+∴b a a b b a a b b a b a b a 29)41(min =+∴b a ,此时32=a ,34=b . ……… 5分⑵|1||12|41+--≥+x x ba 对),0(,+∞∈∀b a 恒成立29|1||12|≤+--∴x x⎪⎩⎪⎨⎧≤+++--≤⇔291121x x x 或⎪⎩⎪⎨⎧≤--+-≤<-29112211x x x 或⎪⎩⎪⎨⎧≤--->2911221x x x 125-≤≤-⇔x 或211≤<-x 或21321≤<x 21325≤≤-⇔x]213,25[-∈∴x ……… 10分。

百校联盟2019届TOP20二月文科数学综合卷(PDF)

百校联盟2019届TOP20二月文科数学综合卷(PDF)

21.(本小题满分 12 分)已知曲线 f ( x ) ae x bx . (1)函数 f ( x) 在 x 0 处的切线方程为 y 1 x ,求 a, b 的值,并求函数 f ( x) 的单调区间; (2)若 b e ,函数 f ( x ) 0 恒成立,求 a 的取值范围. 选做题:请考生在第 22、23 两题中任选一题做答,如果多做,则按所做的第一题计分. 22.(同理科 22)(本小题满分 10 分)选修 4-4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合, 极轴与 x 轴的非负半轴重合. 曲线 C 的极坐
n n
S CEF 0.25 ,故选 B SOBCD
2(26 1) 6 120 ,故选 B 2 1
1 1 1 4 5 125 V ( 3 4) 4 [ ( )3 ] 8 3 2 2 3 2 12
故选 C 7.【答案】C 【解析】 a ( )
本试卷分第 I 卷(选择题)和第 II 卷两部分。共 150 分,考试时间 120 分钟
第 I 卷(必做 共 60 分) 一、选择题.本大题共 12 小题,每小题 5 分。在每题给出的四个选项中,只有一项是符合题 目要求的. 1.集合 A { x | x 2 x 2 0} , B { x || x | 3, x z} ,则 A B A. { x | 2 x 3 或 3 x 1} C. B. D.
2
a b c d a c b d
n ad bc
2
下面的临界值表供参考:
P( K 2 k0 ) k0
0.15 2.207
0.10 2.706
0.05 3.841
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!"#$ $ )* + % & '% ! " # $ % &'#( ,-./ !! 0(12
!"#$%&' ! !! ()*+,-./ ! )7 !! 0123,456 ( % & 89 # &" * " #+ $ $ $#$ : $$ ,& %+ $ ,(& ,$& " % & % ;< #%%+ $ ,&& %& && $& ( ,(& ,$& ( " ' ( & 89 # =>?@ ./ ; < '+$& $" - " & 0 +$ '/$ 0 & & & ;< +. (+$/. 0( 0 " &+$,. 89 # (" 1 " # #%''# &'$ ) 2 0 3 # #$ ) 2 0 3 %'2 0 3 # & ) * ) * ;< A ,BCDE 2 0 3 % # % 2 0 3 # 2 0 3 % " # # # 8 9# FGHIJK ." * " LM,N O P Q R S T U V (* + ,& -(*+, +45), )5) 45( $5& & ) , , + & $ $ $ $ ;< -W V.%*/ +45)+( %& XY Z [ - , \ ] 0 + { '" $& # ,$"," # ,&"+ |" {' $& # ,& "+$,$&
,$5" 槡 4 & )& & ) " 槡 6 , ]' 槡 + " + ,&5" 槡 ) ) " & % ' 89 # =! @' & &" * " ' ' ' ' !, !/& +$ &/ $/ . / !( ( ' & J@ & ' ' ' ' !)$& ! +$ &/ $/ . / !,& (
',$ " " ;< $+% , I , j (& +(& ) 槡 '+$?(槡 )"
( 8 9# ' ( $ & )" " 9 2 $ $/$ 2 0 3 $+&,$ 2 0 3 $/ 4 $ +@ $ & $ (& & u2 $+,$' 2 0 3 $, ( / 0 3 $+ v $ 2 0 3 $ $ $ ( " $
' ;< ! ' !/&( ' ' !/& + ' !& $ +$ & +$ f J &
' ' ' ' ! + & +&& )*+,- . / ! !/& + ! & !/& ! ! & $ ( ;<' ;< !& !+ ! +&5$/$5$ /(5$ / . /
! $ ( . & !5$ $ ! +&5$ /$5$ /(5$ / . /!5 !/& $ ( ! !/& & ;< ,$ !5$ + ! +$/$ /$ / . /$ , !/& !/& !/& & ( ;< $ ,$, !5$ !,& 5$ " ! +$/ ' ! ( 8 9# u !+& v & & $" 1 " $ ,! /&+$#%& ' &+ ! ( ' ( u !, $ v& & +&$& (& .& )& 4& 7& 6& '% $ ,! 2 3 : ! u !, $ v& /&$%& ' $,-" $)& %% $ , ! +,& ( & ;<! /&#%& ' " ! ! +& ! +% , & & +$
% ,& ,$ " + $&| " " , "% % ,& %" & "# % ,& ,& " + .&| " " , "# #5" + "%5 " + $&| " ,$5" + "
$ & 4,$ + 槡
$ 8 @ $+ 槡 $ ,.& & %&; < = > 3 +5, ,$ + & 槡
! " # $ % !"#$ %& ' ! ()*+ ! ,- ! . ! &/
( 8 9# R S ; M& k + Y & 4" " 6 i& &,\] + ,& $ & ,8 , \ ] 89& $ & 95 , \ ] 5: " $ 0& + & 5 & 5 & + & &,\ % & " $ $ $ 6 $ ] + ,8 & , \ ] 8; & ,& $
& ,lme & ;<cKde, e n 1 + & 5 ' 5(5 ( $ & . ) (, & $ ) ( . 5./ 5 + 55 ' ( +6/ " $ ( $ & $ $ ,$ ' (( ' $ $ 89# 7" 1 " '+ ' ( + + & &+$ +.& 2+ ( $ . ;<2$ 8 9 )$ 8 9 '+$& '$ &" : : ( ( 89 # opq r s S & t @ 3+$" 6" ; " .& $+&& $) %& $+&" $$& $+%& $)%& $+%" 44& $ 3+&" 3+%" +,&& $$%& (+$/ ." 3+,%" 89 # u $+% v & w x ;u $+& '" - " %( +&& 4' & ( v& wx *& yz -" %$4' & + $&& 1" < 89 # RS & {'" |Z # & %" * " # ,$ % ,$"& %} "+" ~ , " Y5& ,$5 *# %& # ,$ % ,$"+ "+" $5 &
4 ( $ ,& $5 ' ,4+& $ %" $,& 89 # c K d e ' f O ' T g h& iO'jk 4" 1 "
! 4& ! ! 6" $ +& &/ $ +&
& (" & 89 # {' * ' ;< /' & (" , ,7 ( ,7 ( . $ $ $ $ +%& ,7 / +%& /( ,7' $5&,(5 ( ( ;< 7+,& $ +%& " . 89 # {' $/$ & ." $?(槡 ) " $, 3,$+% ' $ $ ( ;< ' $/$ '(/ '& % 3 +' & 3,
相关文档
最新文档