2020届高三浙江百校联考数学卷
浙江省联考部分市学校2020届高三上学期数学试题Word版含解析

浙江省联考部分市学校2020届高三上学期数学试题第Ⅰ卷(共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,那么()A. B. C. D.2. 设为虚数单位,表示复数的共轭复数,若,则()A. B. C. D.3. “”是“直线与直线平行”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 已知,满足约束条件若恒成立,则的取值范围是()A. B. C. D.5. 已知函数(),下列选项中不可能是函数图象的是()A. B. C. D.6. 已知实数,,,则的最小值是()A. B. C. D.7. 已知等差数列、的前项和分别为、,若,则的值是()A. B. C. D.8. 设点是双曲线(,)上异于实轴端点上的任意一点,,分别是其左右焦点,为中心,,则此双曲线的离心率为()A. B. C. D.9. 已知是正四面体(所有棱长都相等的四面体),是中点,是上靠近点的三等分点,设与、、所成角分别为、、,则()A. B. C. D.10. 如图,点在以为直径的圆上,其中,过向点处的切线作垂线,垂足为,则的最大值是()A. B. C. D.第Ⅱ卷(共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,将答案填在答题纸上)11. 16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.12. 设,,则__________;__________.13. 在的展开式中,各项系数之和为64,则__________;展开式中的常数项为__________.14. 4支足球队两两比赛,一定有胜负,每队赢的概率都为0.5,并且每队赢的场数各不相同,则共有__________种结果;其概率为__________.15. 某几何体的三视图如图所示,则俯视图的面积为__________;此几何体的体积__________.16. 已知圆:(),点,若在圆上存在点,使得,的取值范围是__________.17. 当时,不等式恒成立,则的最大值是__________.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18. 设函数.(1)求的单调递增区间;(2)若角满足,,的面积为,求的值.19. 如图,在三棱锥中,是正三角形,面面,,,和的重心分别为,.(1)证明:面;(2)求与面所成角的正弦值.20. 已知函数.(1)讨论的单调性;(2)证明:当时,存在实数,使.21. 如图,在平面直角坐标系中,设点是椭圆:上一点,从原点向圆:作两条切线分别与椭圆交于点,,直线,的斜率分别记为,.(1)求证:为定值;(2)求四边形面积的最大值.22. 已知数列满足:,,.(1)证明:;(2)证明:;(3)证明:.浙江省联考部分市学校2020届高三上学期数学试题参考答案第Ⅰ卷(共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,那么()A. B. C. D.【答案】C【解析】∵集合∴∵集合∴故选C2. 设为虚数单位,表示复数的共轭复数,若,则()A. B. C. D.【答案】B【解析】∵∴∴故选B3. “”是“直线与直线平行”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】当时,两直线不平行当时,由两直线平行可得,且,解得或∴“”是“直线与直线平行”的充分不必要条件故选A4. 已知,满足约束条件若恒成立,则的取值范围是()A. B. C. D.【答案】D【解析】作出满足约束条件的可行域如图所示:平移直线到点时,有最小值为∵恒成立∴,即故选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.5. 已知函数(),下列选项中不可能是函数图象的是()A. B.C. D.【答案】D【解析】∵()∴当时,,易得在上为减函数,在上为增函数,故可能;当时,,,为增函数,故可能;当时,,有两个不相等且互为异号的实数根,先递减再递增然后再递减,故可能;当时,,有两个不相等的负实数根,先递增再递减然后再递增,故错误.故选D6. 已知实数,,,则的最小值是()A. B. C. D.【答案】B【解析】∵,,∴当且仅当,即,时取等号.故选B点睛:本题主要考查了不等式,不等式求最值问题,属于中档题。
2020届浙江省高三百校联考 数学

2020届浙江省高三百校联考数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是正确的。
1.已知集合{{12}A x y B x x ===-≤≤,则A∩B = A.{12}x x -<≤ B.{01}x x ≤≤ C.{12}{1}x x ≤≤- D.{02}x x ≤≤2.已知i 是虚数单位,若复数z 满足以z(1+2i)=3+4i ,则|z|=B.2D.33.若x ,y 满足约束条件1020220x y x y +≥⎧⎪-≤⎨⎪--≤⎩,则z =x +y 的最大值是A.-5B.1C.2D.44.已知平面β,α和直线l 1,l 2,且α∩β= l 2,则“l 1//l 2”是“l 1//α且 l 1//β”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若二项式2)nx 的展开式中各项的系教和为243,则该展开式中含二项的系数为A.1B.5C.10D.206.函数f(x)=xcose |x|的大致图象为7.已知双曲线C :22221(0,0)x y a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间。
2020届百校联盟TOP20高三上学期11月联考数学(理)试题(解析版)

2020届百校联盟TOP20高三上学期11月联考数学(理)试题一、单选题 1.复数312112i ii +++-的模为( ) A .1 B 3C 5D .5【答案】C【解析】对复数进行计算化简,然后根据复数的模长公式,得到答案. 【详解】 根据题意,31211211212i i i ii i +++++=+-+ (12)(1)122i i i+-+=+3122i i++=+2i =+,所以22|2|215i +=+=故选:C. 【点睛】本题考查复数的四则运算,求复数的模长,属于简单题.2.集合{|3}A x x =≤,(){}22|log 2,B x y x x x R ==-+∈,则A B =ð( ) A .{|0}x x ≤ B .{|2 3 0}x x x ≤≤≤或 C .{|23}x x ≤≤ D .{|03}x x ≤≤【答案】B【解析】对集合B 进行化简,然后根据集合的补集运算,得到答案. 【详解】因为(){}22|log 2,B x y x x x ==-+∈R{}2|20,x x x x =-+>∈R{}|02,x x x =<<∈R ,因为集合{|3}A x x =≤所以{|2 3 0}A B x x x =≤≤≤或ð. 故选:B. 【点睛】本题考查解对数不等式,一元二次不等式,集合的补集运算,属于简单题.3.已知向量(3,4)a =r ,则实数1λ=是||5a λ=r 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】先求出a r ,然后分别判断由1λ=能否得到||5a λ=r ,和由||5a λ=r能否得到1λ=,从而得到答案. 【详解】因为向量(3,4)a =r ,所以22345a =+=r因为1λ=,所以可得5a a λλ==r r,所以1λ=是||5a λ=r的充分条件. 因为||5a λ=r,所以||||5a λ=||1λ=即1λ=±.所以1λ=是||5a λ=r的不必要条件.综上所述,实数1λ=是||5a λ=的充分而不必要条件. 故选:A. 【点睛】本题考查根据向量的坐标求向量的模长,判断充分而不必要条件,属于简单题.4.已知函数32,0()log ,0x x g x x x ⎧-≤=⎨>⎩,则不等式()1g x <的解集为( )A .(0,2)B .(,2)-∞C .(1,2)-D .(1,2)【答案】C【解析】按0x ≤和0x >,分别解不等式()1g x <,从而得到答案. 【详解】根据题意,32,0,()log ,0,x x g x x x ⎧-≤=⎨>⎩,由不等式()1g x <得310x x ⎧-<⎨≤⎩或2log 10x x <⎧⎨>⎩,, 所以10x -<≤或02x <<. 即12x -<<所以不等式()1g x <的解集为(1,2)-. 故选:C. 【点睛】本题考查解分段函数不等式,解对数不等式,属于简单题. 5.某几何体的三视图如图所示,则该几何体的体积为( )正视图 侧视图俯视图 A .43 B .23C .32-D .34-【答案】C【解析】根据三视图还原出几何体的直观图,将几何体分为三棱锥E ABC -和三棱锥E ACD -两部分,根据三视图中的数据及线段的位置关系分别得到底面积和高,求出几何体的体积. 【详解】该几何体的直观图如下图,平面ACD ⊥平面ABC ,DE P 平面ABC ,ACD V 与ACB △均是边长为2的等边三角形,2BE =,点E 在平面ABC 上的射影落在ABC ∠的平分线上, 所以DE ⊥平面ACD , 所以1313E ABC ABC V S -∆=⨯=, 13E ACD ACD V S DE -=⨯⨯V 13(31)3=31=,所以几何体的体积为32. 故选:C. 【点睛】本题考查三视图还原结合体,根据三视图求几何体的体积,属于中档题. 6.函数1()1x f x x +=-的图象在点(3,2)处的切线与函数2()2g x x =+的图象围成的封闭图形的面积为( ) A .1112B .3316C .3516D .12548【答案】D【解析】对()f x 求导,利用导数的几何意义,求出切线方程,然后求出切线与()g x 的交点坐标,利用定积分求出围成的封闭图形的面积,得到答案. 【详解】由题意,22()(1)f x x '=--,221(3)(31)2f '∴=-=--,所以切线方程为270x y +-=,与2()2g x x =+的交点横坐标为132x =-,21x =. 故封闭图形的面积13227222x S x dx -⎛⎫=--- ⎪⎝⎭⎰ 3122231323311d 22243x x x x x x --⎛⎫⎛⎫=⎰--=-- ⎪ ⎪⎝⎭⎝⎭ 12548=故选:D. 【点睛】本题考查利用导数求函数图像上在一点的切线方程,定积分求封闭图形的面积,属于中档题. 7.已知数列满足11a =,121n n a a +=+,设数列(){}2log 1n a +的前n 项和为n S ,若12111n nT S S S =++⋅⋅⋅+,则与9T 最接近的整数是( ) A .5 B .4C .2D .1【答案】C【解析】根据递推关系式121n n a a +=+,得到1121n n a a ++=+,得到{}1n a +的通项,从而得到(){}2log 1na +的通项和前n 项和nS,从而求出n T ,再得到9T ,从而得到答案.【详解】由题意,()112221n n n a a a ++=+=+,所以1121n n a a ++=+, 所以{}n a 为以112a +=为首项,2为公比的等比数列, 所以()11112n n a a -+=+2n =,因此()2log 1n a n +=,数列(){}2log 1n a +的前n 项和为(1)2n n n S +=, 12112(1)1n S n n n n ⎛⎫==- ⎪++⎝⎭,12111n nT S SS =++⋅⋅⋅+ 11111212231n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭1211n ⎛⎫=- ⎪+⎝⎭所以995T =. 所以与9T 最接近的整数是2. 故选:C. 【点睛】本题考查构造法求数列的通项,等差数列前n 项和公式,裂项相消法求数列的和,属于中档题.8.已知函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,若函数()()g x f x m =-有两个零点,则实数m 的取值范围为( ) A .[2,)+∞ B .(1,0)(2,)-+∞U C .(1,2]-D .(1,0)-【答案】D【解析】画出()y f x =的图像,然后得到()y f x =的图像和y m =的图像有两个交点,从而得到m 的取值范围. 【详解】根据函数2211,1()1,1x x f x x x x⎧--≤⎪=⎨+>⎪⎩,画出()f x 的图象如图所示,函数()()g x f x m =-有两个零点则函数()y f x =的图象与y m =的图象有2个交点, 所以10m -<<,所以实数m 的取值范围为(1,0)-. 故选:D. 【点睛】本题考查画分段函数的图像,函数与方程,属于简单题. 9.如果函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞,则14m n +的最小值为( ) A .92B .2C .1D .34【答案】A【解析】由()f x 单调递增区间为[1,)+∞,得到对称轴方程21n m--=,即2m n +=,再根据基本不等式求出14m n+的最小值,得到答案. 【详解】因为函数21()(2)12f x mx n x =+-+(0,0)m n >>的单调递增区间为[1,)+∞ 所以对称轴为:21n m--=,即2m n +=, 所以14114()2m n m n m n ⎛⎫+=++ ⎪⎝⎭1452m n n m ⎛⎫=++ ⎪⎝⎭14(522m n n m≥+⋅92=,当且仅当2,3m =43n =时,等号成立. 故选:A. 【点睛】本题考查根据二次函数的单调区间求参数之间的关系,基本不等式求和的最小值,属于简单题. 10.已知3sin()1223πα-=则sin(2)6πα+= ( )A .710-B .710C .79-D .79【答案】C【解析】利用倍角公式,结合函数名的转换求解. 【详解】21cos()12sin ()61223ππαα-=--=,(2)cos[(2)]cos(2)6263sin ππππααα+=-+=-272()169cos πα=--=-,故选C.【点睛】本题主要考查三角函数的给值求值问题,首先从角入手,寻求已知角和所求角的关系,再利用三角恒等变换公式求解.11.如图,在三角形ABC 中,AC 上有一点D 满足4BD =,将ABD △沿BD 折起使得5AC =,若平面EFGH 分别交边AB ,BC ,CD ,DA 于点E ,F ,G ,H ,且AC P 平面EFGH ,BD P 平面EFGH 则当四边形EFGH 对角线的平方和取最小值时,DHDA=( )A .14B .1641C .2041D .3241【答案】B【解析】易得HG AC P ,EF AC P ,设DH GHk DA AC==,易得∥EH BD ,∥FG BD ,得1AH EHk DA BD==-,从而得到5GH k =,4(1)EH k =-,平行四边形EFGH 中,()2222413216EG HF k k +=-+,从而得到22EG HF +最小时的k 值,得到答案.【详解】AC P 平面EFGH ,AC ⊂平面ACD ,平面ACD I 平面EFGH HG =, 所以AC HG P ,同理AC EF P设DH GHk DA AC==(01)k <<, BD P 平面EFGH ,BD ⊂平面ABD ,平面ABD ⋂平面EFGH HE =, 所以BD HE P ,同理∥FG BD所以1AH EHk DA BD==-, 因为4BD =,5AC =所以5GH k =,4(1)EH k =-, 在平行四边形EFGH 中,222222516(1)EG HF k k ⎡⎤∴+=+-⎣⎦(22413216)k k =-+, 又01k <<Q ,∴当1641k =时,22EG HF +取得最小值. 故选:B. 【点睛】本题考查线面平行证明线线平行,平行四边形对角线的性质,二次函数求最值,属于中档题. 12.定义在R 上的函数()f x 满足(2)()0f x f x ++=,(2018)2f =,任意的[1,2]t ∈,函数32(2)()(2)2f m g x x x f x ⎡⎤=+-++⎢⎥⎣⎦在区间(,3)t 上存在极值点,则实数m 的取值范围为( )A .37,53⎛⎫-- ⎪⎝⎭B .(9,5)--C .37,93⎛⎫-- ⎪⎝⎭D .37,3⎛⎫-∞-⎪⎝⎭【答案】C【解析】根据(2)()0f x f x ++=得到()f x 周期为4,再求得()()220182f f ==,得到()g x ,求导得到()g x ',判断出()0g x '=的两根一正一负,则()g x 在区间(,3)t 上存在极值点,且[]1,2t ∈,得到()g x '在(),3t 上有且只有一个根,从而得到关于t 的不等式组,再根据二次函数保号性,得到关于m 不等式组,解得m 的范围. 【详解】由题意知,(2)()f x f x +=-,(4)()f x f x ∴+=,所以()f x 是以4为周期的函数,(2018)(2)2f f ∴==,所以322()22m g x x x x ⎛⎫=+-++ ⎪⎝⎭32222m x x x ⎛⎫=++- ⎪⎝⎭,求导得2()3(4)2g x x m x '=++-, 令()0g x '=,23(4)20x m x ∴++-=,2(4)240m ∆=++>,由12203x x =-<, 知()0g x '=有一正一负的两个实根. 又[1,2],t ∈(,3)x t ∈,根据()g x 在(,3)t 上存在极值点,得到()0g x '=在(,3)t 上有且只有一个正实根.从而有()0(3)0g t g ''<⎧⎨>⎩,即23(4)2027(4)320t m t m ⎧++-<⎨++⨯->⎩恒成立,又对任意[1,2]t ∈,上述不等式组恒成立,进一步得到2311(4)20,322(4)20,273(4)20,m m m ⨯+⨯+-<⎧⎪⨯+⨯+-<⎨⎪+⨯+->⎩所以59373m m m ⎧⎪<-⎪<-⎨⎪⎪>-⎩故满足要求的m 的取值范围为:3793m -<<-. 故选:C. 【点睛】本题考查函数的周期性的应用,根据函数的极值点求参数的范围,二次函数根的分布和保号性,属于中档题.二、填空题13.在平面直角坐标系中,O 为坐标原点,(1,1)A -,(0,3)B ,(3,0)C ,3BD DC =u u u r u u u r,则OA OD ⋅=u u u r u u u r________.【答案】32-【解析】将3BD DC =u u u r u u u r 转化为3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,从而得到OD uuu r的坐标,然后根据向量数量积的坐标运算,得到答案. 【详解】因为3BD DC =u u u r u u u r,所以3()OD OB OC OD -=-u u u r u u u r u u u r u u u r ,所以()134OD OC OB =+u u u r u u u r u u u r 93,44⎛⎫= ⎪⎝⎭, ()1,1OA =-u u u r所以9344OA OD ⋅=-+u u u r u u u r 32=-.故答案为:32-.【点睛】本题考查向量线性运算的坐标表示,数量积的坐标表示,属于简单题.14.已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,则11y z x +=+的最小值为________.【答案】13【解析】根据约束条件,画出可行域,将目标函数看成点(,)x y 与点(1,1)--两点连线的斜率,从而得到斜率的最小值,得到答案. 【详解】因为已知x ,y 满足不等式组0,010240x y x y x y ≥≥⎧⎪-+≥⎨⎪+-≤⎩,画出可行域,如图所示,11y x ++表示点(,)x y 与点(1,1)--两点连线的斜率,所以可得当直线过点A 时,z 最小,由0240y x y =⎧⎨+-=⎩得2,0,x y =⎧⎨=⎩所以z 的最小值为011213+=+. 故答案为:13. 【点睛】本题考查根据线性规划求分式型目标函数的最值,属于简单题.15.如图,底面ABCD 为正方形,四边形DBEF 为直角梯形,DB EF ∥,BE ⊥平面ABCD ,2AB BE ==,2BD EF =,则异面直线DF 与AE 所成的角为________.【答案】6π 【解析】设正方形ABCD 的中心为O ,可得OE DF ∥,得到直线DF 与AE 所成角为AEO ∠(或其补角),根据余弦定理,可得cos AEO ∠的值,从而得到答案. 【详解】 如图,设正方形ABCD 的中心为O ,连接AO ,EO , 则12OD BD =因为DB EF ∥,2BD EF = 所以EF OD P ,EF OD = 所以DFEO 为平行四边形, 所以OE DF ∥,所以直线DF 与AE 所成角等于OE 与AE 所成的角,即AEO ∠(或其补角), 因为2,AE =2,OA =6OE =在三角形AEO 中,根据余弦定理,可知2223cos 2EO EA AO AEO EO EA +-∠==⋅, 所以6AEO π∠=.故答案为:6π. 【点睛】本题考查求异面直线所成的角的大小,属于简单题. 16.已知函数()4cos sin 33f x x x πωω⎛⎫=⋅+- ⎪⎝⎭(0)>ω在区间,63ππ⎛⎫⎪⎝⎭上有最小值4f π⎛⎫⎪⎝⎭,无最大值,则ω=________. 【答案】73【解析】先对()f x 进行整理,得到()2sin 23f x x πω⎛⎫=+⎪⎝⎭,根据最小值4f π⎛⎫⎪⎝⎭,得到743k ω=+,然后根据()f x 在区间,63ππ⎛⎫⎪⎝⎭无最大值,得到周期的范围,从而得到ω的范围,确定出ω的值. 【详解】()4cos sin 33f x x x πωω⎛⎫=⋅+ ⎪⎝⎭134cos sin cos 322x x x ωωω⎛⎫=⋅+ ⎪ ⎪⎝⎭)22sin cos 32cos 1x x x ωωω=+-sin 232x x ωω=2sin 23x πω⎛⎫=+ ⎪⎝⎭,依题意,则322,432k ππωππ⨯+=+k Z ∈, 所以743k ω=+()k ∈Z . 因为()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 所以342πππω-≤,即6ω≤, 令0k =,得73ω=. 故答案为:73ω=. 【点睛】本题考查二倍角公式,辅助角公式化简,根据正弦型函数的最值和周期求参数的值,属于中档题.三、解答题17.已知递增的等比数列{}n a 的前n 项和为n S ,149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)求数列{}n n S ⋅的前n 项和n T .【答案】(1)12n n a -=;(2)1(1)(1)222n n n nT n ++=-⋅+-【解析】(1)根据等比数列23148a a a a ==,解出1a 和4a 的值,从而得到公比q ,得到{}n a 的通项公式;(2)根据(1)得到n S ,再利用错位相减法和分组求和的方法求出{}n n S ⋅的前n 项和n T . 【详解】(1)由题意,1423149,8,a a a a a a +=⎧⎨==⎩ 解得11,a =48a =或18,a =41a =; 而等比数列{}n a 递增,所以11,a =48a =,故公比4312a q a ==,所以12n n a -=. (2)由(1)得到12n S =++…1221n n -=-, 所以()*21n n S n ⋅=-2n n n =⋅-,23122232n T =⨯+⨯+⨯+…2(12n n +⋅-++…)n +,设23122232t =⨯+⨯+⨯+…2n n +⋅,2342122232t =⨯+⨯+⨯+…12n n ++⋅,两式相减可得,23222t -=+++ (1)22n n n ++-⋅()1212212n n n +-=-⋅-故1(1)22n t n +=-⋅+,所以1(1)(1)222n n n nT n ++=-⋅+-. 【点睛】本题考查等比数列通项基本量的计算,分组求和的方法,错位相减法求数列的前n 项的和,属于简单题.18.已知函数321()3f x x ax bx =-+(),a b ∈R 在区间(1,2)-上为单调递减函数. (1)求+a b 的最大值;(2)当2a b +=-时,方程2135()32b f x x +=+有三个实根,求b 的取值范围. 【答案】(1)32-;(2)123,5⎡⎤--⎢⎥⎣⎦【解析】(1)先求得()f x ',根据()f x 在区间(1,2)-上为减函数,得到(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立,从而得到关于a ,b 的约束条件,画出可行域,利用线性规划,得到+a b 的最大值;(2)根据2a b +=-,得到b 的范围,设2135()()32b h x f x x +=--,求导得到()h x ',令()0h x '=得到x b =或1x =,从而得到()h x 的极值点,根据()h x 有3个零点,得到b 的不等式组,解得b 的范围. 【详解】(1)2()2f x x ax b '=-+, 因为()f x 在区间(1,2)-上为减函数,所以(1)0(2)0f f ''-≤⎧⎨≤⎩在区间(1,2)-上恒成立即120,440,a b a b ++≤⎧⎨-+≤⎩,画出可行域如图所示:设z a b =+,所以b a z =-+,z 表示直线l ,b a z =-+在纵轴上的截距.当直线:l b a z =-+经过A 点时,z 最大, 由120,440,a b a b ++=⎧⎨-+=⎩所以12a =,2b =- 故z a b =+的最大值为13222-=-. (2)由2a b +=-得2a b =--代入120,440,a b a b ++≤⎧⎨-+≤⎩可得1235b -≤≤-, 令2135()()32b h x f x x +=--32111323b x x bx +=-+-, 故由2()(1)h x x b x b '=-++(1)()0x x b =--=,得x b =或1x =,所以得到()h x 和()h x '随x 的变化情况如下表:x (,)b -∞ b(,1)b 1(1,)+∞ ()h x ' +-+()h xZ极大值32111623b b -+- ]极小值12b -要使()h x 有三个零点,故需321110,62310,2b b b ⎧-+->⎪⎪⎨-⎪<⎪⎩ 即()2(1)220,1,b b b b ⎧---<⎪⎨<⎪⎩ 解得13b <, 而12135>-所以b 的取值范围是123,5⎡⎤--⎢⎥⎣⎦. 【点睛】本题考查利用导数研究函数的单调性、极值和零点,根据函数的单调性求参数的取值范围,根据函数零点个数求参数的取值范围,属于中档题.19.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =. (1)求角C 的大小; (2)若3PB =,357sin BAP ∠=ABC V 的面积. 【答案】(1)3C π=;(253【解析】根据正弦定理,将边化成角,然后整理化简,得到cos C 的值,从而得到C 的值;(2)根据条件得到APC △为等边三角形,从而得到23APB ∠=π,根据正弦定理,得到AB 的值,根据余弦定理,得到AP 的长,根据三角形面积公式,得到答案.【详解】(1)因为cos cos 2cos ca Bb A C+=在ABC V ,由正弦定理sin sin sin a b cA B C== 所以得2cos (sin cos sin cos )C A B B A +sin C =. 所以2cos sin()sin C A B C +=. 即2cos 1C = 所以1cos 2C =, 因为()0,C π∈,所以3C π=(2)由(1)知3C π=,而PA PC =APC △为等边三角形.由于APB ∠是APC △的外角, 所以23APB ∠=π. 在APB △中,由正弦定理得2sin sin3PB ABBAPπ=∠, 2357sin 3ABπ=,所以19AB =所以由余弦定理得,2222co 23s AB PA PB PA PB π=+-⋅, 即21993PA PA =++, 所以2PA =,故235BC =+=,2AC =, 所以11353sin 2522ABC S CA CB C =⋅⋅=⨯⨯=V . 【点睛】本题考查正弦定理的边角互化,正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.20.如图,在四棱锥1A ABCD ﹣中,底面ABCD 为直角梯形,90BAD ︒∠=,AB DC P ,2DC AB =24AD ==,12AA =且O 为BD 的中点,延长AO 交CD 于点E ,且1A 在底ABCD内的射影恰为OA 的中点H ,F 为BC 的中点,Q 为1A B 上任意一点.(1)证明:平面EFQ ⊥平面1A OE ;(2)求平面1A OE 与平面1A DC 所成锐角二面角的余弦值. 【答案】(1)证明见解析;(25【解析】(1)根据1A H ⊥平面ABCD ,得到1A H EF ⊥,由平面几何知识得到EF AE ⊥,从而得到EF ⊥平面1A OE ,所以所以平面EFQ ⊥平面1A OE ;(2)以O 为原点建立空间直角坐标系,得到平面1A DC 和平面1A OE 的法向量,利用向量的夹角公式,得到这两个面所成的锐角二面角的余弦值. 【详解】(1)由题意,E 为CD 的中点,因为1A H ⊥平面ABCD ,EE ⊂平面ABCD , 所以1A H EF ⊥,又因为DB EF ∥,AB AD =,OB OD =,所以AE 垂直平分BD , 所以DE BE =又因AB DE ∥,90BAD ︒∠= 所以ADEB 为正方形, 所以DE EC AB == 因为F 为BC 的中点, 所以EF BD P而DB AE ⊥,所以EF AE ⊥,又1A H AE H =I ,所以EF ⊥平面1A OE , 又EF ⊂平面EFQ ,所以平面EFQ⊥平面1A OE .(2)因为1A 在底面ABCD 内的射影恰为OA 的中点H , 所以112242OH OA BD ===. 因为AB AD ⊥,所以过点O 分别作AD ,AB 的平行线(如图), 并以它们分别为x ,y 轴,以过O 点且垂直于xOy 平面的直线为z 轴, 建立如图所示的空间直角坐标系,所以(1,1,0)A --,(1,1,0)B -,(1,3,0)C ,(1,1,0)D -,1116,22A ⎛-- ⎝⎭, 所以1316,,222A D ⎛=-- ⎝⎭u u u u r ,1376,,222A C ⎛=- ⎝⎭,设平面1A DC 的一个法向量为(,,)n x y z =r,则1100n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩r v u u v v ,所以316022376022x y z x y z ⎧-=⎪⎪⎨⎪+=⎪⎩令6z =6)n =r,由(1)知,BD ⊥平面1A OE ,所以OD ⊥平面1A OE ,所以(1,1,0)OD =-u u u r为平面1A OE 的一个法向量,则||5|cos ,|||||102n OD n OD n OD ⋅〈〉===⋅r u u u rr u u u r r u u ur . 故平面1A OE 与平面1A DC 5. 【点睛】本题考查线面垂直的判定和性质,面面垂直的判定,利用空间向量求二面角的余弦值,属于中档题. 21.已知函数1()1ln1mx f x x x-=-++(0)m >与满足()2()g x g x -=-()x R ∈的函数()g x 具有相同的对称中心.(1)求()f x 的解析式;(2)当(,]x a a ∈-,期中(0,1)a ∈,a 是常数时,函数()f x 是否存在最小值若存在,求出()f x 的最小值;若不存在,请说明理由; (3)若(21)(1)2f a f b -+-=,求22211a b a b+++的最小值. 【答案】(1)1()1ln 1x f x x x -=-++;(2)11ln 1a a a--++(3)94 【解析】(1)根据()g x 关于()0,1对称,从而得到()()2f x f x +-=,整理化简,得到m 的值;(2)判断出()f x 的单调性,得到当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,从而得到()f x 最小值;(3)由(21)(1)2f a f b -+-=得到a ,b 关系,然后将22b a =-代入到22211a b a b+++,利用基本不等式,得到其最小值.【详解】(1)因为()2()g x g x -=-,所以()()2g x g x -+=,所以()y g x =图象关于(0,1)对称, 所以11()()1ln 1ln 11mx mx f x f x x x x x-++-=-+++++- 22212ln 21m x x ⎛⎫-=+= ⎪-⎝⎭所以22211,1m x x-=-0m > 解得1m =, 所以1()1ln 1x f x x x-=-++. (2)()f x 的定义域为(1,1)-,1()1ln 1x f x x x -=-++21ln 11x x ⎛⎫=-+-+ ⎪+⎝⎭,当12x x <且12,(1,1)x x ∈-时,()f x 为减函数,所以当(0,1),a ∈(,]x a a ∈-时,()f x 单调递减,所以当x a =时,min 1()1ln1a f x a a-=-++. (3)由(21)(1)2f a f b -+-=, 得2110,1211,111,a b a b -+-=⎧⎪-<-<⎨⎪-<-<⎩解得01,a <<02,b <<22a b +=, 所以2222221211(1)a b a b ab b a a b a b++++++=++ 21(1)b a a b++=+()25321a a -=- 令53t a =-,则5,3t a -=(2,5)t ∈, ()()225392121016a t a t t -=--+- 916210t t =⎛⎫--+ ⎪⎝⎭94162(210)t t≥=-⋅- 当且仅当4t =时,等号成立, 即当13a =,43b =时,22211a b a b+++的最小值为94. 【点睛】本题考查根据函数的对称性求参数的值,根据函数的单调性求最值,基本不等式求和的最小值,属于中档题.22.已知函数1()ln 2f x mx x =--()m R ∈,函数()F x 的图象经过10,2⎛⎫ ⎪⎝⎭,其导函数()F x '的图象是斜率为a -,过定点(1,1)-的一条直线.(1)讨论1()ln 2f x mx x =--()m R ∈的单调性; (2)当0m =时,不等式()()F x f x ≤恒成立,求整数a 的最小值.【答案】(1)当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)2【解析】对()f x 求导,得到()f x ',按0m ≤和0m >进行分类讨论,利用导函数的正负,得到()f x 的单调性;(2)根据题意先得到()F x ',然后得到()F x 的解析式,设()()()g x F x f x =-,按0a ≤和0a >分别讨论,利用()g x '得到()g x 的单调性和最大值,然后研究其最大值恒小于等于0时,整数a 的最小值.【详解】(1)函数()f x 的定义域是(0,)+∞,1()mx f x x-'=, 当0m ≤时,()0f x '≤,所以()f x 在(0,)+∞上为减函数,当0m >时,令()0f x '=,则1x m =, 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数, 综上,当0m ≤时,()f x 在(0,)+∞上为减函数;当0m >时,()f x 在10,m ⎛⎫ ⎪⎝⎭上为减函数,在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数. (2)根据题意,()(1)1F x a x '=-++, 设21()(1)2F x ax a x c =-+-+,代入10,2⎛⎫ ⎪⎝⎭,可得12c =, 令()()()g x F x f x =-21ln (1)12x ax a x =-+-+, 所以1()(1)g x ax a x '=-+-2(1)1ax a x x-+-+=. 当0a ≤时,因为0x >,所以()0g x '>.所以()g x 在(0,)+∞上是单调递增函数,又因为21(1)ln11(1)112g a a =-⨯+-⨯+3202a =-+>, 所以关于x 的不等式()()F x f x ≤不能恒成立.当0a >时,2(1)1()ax a x g x x -+-+'=1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, 令()0g x '=,得1x a =. 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()g x 的最大值为211111ln (1)12g ax a a a a a ⎛⎫⎛⎫=-+-⨯+ ⎪ ⎪⎝⎭⎝⎭1ln 2a a =-. 令1()ln 2h a a a =-,因为1(1)0,2h =>1(2)ln 204h =-<, 又因为()h a 在(0,)a ∈+∞上是减函数.所以当2a ≥时,()0h a <.所以整数a 的最小值为2.【点睛】本题考查函数与方程的应用,利用导数研究函数的单调区间、极值和最值,根据导函数的解析式求原函数的解析式,利用导数研究不等式恒成立问题,涉及分类讨论的思想,题目比较综合,属于难题.。
2020-2021学年高三百校3月联考数学试卷答案

jU$&0槡$,%$"#cd$$!%#?7«9$F4¬6:!%!
#0!$槡!!!!a*c(#&"<&*$#&#<&*;#"&"#&* 槡$!,;! *0#
¦§®$F%¯,3&31&*$!,;#
槡 °±²w²³6z´µ²³6F¡£-$!,;$
$!,;! # !
$,;
?7&&3"#1&&*
! 槡$!,;!
FN:#!#,3
# !
:!):
槡!%&)!
*#!#")*$)*+!.)*$1#2*+#K$
"#
F:#1-2*
# !
#"
# 8
*9*
;<2*槡$$#?7
8*槡$*.)*
$ 4
#" # 8
*9*;<2*
$ #?7 槡%%
8* 槡$%%!
!"!"!"!#!"#$%&$'()
*!+),-
#!)!!""#*#!"!$+*#!$+! !!'!!!#,,$--*$,-"!,$-*$,-#,-*!,+-"$*+! $!'!!#$%&'()**+,-./0&$%*!&,' 2345671&*&$! +!.!!#(&&*&(&,-89(&:;89,<= '/!>2&*"!"#,3("!"##"?7,
浙江名校Z20联盟2020届第三次联考数学试卷及参考答案

浙江省名校新高考研究联盟(Z20联盟)2020届第三次联考 数学参考答案 第 1 页 共 5 页浙江省名校新高考研究联盟(Z20联盟)2020届第三次联考数学参考答案一、选择题: 1 2 3 4 5 6 7 8 9 10 D A A D C B B A C C二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11. 12 12.324;402x −− 13.2;4223+ 14.23;3π 15.20 16.1− 17.622;2− 三、解答题: 本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分14分) 【答案】(Ⅰ)T =π,3()34f π=−;(Ⅱ)13[,)44a ∈ 【解析】(Ⅰ)313()2sin cos()cos 2sin 23222f x x x x x π=+−=−, ……(4分) 则最小正周期T =π,……(6分) 3()34f π=−.(直接带入也可) ……(8分) (Ⅱ)3|()|sin(2)221226f x a x a a ππ++=⇒+=−或. ……(10分)35[0,]2[,]4663x x ππππ∈⇒+∈,考虑要有3个解,结合图像可知121,232,2a a ⎧≤<⎪⎪⎨⎪−>−⎪⎩ ……(12分)故13[,)44a ∈. ……(14分)浙江省名校新高考研究联盟(Z20联盟)2020届第三次联考 数学参考答案 第 2 页 共 5 页19.(本小题满分15分)【答案】(Ⅰ)证明略(Ⅱ)7【解析】(Ⅰ)设F 为DE 的中点,D 为AC 的中点,2BE EA =,则2AD AE ==,故,AF DE A F DE '⊥⊥. 34BP PC =,34BP AB PC AC ==,所以AP 是BAC ∠的角平分线,且,,A F P 三点共线. 由DE FP DE A FP DE A P DE A F ⊥⎧''⇒⊥⇒⊥⎨'⊥⎩面. ……(6分) (Ⅱ)法一:连结AA '.由DE A FP '⊥平面得ABC A FP '⊥平面平面,交线为AP .所以A '在面ABC 上的射影点H 在AP 上.A PH '∠为直线A P '与平面BCD 所成角. ……(9分)由余弦定理得7cos 8CAB ∠=,故1DE =,152AF A F '==,由23AA '=得5sin 5A AP '∠=,所以2155A H '=. ……(11分) 由(Ⅰ)得AP 为角平分线.由余弦定理得6157AP =,21535PH ==. ……(13分) tan 7A H A PH PH''∠==,所以直线A P '与平面BCD 所成角的正切值为7. ……(15分)法二:如图,以F 为原点,,FE FP 为,x y 轴建立空间直角坐标系.……(8分) 111531515515(0,0,0),(,0,0),(,0,0),(0,((224F E D A B C P −−, 设(0,,)A a b ',由15A F AF '==,23AA '= 222215,415(12,a b a b ⎧+=⎪⎪⎨⎪++=⎪⎩ ……(10分) 得315215A '. ……(12分) 平面BCD 法向量为(0,0,1)n = ……(13分)浙江省名校新高考研究联盟(Z20联盟)2020届第三次联考 数学参考答案 第 3 页 共 5 页 215||725sin 10230||||17PA n PA n θ'⋅==='⋅⋅,则tan 7θ=,所以直线A P '与平面BCD 所成角的正切值为7. ……(15分)20.(本小题满分15分)【答案】(Ⅰ)122221,22,nn n n a n ++⎧−⎪=⎨⎪−⎩为奇数,为偶数;(Ⅱ)存在,{1,3,4}n ∈ 【解析】(Ⅰ)232,3a a ==……(2分) 当n 为奇数时,12212112(1)n n n n n a a a a a −−−=+=+⇒+=+,则1221n n a +=−.……(4分) 当n 为偶数时,2221222222n n n n a a +−==⋅−=−. ……(6分) 综上所述122221,22,nn n n a n ++⎧−⎪=⎨⎪−⎩为奇数,为偶数.……(7分) (Ⅱ)当21n k =−时,21k n a =−,则12121212122k k k A k +=−+−++−=−−.……(9分) 当2n k =时,122k n a +=−,则2312222222224k k k B k ++=−+−++−=−−.……(11分) ①1211223236332222k k k k k k k k S A B k k a a ++++⋅−−===−−−,则1k =时,133222k k +=−舍去。
2020届高三百校大联考数学(理)答案

由正弦定理得,ssiinnCBccoossBC=槡33tanC,∴tanB=槡3, ∵0<B<π,∴B=π3; (5分) (2)∵∠D=2∠B, ∴由(1)知,∠D=23π,在△ACD中,由余弦定理得,
axex,则曲线 f(x)=axex在点(0,f(0))处的切线的
斜率为 k=f′(0)=a,又切点为(0,0,),∴切线方
{y=ax
程为 y=ax,联立
得,x2 -(2+a)x+
y=x2 -2x+4
AC2 =12 +22 -2×1×2cos23π=7,
∴AC=槡7, (7分) 又 BC=槡7,B=π3,
4=0,∴Δ=(2+a)2 -4×4=0,解得,a=2或 a=
-6.)
14.1536(解析:∵数列{log2Sn}是公差为 2的等差
+11=
3+9×214=66,故选 B.)
{ 10.D(解析:由 y=abx
得,P(a2,ab),又 cc
F1(-c,0),
x2+y2=a2
ab 则 tan∠PF1F2 =kPF1 =c+ca2 =c2a+ba2 =13,化简得,
c
c4-7c2a2+10a4=0,即 e4 -7e2 +10=0,解得 e2 =5或
(7分) 令 h(x)=ex -1-x,
xx
则 h′(x)=ex(xx2-1)+x12 -1=ex(x-x21)+1-1,
∵当 x≥1时,ex≥x+1>0,
∴当
x≥
1
时,h′(x)
=
ex(x-1)+1 x2
-1≥
(x+1)(xx2-1)+1-1=0, (10分)
∵B(4,0),∴kMB +kNB =x1y-14+x2y-24
=k(x1 -1)+k(x2 -1)
浙江省2020届高三数学9月第一次联考试题(含解析)

浙江省2020届高三数学9月第一次联考试题(含解析)注意事项:1.本试题卷共8页,满分150分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号等填写在答题卡的相应位置。
3.全部答案在答题卡上完成,答在本试题卷上无效。
4.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案标号。
5.考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项目符合题目要求的。
1.记全集U =R ,集合{}240A x x =-≥,集合{}22xB x =≥,则()U A B =I ð()A. [)2+∞,B. ØC. [)12, D. ()12, 【答案】C 【解析】 【分析】先解一元二次不等式和指数不等式,再求补集与交集.【详解】由240x -≥得2x -≤或2x ≥,由22x ≥得1x ≥,则()[)221U A B =-=+∞,,,ð,所以()[)12U A B =I ,ð,故选C . 【点睛】本题考查集合的运算、解一元二次不等式和指数不等式,其一容易把交集看作并集,概念符号易混淆;其二求补集时要注意细节.2.已知复数2-iz 1i=+(i 为虚数单位),则复数z 的模长等于()A.2 B.2【答案】A【解析】 【分析】先化简复数z,利用模长公式即可求解. 【详解】化简易得13i z 2-=,所以10z 2=,故选A . 【点睛】本题考查复数的基本运算和概念,了解复数的基本概念、运算和共轭复数的概念、模长是解答本题的关键.3.若实数x y ,满足约束条件2032402340x y x y x y ++≥⎧⎪--≤⎨⎪-+≥⎩,,,则2z x y =+的最大值为()A. -2B. 12C. -4D. 8【答案】B 【解析】 【分析】作出可行域,平移目标函数即可求解.【详解】如图中阴影部分所示(含边界),显然当目标函数2z x y =+经过点()44,时有最大值12,故选B .【点睛】本题考查线性规划,准确作出可行域是解答本题的关键.4.在同一直角坐标系中,函数2y ax bx =+,x by a-=(0a >且1a ≠)的图象可能是()A. B. C. D.【答案】D 【解析】 【分析】本题考查函数的图象,以指数函数的底数a 与1的大小分情况讨论,由指数函数图象与y 轴的交点即可得出b 的大小,从而能判断出二次函数图象的正误.【详解】对1a >和01a <<分类讨论,当1a >时,对应A,D:由A 选项中指数函数图象可知,002bb a>∴-<,A 选项中二次函数图象不符,D 选项符合;当01a <<时,对应B,C:由指数函数图象可知,00,02bb a a<∴->>,则B ,C 选项二次函数图象不符,均不正确,故选D . 【点睛】本题易错在于函数图象的分类,从指数函数分类易正确得到函数图象.5.已知直线ml ,,平面αβ,满足l α⊥,m β⊂,则“l m P ”是“αβ⊥”的() A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据面面垂直的判定定理进行判断.【详解】当l m P 时,m α⊥,则可知αβ⊥;反之当αβ⊥时,l 与β中的m 不一定平行,故选A .【点睛】本题考查线面垂直的判定定理、面面垂直的判定定理.若平行直线中一条垂直于平面,则另一条也垂直于该平面.6.已知随机变量ξ满足下列分布列,当()01p ∈,且不断增大时,()A. ()E ξ增大,()D ξ增大B. ()E ξ减小,()D ξ减小C. ()E ξ增大,()D ξ先增大后减小D. ()E ξ增大,()D ξ先减小后增大 【答案】C 【解析】 【分析】由分布列可知,随机变量ξ服从二项分布,根据二项分布的期望、方差公式即可判断. 【详解】由题意可知,随机变量ξ满足二项分布,即~(2,)B p ξ,易得()()()221E p D p p ==-,ξξ,所以当01p <<且不断增大时,()E ξ增大,()D ξ先增大后减小.故选C .【点睛】本题考查二项分布的期望、方差.理解二项分布的期望、方差,会判定和计算二项分布的期望和方差是解答本题的关键.7.已知双曲线()22210y x b b-=>右焦点为F ,左顶点为A ,右支上存在点B 满足BF AF ⊥,记直线AB 与渐近线在第一象限内的交点为M ,且2AM MB =u u u u r u u u r,则双曲线的渐近线方程为()A. 2y x =±B. 12y x =±C. 4 3y x =±D. 34y x =?【答案】D 【解析】 【分析】根据题意依次求出,A B 点的坐标,求出直线AB 的方程,联立渐近线求出点M 的横坐标,利用向量关系即可得出关系式,进而可求出渐近线方程.【详解】易知()2B c b ,,()10A -,,得直线211b AB y xc =++:(),联立渐近线y bx =,得1M b x c b =+-,又2AM MB =u u u u r u u u r ,所以1211b b c c b c b ⎛⎫+=- ⎪+-+-⎝⎭,得12c b -=,又221c b -=,所以34b =,所以双曲线的渐近线方程为34y x =?,故选D . 【点睛】本题考查双曲线的渐近线.当双曲线的标准方程为22221(0,0)x y a b a b-=>>时,渐近线方程为by x a=±; 当双曲线的标准方程为22221(0,0)y x a b a b-=>>时,渐近线方程为a y x b =±.8.已知函数()()()()ln 1212if x x x m i =---=,,e 是自然对数的底数,存在m R ∈() A. 当1i =时,()f x 零点个数可能有3个 B. 当1i =时,()f x 零点个数可能有4个 C. 当2i =时,()f x 零点个数可能有3个 D. 当2i =时,()f x 零点个数可能有4个 【答案】C 【解析】 【分析】首先将()f x 的零点转化为两个图象的交点,利用以直代曲的思想可以将(ln 1)x -等价为()x e -,根据穿针引线画出草图,即可判断.【详解】将()()()()ln 1212if x x x m i =---=,看成两个函数(),yg x y m ==的交点,利用以直代曲,可以将()g x 等价看成()()()20iy x e x x =-⋅->,利用“穿针引线”易知12i =,时图象如图,所以当1i =时最多有两个交点,当2i =时最多有三个交点.故选C .【点睛】本题考查函数的零点,函数零点个数的3种判断方法(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要求函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.9.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,动点M 在线段1CA 上滑动(包含端点),记BM与11B A 所成角为α,BM 与平面ABC 所成线面角为β,二面角M BC A --为γ,则()A. ≥≤,βαβγB. ≤≤,βαβγC. ≤≥,βαβγD. ≥≥,βαβγ【答案】B 【解析】 【分析】根据题意找出这三个角,分别在直角三角形中表示出这三个角对应的三角函数值,将角的大小比较转化为线段长度的大小比较即可.【详解】过点M 作MN AC ⊥于N ,则MN ABC ⊥平面,过点M 作MH BC ⊥于H ,连接NH ,则NH BC ⊥,过点M 作MG AB ⊥于G ,连接NG ,则NG AB ⊥. 所以MBA =∠α,MBN =∠β,MHN =∠γ,sin ,sin ,MG MNBM BMαβ== tan ,tan ,MN MNBN HNβγ== 由MG MN ≥可知≤βα(M 位于1A 处等号成立),由BN NH ≥可知≤βγ(当B Ð为直角时,等号成立),故选B . 【点睛】本题主要考查线线角、线面角、二面角,本题也可以直接用线线角最小角定理(线面角是最小的线线角)和线面角最大角定理(二面角是最大的线面角)判断.10.已知函数()()1121222x x f x f x x ⎧--≤⎪=⎨-->⎪⎩,,,,若函数()()g x x f x a =⋅-(1)a ≥- 的零点个数为2,则()A. 2837a <<或1a =- B.2837a << C. 7382a <<或1a =-D. 7382a <<【答案】D 【解析】 【分析】 由1()(2)(2)2f x f x x =-->,可知当()2,22()x k k k Z ∈+∈时,()f x 的图象可由()22,2()x k k k Z ∈-∈的图象沿x 轴翻折,并向右平移2个单位长度,纵坐标变为原来的一半,即可作出函数()f x 的图象,将()g x 的零点问题转化为两个函数图象的焦点问题即可. 【详解】如图,可得()f x 的图象.令()0g x =,当0x =时,不符合题意;当0x ≠时,得()a f x x =,若0a >,则满足132178a a ⎧<⎪⎪⎨⎪>⎪⎩,,可得7382a <<;若10a -≤<,因左支已交于一点,则右支必然只能交于一点,当10a -<<时,因为(1)11af =-<,所以在()0,2上有两个交点,不合题意舍去,当1a =-时,则需154a <-,解得a Ø∈,故选D .【点睛】本题考查分段函数的图象和零点问题.对函数图象的正确绘制是解答本题的关键.二、选择题:本大题共7小題,多空题每小题6分,单空题每小题4分,共36分。
浙江省百校2019-2020学年高三数学联考试卷

浙江省百校2019-2020学年高三数学联考试卷一、单选题(共10题;共20分)1.已知集合,,则()A. B. C. D.2.已知i是虚数单位,若复数z满足,则()A. B. 2 C. D. 33.若x,y满足约束条件,则的最大值是()A. -5B. 1C. 2D. 44.已知平面,和直线,,且,则“ ”是“ 且”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若二项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 206.函数的大致图象为()A. B.C. D.7.已知双曲线,过其右焦点F作渐近线的垂线,垂足为B,交y轴于点C,交另一条渐近线于点A,并且满足点C位于A,B之间.已知O为原点,且,则()A. B. C. D.8.已知内接于半径为2的,内角A,B,C的角平分线分别与相交于D,E,F三点,若,则()A. 1B. 2C. 3D. 49.如图,在中,,,,将绕边AB翻转至,使面面ABC,D是BC的中点,设Q是线段PA上的动点,则当PC与DQ所成角取得最小值时,线段AQ的长度为()A. B. C. D.10.设无穷数列满足,,,若为周期数列,则pq的值为()A. B. 1 C. 2 D. 4二、双空题(共4题;共4分)11.若函数为奇函数,则实数a的值为________,且当时,的最大值为________.12.已知随机变量的分布列如下表,若,则a=________,________.0 1 2P a b13.已知某几何体的三视图(单位:cm)如图所示则该几何体的体积为________ ,表面积为________.14.已知、分别为椭圆的左、右焦点,点关于直线对称的点Q在椭圆上,则椭圆的离心率为________;若过且斜率为的直线与椭圆相交于AB两点,且,则k=________.三、填空题(共3题;共3分)15.某学校要安排2名高二的同学,2名高一的同学和名初三的同学去参加电视节目《变形记》,有五个乡村小镇A、B、C、D,E(每名同学选择一个小镇)由于某种原因高二的同学不去小镇A,高一的同学不去小镇B,初三的同学不去小镇D和E,则共有________种不同的安排方法(用数字作)16.已知向量满足,则的取值范围是________.17.在平面直角坐标系xOy中,已知圆.过原点的动直线l与圆M交于A,B两点若以线段AB为直径的圆与以M为圆心MO为半径的始终无公共点,则实数a的取值范围是________.四、解答题(共5题;共50分)18.已知函数(1)求的值;(2)求函数的单调递增区间.19.如图,在底面为菱形的四棱锥P-ABCD中,平面平面ABCD,为等腰直角三角形,,,点E,F分别为BC,PD的中点,直线PC与平面AEF交于点Q.(1)若平面平面,求证:.(2)求直线AQ与平面PCD所成角的正弦值.20.已知各项为正数的数列,其前n项和为,,且.(1)求数列的通项公式;(2)若,求数列的前n项和.21.如图,过抛物线上的一点作抛物线的切线,分别交x轴于点D交y轴于点B,点Q 在抛物线上,点E,F分别在线段AQ,BQ上,且满足,,线段QD与交于点P.(1)当点P在抛物线C上,且时,求直线的方程;(2)当时,求的值.22.已知函数,.(1)若,求证:当时,(2)若不等式恒成立,求实数a的取值范围.答案解析部分一、单选题1.【答案】C2.【答案】A3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】D9.【答案】B10.【答案】C二、双空题11.【答案】;12.【答案】;13.【答案】100;14.【答案】;1三、填空题15.【答案】3216.【答案】17.【答案】四、解答题18.【答案】(1)解:化简得,所以(2)解:由于,故,,解得函数的单调递增区间为,19.【答案】(1)证明:因为,平面PC,平面PCD,所以平面PCD.又因为平面PAB,平面平面,所以.(2)解:连接PE.因为,所以,则设,则.因为A,E,Q,F四点共面,所以,解得,则.取AD的中点O,连接OC,OP,由题意可得OC,OD,OP两两垂直如图,建立空间直角坐标系,设,则,,,.所以,.设平面PCD的一个法向量为,则,令,得,即,所以,所以.20.【答案】(1)解:由平方,得,所以,将以上两式相减,可得,则,所以,由于数列的各项均为正数,所以,又,所以(2)解:由题意可得,则,,将以上两式相减,可得,设,则,将以上两式相减,可得,由此可得,则21.【答案】(1)解:过抛物线上点A的切线斜率为,切线AB的方程为,则B,D的坐标分别为,,D是线段AB的中点.设,,,,显然P是的重心.由重心坐标公式得,所以,则,故或因为,所以,所以直线EF的方程为或(2)解:由解(1)知,AB的方程为,,,D是线段AB的中点令,,,因为QD为的中线,所以而,所以,即,所以P是的重心,.22.【答案】(1)证明:当时,,则欲证,即,故只需证明,两边取对数,即证,,该不等式显然成立,从而当时,(2)解:恒成立,即恒成立设,则,只需讨论函数,因为,所以单调递增,,欲取一点,使得,,因此,取因此在之间存在唯一零点,得,则,故在上单调递减,在上单调递增,所以,设,,则只需,即,此时,由此可得实数a的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届浙江百校联考
一、选择题:本大题共10小题,共40分
1.
已知集合{|A x y ==,{}|12B x x =-≤≤,则A B =( )
A .{}|12x x -<≤
B .{}|01x x ≤≤
C .{}{}|121x x ≤≤-
D .{}|02x x ≤≤
2. 已知i 是虚数单位,若复数z 满足()12i 34i z +=+,则||z =( )
A
B .2 C
.D .3
3. 若,x y 满足约束条件1020220x y x y +≥⎧⎪
-≤⎨⎪--≤⎩,则z x y =+的最大值是( )
A .5-
B .1
C .2
D .4
4. 已知平面α,β和直线1l ,2l ,且2αβ=l ,则“12∥l l ”是“1α∥l 且1β∥l ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
5.
若二项式2n
x ⎫⎪⎭的展开式中各项的系数和为243,则该展开式中含x 项的系数为( )
A .1
B .5
C .10
D .20
6. 函数()cos e x
f x x =的大致图象为( )
7. 已知双曲线()2
2
22
:
10,0x y C a b a b -=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且满足点C 位于,A B 之间.已知O 为原点,且53
a
OA =,则FB FC =( ) A .
4
5
B .
23
C .
34 D .13
8. 已知ABC △内接于半径为2的O ,内角,,A B C 的角平分线分别与O 相交于,,D E F 三点,若
()cos cos cos sin sin sin 222A B C
AD BE CF A B C λ⋅+⋅+⋅=++,则λ=( )
A .1
B .2
C .3
D .4
D
B A
9. 如图,在ABC △中,1AB =
,BC =4
B =
,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为AB ( )
A
B
C
D
10. 设无穷数列{}n a 满足()10=>a p p ,()20=>a q q ,()*
21122n n n a a n a ++⎛⎫=+∈ ⎪⎝⎭
N ,
若{}n a 为周期数列, 则pq 的值为( )
A .12
B. 1
C. 2
D. 4
二、填空题:本大题共7小题,共36分
11. 若函数()()()
2x
f x x x a =+-为奇函数,则实数a 的值为 ;且当4x ≥时,()f x 的最大值
为 .
12. 已知随机变量ξ的分布列如下表,若()2
E ξ=
,则a = , ()D ξ= . 13. 已知某几何体的三视图(单位:
cm )如图所示,则该几何体的体积为
3cm ,表面积为 2cm .
Q D
P
C
B
A
俯视图
侧视图正视图
14. 已知1F 、2F 分别为椭圆()22:10C a b a b
+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭
圆上,则椭圆的离心率为 ;若过1F 且斜率为()0k k >的直线与椭圆相交于,A B 两点,且113AF FB =,则k = .
15. 某学校要安排2名高二的同学,2名高一的同学和1名初三的同学去参加电视节目《变形记》,有五
个乡村小镇A ,B ,C ,D ,E (每名同学选择一个小镇),由于某种原因,高二的同学不去小镇A ,高一的同学不去小镇B ,初三的同学不去小镇D 和E ,则共有 种不同的安排方法(用数字作答).
16. 已知向量a ,b 满足232-=+=a b a b ,则-a b 的取值范围是 .
17. 在平面直角坐标系xOy 中,已知圆()()()2
2
:34R M x a y a a -++-=∈.过原点的动直线l 与圆M 交于
A ,
B 两点.若以线段AB 为直径的圆,与以M 为圆心,MO 为半径的圆始终无公共点,则实数a 的
取值范围是 . 三、解答题:本大题共5小题,共74分 18. (14分)已知函数(
)2
sin 2
x
f x x =-. (1)求()f π的值;(2)求函数()y f x =单调递增区间.
19. (15分)如图,在底面为菱形的四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等腰直角
三角形,2APD π∠=,23
BAD π
∠=,点E ,F 分别是BC ,PD 的中点,直线PC 与平面AEF 交于点
Q .(1)若平面PAB 平面PCD l =,求证:AB l ∥;
(2)求直线AQ 与平面PCD 所成角的正弦值.
Q
F
E
P
D
C
B
A
20. (15分)已知各项为正数的数列{}n a ,其前n 项和为n S
21n a =+,且11a =.
(1)求数列{}n a 的通项公式;
(2)若2
3n n n b a =,求数列{}n b 的前n 项和n T .
21. (15分)如图,过抛物线2:C y x =上的一点()1,1A 作抛物线的切线,分别交x 轴于点D ,交y 轴于点
B ,点Q 在抛物线上,点E ,F 分别在线段AQ ,BQ 上,且满足AE EQ λ=,BF FQ μ=,线段QD 与EF 交于点P .
(1)当点P 在抛物线C 上,且1
2
λμ==
时,求直线EF 的方程; (2)当1λμ+=时,求:PAB QAB S S △△的值.
22. (15分)已知函数()()2221e x a f x x a -=-+,R a ∈.
(1)若2a =时,求证:当1x ≥时,()()241f x x x '≥-; (2)若不等式()210f x x -+≥恒成立,求实数a 的取值范围.。