高三数学测试题Word版

合集下载

(word完整版)高三数学试题

(word完整版)高三数学试题

高三数学试题一.填空题:1.假设某10张奖券中有1张,奖品价值100元,有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值ξ不少于其数学期望E ξ的概率为 .2.已知对任意的()()[],00,,1,1x y ∈-∞+∞∈-U ,不等式22268210x xy y a x x+----≥恒成立,则实数a 的取值范围为 .3.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 。

4.已知()y f x =是定义在¡上的增函数, 且()y f x =的图像关于点(6,0)对称. 若实数x , y 满足不等式22(6)(836)0f x x f y y -+-+≤, 则22x y +的取值范围___________.5.已知一玻璃杯杯口直径6cm, 杯深8cm. 如图所示, 其轴截面截杯壁所得曲线是抛物线的一部分, 一个玻璃小球放入玻璃杯中, 若小球能够碰到杯底, 求小球半径的范围(不记玻璃杯的玻璃厚度).CPxO y二.选择题:6.已知O 是ABC ∆外接圆的圆心, A ,B ,C 为ABC ∆的内角, 若cos cos 2sin sin B C AB AC m AO C B ⋅+⋅=⋅u u u r u u u r u u u r , 则m 的值为 答 [ ] A. 1 B. sin A C. cos A D. tan A7.已知点列()(),n n n A a b n N *∈均为函数()0,1x y a a a =>≠的图像上,点列(),0n B n 满足1n n n n A B A B +=,若数列{}n b 中任意连续三项能构成三角形的三边,则a 的取值范围为( )(A )5151⎛⎫-++∞ ⎪ ⎪⎝⎭⎝⎭U (B )5151⎫⎛-+⎪ ⎪ ⎝⎭⎝⎭U (C ) 31310,,22⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭U (D )3131,11,22⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭U 8.过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于点A 、B ,AOB ∆被圆分成四部分(如图),若这四部分图形面积满足|||,S S S S I ∏+=+¥则直线AB 有( )(A ) 0条 (B ) 1条 (C ) 2条 (D ) 3条三.解答题:9.已知直线2y x =是双曲线2222:1x y C a b-=的一条渐近线,点()()()1,0,,0A M m n n ≠都在双曲线C 上,直线AM 与y 轴相交于点P ,设坐标原点为O.(1)设点M 关于y 轴相交的对称点为N ,直线AN 与y 轴相交于点Q ,问:在x 轴上是否存在定点T ,使得?TP TQ ⊥若存在,求出点T 的坐标;若不存在,请说明理由.(2)若过点()0,2D 的直线l 与双曲线C 交于R,S 两点,且OR OS RS +=u u u r u u u r u u u r,试求直线l 的方程.xy O BCA10.已知双曲线22:12x C y -=, 设过点(A -的直线l 的方向向量为(1,)e k =r .(1) 当直线l 与双曲线C 的一条渐近线m 平行时, 求直线l 的方程及l 与m 的距离;(2) 证明: 当k 时, 在双曲线C 的右支上不存在点Q , 使之到直线l .11.已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数k ,对定义域中的任意x ,等式()f kx =2k+()f x 恒成立. (1)判断一次函数()f x =ax +b (a ≠0)是否属于集合M ;(2)证明函数()f x =2log x 属于集合M ,并找出一个常数k ;(3)已知函数()f x =log a x ( a >1)与y =x 的图象有公共点,证明()f x =log a x ∈M .12.设函数)(x f 和)(x g 都是定义在集合M 上的函数,对于任意的x M ∈,都有))(())((x f g x g f =成立,称函数)(x f 与)(x g 在M 上互为“H 函数”.(1)函数x x f 2)(=与x x g sin )(=在M 上互为“H 函数”,求集合M ;(2)若函数xa x f =)((0a a >≠且1)与1)(+=x x g 在集合M 上互为 “H 函数”,求证:1>a ;(3)函数2)(+=x x f 与)(x g 在集合1|{->=x x M 且32-≠k x ,*N k ∈}上互为“H函数”,当10<≤x 时,)1(log )(2+=x x g ,且)(x g 在)1,1(-上是偶函数,求函数)(x g 在集合M 上的解析式.13.设数列{}n a 的前n 项和为n S ,且()()21.n n n S a S n N*-=∈(1)求出123,,S S S 的值,并求出n S 及数列{}n a 的通项公式; (2)设()()111n n n n b a a n N +*+=-⋅∈,求数列{}n b 的前n 项和n T ;(3)设()()1n n c n a n N =+⋅∈*,在数列{}n c 中取出()3m m N m *∈≥且项,按照原来的 顺序排列成一列,构成等比数列{}n d ,若对任意的数列{}n d ,均有12n d d d M +++≤L ,试求M 的最小值.14.已知数列}{n a 的各项均为正数,其前n 项的和为n S ,满足nn a p S p -=-2)1((*N n ∈),其中p 为正常数,且1≠p .(1)求数列}{n a 的通项公式;(2)是否存在正整数M ,使得当M n >时,7823741a a a a a n >⋅⋅⋅⋅-Λ恒成立?若存在,求出使结论成立的p 的取值范围和相应的M 的最小值;若不存在,请说明理由;(3)若21=p ,设数列}{n b 对任意*N n ∈,都有2123121a b a b a b a b n n n n ---++++Λ 12121--=+n a b n n ,问数列}{n b 是不是等差数列?若是,请求出其通项公式;若不是,请说明理由.15.已知抛物线)0(2:2>=p px y C 上横坐标为4的点到焦点的距离等于5。

2022-2023学年福建省福州市仓山区高三上学期12月质检数学试题(word版)

2022-2023学年福建省福州市仓山区高三上学期12月质检数学试题(word版)

福州市仓山区2022-2023学年高三上学期12月质检数学考试时间:120分钟 总分:150分一、单选题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上.)1.集合{}2,0,1,2M =-,{}211N x x =->,则M N ⋂=( ) A.{}2,1,2-B.{}0,2C.{}2,2-D.[]2,2-2.已知复数z 满足()11i iz +=,则在复平面内复数z 对应的点在( ) A.第四象限B.第三象限C.第二象限D.第一象限3.已知向量()1,2a =,(),2b m m =-,若a b ∥,则m =( ) A.23B.1C.43D.2-4.已知0x >,0y >,且2x y +=,则2221x y x y+++的最小值为( )A.5B.72C.72+ D.55.已知8cos 5αα+=,则sin 26πα⎛⎫-= ⎪⎝⎭( )A.725-B.725C.45D.756.已函数()f x 及其导函数()f x '定义域均为R ,且()()0f x f x '->,()01f =,则关于x 的不等式()e x f x >的解集为( )A.{}0x x >B.{}0x x <C.{}1x x <D.{}1x x >7.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点P ,Q 作直线,则该直线被球面截在球内的线段的长为( )A.21 D.18.已知双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,O 为坐标原点,点M 为双曲线右支上一点,若122F F OM =,213MF F π∠≥,则双曲线C 的离心率的取值范围为( )A.(1⎤+⎦B.1⎤⎦C.D.)1,+∞二、多选题(本大题共4小题,每小题5分,共20分。

高三数学寒假作业:(一)(Word版含答案)

高三数学寒假作业:(一)(Word版含答案)

高三数学寒假作业(一)一、选择题,每小题只有一项是正确的。

1.满足条件{1,2}{1,2,3}M =的所有集合M 的个数是 A.1B. 2C. 3D. 42.下列说法正确的是 ( ) A. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 C. “p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件 D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题3.设函数()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是( ) A. ()f x 是偶函数B. ()f x 最小正周期为πC. ()f x 图象关于点(,0)6π-对称 D. ()f x 在区间7[,]312ππ上是增函数 4.实数5lg 24lg 81log 22723log 322++∙- 的值为( )5.函数()sin ,[,],22f x x x x =∈-12()()f x f x >若,则下列不等式一定成立的是( ) A .021>+x x B .2221x x > C .21x x > D .2221x x <6.已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a a ( )A. 55B. 35C. 50D. 467.在等差数列{}n a 中,12012a =-,其前n 项和为12102012,2,n S a a S -=若则的值等于 A.2010-B.2011-C.2012-D.2013-8.在△ ABC 中,角 A 、B 、C 的对边分别为 a 、b 、c ,如果 cos(2)2sin sin 0B C A B ++<,那么三边长a 、b 、c 之间满足的关系是( )A .22ab c >B .222a b c +<C .22bc a >D .222b c a +<9.若点(4,2)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( )A .2100x y +-=B .20x y -=C .280x y +-=D .260x y --=二、填空题10.已知复数(2)x yi -+ (,x y R ∈),则yx的最大值是 . 11.一根绳子长为6米,绳上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为 .12.曲线32y x x =-在点(1,-1)处的切线方程是______________. 13.已知函数11()||||f x x x x x=+--,关于x 的方程2()()0f x a f x b ++=(,a b R ∈)恰有6个不同实数解,则a 的取值范围是 .三、计算题14.(本小题满分14分)设对于任意的实数,x y ,函数()f x ,()g x 满足1(1)()3f x f x +=,且(0)3f = ()()2g x y g x y +=+,(5)13g =,*n N ∈(Ⅰ)求数列{()}f n 和{()}g n 的通项公式; (Ⅱ)设[()]2n n c g f n =,求数列{}n c 的前n 项和n S (Ⅲ)已知123lim03n n n -→∞+=,设()3n F n S n =-,是否存在整数m 和M 。

山东省济南市2022届高三上学期期末考试数学(理)试题 Word版含答案

山东省济南市2022届高三上学期期末考试数学(理)试题 Word版含答案

高三教学质量调研考试数学(理科)本试卷分第I 卷和第II 卷两部分,共5页。

满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 留意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案标号,答案写在试卷上无效.3.第II 卷必需用0.5毫米黑色签字笔作答,答案必需写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:假如大事A ,B 互斥,那么()()()P A B P A P B +=+;假如大事A ,B 独立,那么()()()P AB P A P B =.1.若()12z i i +=+(i 是虚数单位),则z = A.322i+ B.322i -C. 322i -- D. 322i -+ 2.设集合{}{}1,0,1,2A x x x R B =+<3,∈=,则A B ⋂= A. {}02x x << B. {}42x x -<< C. {},1,2xD. {}0,13.在ABC ∆中,“60A ∠=”是“3sin 2A =”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只要将函数sin 2y x =的图象 A.向左平移3π个单位 B. 向右平移3π个单位 C.向左平移6π个单位D. 向右平移6π个单位5.一个几何体的三视图如图,则该几何体的体积为A.6πB.3π C.2πD. π6.已知,x y 满足约束条件40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则32z x y =+的最大值为A.6B.8C.10D.127.过双曲线()222210,0x y a b a b-=>>的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P.若M 为线段FP 的中点,则双曲线的离心率为 A.2B.3C.2D.58.已知向量 的夹角为60,且2,=1a b a xb =-,当取得最小值时,实数x 的值为 A.2B. 2-C.1D. 1-9.设等差数列{}n a 的前n 项和为n S ,且满足201620170,0S S ><,对任意正整数n ,都有n k a a ≥,则k 的值为 A.1006B.1007C.1008D.100910.已知R 上的奇函数()f x 满足()2f x '>-,则不等式()()2132ln f x xx -<-+()312x -的解集是A. 10,e ⎛⎫ ⎪⎝⎭B. ()0,1C. ()1,+∞D. (),e +∞第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.某高校为了了解教科研工作开展状况与老师年龄之间的关系,将该校为[)[)35,40,40,45,不小于35岁的80名老师按年龄分组,分组区间[)[)[)45,5050555560,,,,,由此得到频率分布直方图如图,则这80名老师中年龄小于45岁的老师有________人.12. 执行右图的程序框图,则输出的S=_________.13. 二项式636ax ⎛⎫+ ⎪ ⎪⎝⎭的开放式中5x 的系数为3,则20ax dx =⎰_________.14.已知M,N 是圆22:20A x y x +-=与圆22:240B x y x y ++-=的公共点,则BMN ∆的面积为___________.15.对于函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列5个结论:①任取[)12,0,x x ∈+∞,都有()()122f x f x -≤; ②函数()y f x =在区间[]4,5上单调递增;③()()()22f x kf x k k N +=+∈,对一切[)0,x ∈+∞恒成立; ④函数()()ln 1y f x x =--有3个零点;⑤若关于x 的方程()()f x m m =<0有且只有两个不同实根12,x x ,则123x x +=. 则其中全部正确结论的序号是_________.(请写出全部正确结论的序号)三、解答题:本大题共6小题,共75分. 16.(本小题满分12分) 已知向量()()3sin ,cos ,cos ,cos ,m x n x x x R ==∈,设()f x m n =(I )求函数()f x 的解析式及单调增区间;(II )在ABC ∆中,,,a b c 分别为ABC ∆内角A,B,C 的对边,且()1,2,1a b c f A =+==,求ABC ∆的面积.17. (本小题满分12分)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面相互垂直,其中AB//CD ,112AB BC CD BC AB ⊥===,,点M 在线段EC 上. (I )证明:平面BDM ⊥平面ADEF ;(II )若2EM MC =,求平面BDM 与平面ABF 所成锐二面角的大小.18. (本小题满分12分)某卫视的大型消遣节目现场,全部参演的节目都由甲、乙、丙三名专业老师投票打算是否通过进入下一轮,甲、乙、丙三名老师都有“通过”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必需且只能投一张票,每人投三类票中的任意一类票的概率均为13,且三人投票相互没有影响,若投票结果中至少有两张“通过”票,则该节目获得“通过”,否则该节目不能获得“通过”。

2023届湖北省七市(州)高三下学期3月联合统一调研测试数学试卷(word版)

2023届湖北省七市(州)高三下学期3月联合统一调研测试数学试卷(word版)

2023届湖北省七市(州)高三下学期3月联合统一调研测试数学试卷(word版)一、单选题(★) 1. 已知集合,,则的元素个数为()A.1B.2C.3D.4(★★) 2. 若,则()A.B.C.D.(★★★) 3. 一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式展开式的常数项为()A.B.60C.120D.240(★★) 4. 截角四面体是一种半正八面体,可由四面体经过适当的截角而得到.如图,将棱长为6的正四面体沿棱的三等分点作平行于底面的截面截角得到所有棱长均为2的截角四面体,则该截角四面体的体积为()A.B.C.D.(★★) 5. 已知,则的值为()A.B.C.D.(★★) 6. 已知,,直线与曲线相切,则的最小值是()A.16B.12C.8D.4(★★★★) 7. 已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、右两支于A,B两点,点C在x轴上,,平分,则双曲线的离心率为()A.B.C.D.(★★★★) 8. 已知函数,若成立,则实数a的取值范围为()A.B.C.D.二、多选题(★★) 9. 下列命题中正确的是()A.若样本数据,,,的样本方差为3,则数据,,,的方差为7 B.经验回归方程为时,变量x和y负相关C.对于随机事件A与B,,,若,则事件A与B相互独立D.若,则取最大值时(★★★) 10. 已知函数的部分图象如图所示,,则()A.函数在上单调递减B.函数在上的值域为C.D.曲线在处的切线斜率为(★★★) 11. 如图,在棱长为4的正方体中,E,F,G分别为棱,,的中点,点P为线段上的动点,则()A.两条异面直线和所成的角为B.存在点P,使得平面C.对任意点P,平面平面D.点到直线的距离为4(★★★) 12. 已知直线交轴于点P,圆,过点P作圆M的两条切线,切点分别为A,B,直线与交于点C,则()A.若直线l与圆M相切,则B.当时,四边形的面积为C.直线经过一定点D.已知点,则为定值三、填空题(★) 13. 已知,,则在方向上的投影向量的坐标为 __________ .(★★★)14. 现有甲、乙两个口袋,其中甲口袋内装有三个1号球,两个2号球和一个3号球;乙口袋内装有两个1号球,一个2号球,一个3号球.第一次从甲口袋中任取1个球,将取出的球放入乙口袋中,第二次从乙口袋中任取一个球,则第二次取到2号球的概率为__________ .(★★★) 15. 函数,若关于x的不等式的解集为,则实数a的取值范围为 __________ .(★★★) 16. 已知为抛物线上一点,过点的直线与抛物线C交于A,B两点,且直线与的倾斜角互补,则 __________ .四、解答题(★★★) 17. 记的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)设,若点M是边上一点,,且,求的面积.(★★★) 18. 设数列的前n项和为.已知,,.(1)求证:数列是等差数列;(2)设数列的前n项和为,且,令,求数列的前n项和.(★★★) 19. 某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布,其中为样本平均数的估计值,,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试成绩为Y,求Y的分布列及均值.附:若随机变量X服从正态分布,则:,,.(★★★) 20. 如图,在斜三棱柱中,底面是边长为2的正三角形,侧面为菱形,已知,.(1)当时,求三棱柱的体积;(2)设点P为侧棱上一动点,当时,求直线与平面所成角的正弦值的取值范围.(★★★★) 21. 已知椭圆的右顶点为A,左焦点为F,过点F作斜率不为零的直线l 交椭圆于两点,连接,分别交直线于两点,过点F且垂直于的直线交直线于点R.(1)求证:点R为线段的中点;(2)记,,的面积分别为,,,试探究:是否存在实数使得若存在,请求出实数的值;若不存在,请说明理由.(★★★★★) 22. 已知函数.(1)当时,求函数的单调区间;(2)若有3个零点,,,其中.(ⅰ)求实数a的取值范围;(ⅱ)求证:.。

2022-2023学年河南省高三下学期阶段性测试(四)文科数学试题 Word版含答案

2022-2023学年河南省高三下学期阶段性测试(四)文科数学试题 Word版含答案

2022—2023学年高中毕业班阶段性测试(四)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0A x x =≥,{}1B x x =≠,则A B ⋂=( ) A .{}0x x ≥B .{}1x x >C .{}011x x x ≤<>或D .{}01x x ≤<2.若()12i 112i z +=+,则z =( ) A .34i +B .34i -C .43i +D .43i -3.已知函数()f x 在R 上的导函数为()f x ',则“()00f x '=”是“0x 是()f x 的极值点”的( ) A .充分必要条件 B .既不充分也不必要条件 C .充分不必要条件D .必要不充分条件4.已知向量a ,b 的夹角为56π,且3a =,1b =,则2a b +=( )A .1B C .2D5.已知函数()f x 是奇函数,且当0x ≥时,()f x x =,则()4f -=( )A .4-B .2-C .2D .46.若1cos 2cos sin sin 2cos θθθθθ--=,则tan 4πθ⎛⎫+= ⎪⎝⎭( )A .3B .2C D .17.已知A 为抛物线C :24y x =上在第一象限内的一个动点,()1,0M -,O 为坐标原点,F 为C 的焦点,若tan 3AMO ∠=,则直线AF 斜率的绝对值为( )A .2B .C .13D .438.若棱长均相等的正三棱柱的体积为O 的表面上,则球O 的表面积为( ) A .283π B .1129π C .6πD .1123π 9.下表为某外来生物物种入侵某河流生态后的前3个月繁殖数量y (单位:百只)的数据,通过相关理论进行分析,知可用回归模型()1aty ea +=∈R 对y 与t 的关系进行拟合,则根据该回归模型,预测第6个月该物种的繁殖数量为( )第t 个月 1 2 3繁殖数量y1.4e2.2e2.4eA .3e 百只 B . 3.5e百只 C .4e 百只D . 4.5e百只10.函数()31123f x x x=+-的零点个数为( ) A .1B .2C .3D .411.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若2A B =,则3a cb-的取值范围为( ) A .(]3,4B .712,35⎛⎤⎥⎝⎦ C .133,4⎛⎤⎥⎝⎦D .(]2,512.已知双曲线()222210,0x y a b a b -=>>的左顶点为A ,点0,2b B ⎛⎫⎪⎝⎭,直线AB 与双曲线的两条渐近线分别交于P ,Q 两点,若线段PQ 的垂直平分线经过双曲线的右顶点,则双曲线的离心率为( ) A .2B .3C .52D .233二、填空题:本题共4小题,每小题5分,共20分.13.在区间[]2,3-上随机取一个数x ,则1x >的概率为______.14.已知实数x ,y 满足约束条件10,10,240,x y x x y -+≤⎧⎪+≥⎨⎪-+≥⎩则3z x y =+的最大值为______.15.已知函数()()cos ,0,2f x A x A πωϕωϕ⎛⎫=+>≤⎪⎝⎭的部分图象如图所示,将()f x 的图象向右平移4T(T 为()f x 的最小正周期)个单位长度得到()g x 的图象,则()0g =______.16.已知圆锥内有一个内接圆柱,圆柱的底面在圆锥的底面内,当圆柱与圆锥体积之比最大时,圆柱与圆锥的底面半径之比为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{}n a 的前n 项和252n n nS -=.(Ⅰ)求{}n a 的通项公式; (Ⅱ)设10,10,2,10,n n n a n b b n -≤⎧=⎨>⎩求数列{}n b 的前30项和.18.(12分) 某超市为改善某产品的销售状况并制订销售策略,统计了过去100天该产品的日销售收入(单位:万元)并分成六组制成如图所示的频率分布直方图.(Ⅰ)求a 的值并估计过去100天该产品的日销售收入的平均值x ;(同一区间数据以中点值作代表)(Ⅱ)该超市过去100天中有30天将该商品降价销售,在该商品降价的30天中有18天该产品的日销售收入不低于0.6万元,判断能否有97.5%的把握认为该商品的日销售收入不低于0.6万元与该日是否降价有关.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050 0.025 0.010 0k3.8415.0246.63519.(12分)如图,在四棱锥P -ABCD 中,PC BC ⊥,PA PB =,APC BPC ∠=∠. (Ⅰ)证明:PC AD ⊥;(Ⅱ)若AB CD ∥,PD AD ⊥,3PC =,且点C 到平面P AB 的距离为62,求AD 的长.20.(12分) 已知函数()32213f x x x ax =-+-,a ∈R . (Ⅰ)若曲线()y f x =在点()0,1-处的切线斜率为4-,求()f x 的单调区间;(Ⅱ)若存在唯一的()00,2x ∈,满足()()01f x f =-,求a 的取值范围. 21.(12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为23,且3⎫⎪⎪⎭为C 上一点. (Ⅰ)求C 的标准方程;(Ⅱ)点A ,B 分别为C 的左、右顶点,M ,N 为C 上异于A ,B 的两点,直线MN 不与坐标轴平行且不过坐标原点O ,点M 关于原点O 的对称点为M ',若直线AM '与直线BN 相交于点P ,直线OP 与直线MN 相交于点Q ,证明:点Q 位于定直线上.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2224,4824t x t t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθρθ+=. (Ⅰ)求曲线C 的普通方程;(Ⅱ)若P 为C 上一动点,求P 到l 的距离的取值范围. 23.[选修4-5:不等式选讲](10分) 已知函数()112222f x x x =++-. (Ⅰ)求不等式()3f x <的解集;(Ⅱ)设()f x 的最小值为M ,若正实数a ,b 满足221a b M a b +=++,证明:32a b +≥.2022—2023学年高中毕业班阶段性测试(四)文科数学·答案一、选择题:本题共12小题,每小题5分,共60分.1.答案 C命题意图 本题考查集合的交运算. 解析 {}011A B x x x ⋂=≤<>或. 2.答案 A命题意图 本题考查复数的四则运算. 解析 ()()()()112i 12i 112i 1520i34i 12i 12i 12i 5z +-+-====-++-,则34i z =+.3.答案 D命题意图 本题考查极值点的概念以及充分必要条件的判断.解析 由极值点的定义,若0x 为()f x 的极值点,则有()00f x '=,而由()00f x '=不一定推得0x 为()f x 的极值点,例如()3f x x =,故“()00f x '=”是“0x 是()f x 的极值点”的必要不充分条件. 4.答案 A命题意图 本题考查平面向量的运算. 解析 ()22222443431ab a ba ab b +=+=+⋅+=+⨯=. 5.答案 C命题意图 本题考查奇函数的概念.解析 因为()f x 是奇函数,所以()()44f f -=-,又()442f ==-,所以()42f -=. 6.答案 A命题意图 本题考查三角恒等变换.解析 由题意()2112sin 1tan 2sin cos θθθθ--=-,即1tan 2θ=,1tantan 142tan 3141tan tan 142πθπθπθ++⎛⎫+===⎪⎝⎭--. 7.答案B命题意图 本题考查抛物线的性质.解析设211,4y A y ⎛⎫ ⎪⎝⎭,1210tan 314AMy AMO k y -∠===+,解得1y 或1y =12A ⎛ ⎝或(2,A ,又()1,0F ,所以0112AF k ==--AF k ==AF k =. 8.答案 D命题意图 本题考查三棱柱的外接球.解析 设该正三棱柱棱长为x ,底面三角形的外接圆半径为r ,则21sin 602x x ︒⋅⋅=,∴4x =,则r =O 半径为R ,则22216284233x R r ⎛⎫=+=+=⎪⎝⎭,228112=4=4=33S R πππ⨯表. 9.答案 C命题意图 本题考查回归分析. 解析 由题意,1aty e+=两边取自然对数得ln 1y at =+,令ln u y =,则1u at =+.()1231ln ln ln 23u y y y =++⨯=,()123123t t t t =++⨯=,∵回归直线必过样本点的中心,∴221a =+,得12a =,∴12tu =+,则12t y e +=.当6t =时,4y e =.10.答案 B命题意图 本题考查函数零点问题.解析 易知()f x 的定义域为{}0x x ≠,()422211x f x x x x -'=-=,令()0f x '<,解得10x -<<或01x <<,∴()f x 在()1,0-和()0,1上单调递减,令()0f x '>,解得1x <-或1x >,∴()f x 在(),1-∞-和()1,+∞上单调递增.当1x =-时,()f x 取得极大值()10103f -=-<,易知()f x 在(),0-∞上没有零点;当1x =时,()f x 取得极小值()2103f =-<,且1820381f ⎛⎫=> ⎪⎝⎭,()7206f =>,可知()f x 在()0,+∞上有2个零点.综上所述,()f x 的零点个数为2. 11.答案 C命题意图 本题考查解三角形.解析 ∵2A B =,∴sin sin 22sin cos A B B B ==且0,3B π⎛⎫∈ ⎪⎝⎭,()3sin sin sin33sin 4sin C A B B B B =+==-,由正弦定理可得333sin sin 6sin cos 3sin 4sin sin sin a c A C B B B Bb B B---+==()226cos 41cos 34cos 6cos 1B B B B =+--=-++,令1cos ,12B t ⎛⎫=∈ ⎪⎝⎭,则23461a c t t b -=-++,由二次函数性质知2134613,4t t ⎛⎤-++∈ ⎥⎝⎦,∴3133,4a c b -⎛⎤∈ ⎥⎝⎦. 12.答案 B命题意图 本题考查双曲线的性质和离心率的求法. 解析 不妨设点P 在直线b y x a =上,由题可知(),0A a -,∴2AB b k a =,∴:22AB b bl y x a =+,由,22,b by x a b y x a⎧=+⎪⎪⎨⎪=⎪⎩得,,P P x a y b =⎧⎨=⎩∴(),P a b ,同理,33a b Q ⎛⎫- ⎪⎝⎭,∴PQ 的中点为2,33a b ⎛⎫ ⎪⎝⎭,PQ 的垂直平分线方程为2233b a a y x b ⎛⎫-=-- ⎪⎝⎭,将0,y x a=⎧⎨=⎩代入整理得222b a =,则e ==二、填空题:本题共4小题,每小题5分,共20分. 13.答案35命题意图 本题考查几何概型的计算.解析 在区间[]2,3-上随机取一个数x ,若1x >,则[)(]2,11,3x ∈--⋃,所以1x >的概率为()()12313325-++-=+.14.答案 9命题意图 本题考查线性规划.解析 根据不等式组作出可行域如图中阴影部分所示,当目标函数表示的直线经过点()2,3时,3z x y =+取得最大值9.15.答案 3命题意图 本题考查三角函数的图象和性质. 解析 由图可知2A =,22362T πππ=-=,∴T π=,22πωπ==.由()226k K πϕπ⨯+=∈Z ,及2πϕ≤,得3πϕ=-,∴()2cos 23f x x π⎛⎫=-⎪⎝⎭,∴()52cos 22cos 2436g x x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,∴()502cos36g π==- 16.答案23命题意图 本题考查导数的应用.解析 设圆锥的底面半径为R ,圆锥的轴截面为等腰三角形,底边长为2R ,设其底角为α,则圆锥的高为tan R α,圆锥的体积为3tan 3R πα.设圆锥内接圆柱的底面半径为r ,高为h ,则tan tan r R hR R αα-=,即()tan h R r α=-,则圆柱的体积为()()2223tan tan r h r R r Rr r ππαπα=-=-,()0,r R ∈.圆柱与圆锥体积之比为23233r r R R ⎛⎫- ⎪⎝⎭,设()01r t t R =<<,()23f t t t =-,则()()22323f t t t t t '=-=-.由()0f t '=,得23t =,当203t <<时,()0f t '>,当213t <<时,()0f t '<,所以当23t =时,()f t 取得最大值,即圆柱与圆锥体积之比最大,此时23r R =.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.命题意图 本题考查数列求通项和数列求和. 解析(Ⅰ)111522a S -===-, 当2n ≥时,有252n n n S -=,()()211512n n n S ----=,两式相减得()()()2215151322n a n n n n n n ⎡⎤=---+-=-≥⎣⎦,当1n =时,12a =-符合上式,故3n a n =-.(Ⅱ)设数列{}n b 的前n 项和为n T ,则()()()301210111220212230T b b b b b b b b b =++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅+. 由题意得1210121010b b b a a a S ++⋅⋅⋅+=++⋅⋅⋅+=,()11122012101022b b b b b b S ++⋅⋅⋅+=++⋅⋅⋅+=,()21223011122010102224b b b b b b S S ++⋅⋅⋅+=++⋅⋅⋅+=⨯=,∴()230107710501752T S ==-=. 18.命题意图 本题考查频率分布直方图和独立性检验.解析 (Ⅰ)依题意有()1.5 2.5 2.00.80.20.11a +++++⨯=,得 3.0a =.0.350.150.450.250.550.300.650.200.750.080.850.020.537x =⨯+⨯+⨯+⨯+⨯+⨯=.(Ⅱ)依题意作2×2列联表:()221001858121218.36730707030K ⨯⨯-⨯=≈⨯⨯⨯.因为18.367 5.024>,所以有97.5%的把握认为该商品的日销售收入不低于0.6万元与该日是否降价有关. 19.命题意图 本题考查线线垂直的证明,以及点到面距离的求法. 解析(Ⅰ)如图,连接AC ,∵PA PB =,APC PBC ∠=∠,PC PC =,∴PAC PBC ≌△△, ∴90PCA PCB ∠=∠=︒,即PC AC ⊥.∵PC BC ⊥,AC BC C ⋂=,PC ⊥平面ABCD , 又AD ⊂平面ABCD ,∴PC AD ⊥.(Ⅱ)取AB 的中点E ,连接PE ,CE .∵PA PB =,∴PE AB ⊥,由(Ⅰ)知AC BC =,∴CE AB ⊥, ∵PE CE E ⋂=,∴AB ⊥平面PCE ,又AB ⊂平面P AB ,∴平面PAB ⊥平面PCE .过C 作CH PE ⊥于H ,则CH ⊥平面P AB ,由条件知6CH =. 易知PC CE ⊥,设CE m =,则23PE m + 由1122PC CE PE CH ⋅=⋅2633m m =+,得3m =,∴3CE = ∵PD AD ⊥,AD PC ⊥,PC PD P ⋂=,∴AD ⊥平面PCD ,∴AD CD ⊥, 又∵AB CD ∥,∴AD AB ⊥,∴四边形AECD 为矩形,∴3AD CE ==20.命题意图 本题考查导数的几何意义,以及函数与方程的综合问题. 解析(Ⅰ)()222f x x x a '=-+,由题意知()04f a '==-.所以()()()2224212f x x x x x '=--=+-,则当1x <-或2x >时,()0f x '>,当12x -<<时,()0f x '<,所以()f x 的单调递增区间为(),1-∞-和()2,+∞,单调递减区间为()1,2-. (Ⅱ)由()()01f x f =-,得()()010f x f --=, 即()()()323200021113x x a x ⎡⎤⎡⎤-----+--⎡⎤⎣⎦⎣⎦⎣⎦()()()()()20000002111113x x x x x a x =+-+--+++ ()()200011253503x x x a =+-++=. 根据已知,可得方程20025350x x a -++=在区间()0,2内仅有一个实根,设函数()22535g x x x a =-++,其图象的对称轴为()50,24x =∈,所以只需()()()258350,00,20,a g g ∆=-+>⎧⎪>⎨⎪<⎩或0∆=,解得513a -<<-或58a =-,即a 的取值范围是55,138⎛⎫⎧⎫--⋃-⎨⎬ ⎪⎝⎭⎩⎭.21.命题意图 本题考查椭圆方程和定直线的证明. 解析 (Ⅰ)设椭圆C 的焦距为()20c c >,由题意得222222,371019,c a a ba b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得229,5,a b ⎧=⎪⎨=⎪⎩∴C 的标准方程为22195x y +=. (Ⅱ)由题可知()3,0A -,()3,0B ,设()11,M x y ,()22,N x y ,则()11,M x y '--,设:MN l x my n =+.联立22,1,95x my n x y =+⎧⎪⎨+=⎪⎩消去x 得()()2225910590m y mny n +++-=,∴1221059mn y y m -+=+,()21225959n y y m -=+,1122,3,3AM BN y k x y k x '⎧=⎪-⎪⎨⎪=⎪-⎩∴()11:33AM y l y x x '=+-,()22:33BN yl y x x =--, 又∵点P 为直线AM '和BN 的交点,∴112233,33,P P P P x y y y x y x y -⎧⋅=+⎪⎪⎨-⎪⋅=-⎪⎩故可得1212332P P x x x y y y ⎛⎫--=+⎪⎝⎭121233P my n my n y y y ⎛⎫+-+-=+ ⎪⎝⎭()121223P y y m n y y y ⎡⎤+=+-⎢⎥⎣⎦()()2102359P mn m n y n ⎡⎤-⎢⎥=+-⋅-⎢⎥⎣⎦, ∴33P P m x y n =+,故3:3OP m l x y n =+. 联立3:,3:,OP MN m l x y n l x my n ⎧=⎪+⎨⎪=+⎩消去y 得3Q x =-,因此,点Q 位于定直线3x =-上.22.命题意图 本题考查极坐标与参数方程.解析 (Ⅰ)()2222164t x t =+,()()22222444t y t -=+, ∴()()()()2222222222216441444t t t y x t t +-++===++, 又22282162244t y t t -==-+>-++, ∴曲线C 的普通方程为()22124y x y +=≠-. (Ⅱ)设P 到l 的距离为d .令cos ,sin ,x y ρθρθ=⎧⎨=⎩得直线l 的直角坐标方程为40x y +-=,设()cos ,2sin P αα,[)0,2απ∈且32πα≠,则d ==1tan 2ϕ=, ∴d的取值范围是22⎡⎢⎣⎦. 23.命题意图 本题考查不等式的证明. 解析 (Ⅰ)由题意知()14,,4111,,4414,.4x x f x x x x ⎧-<-⎪⎪⎪=-≤<⎨⎪⎪≥⎪⎩令()3f x =,得34x =-或34, 结合图象可知()3f x <的解集为3344x x ⎧⎫-<<⎨⎬⎩⎭. (Ⅱ)由题意可知2121a b a b +=++,∴4121121a b -+-=++, ∴41221a b +=++. 令2m a =+,1n b =+,则412m n +=,()()141141333535432222n m a b m n m n m n m n ⎛⎫⎛⎫+=+-=++-=++-≥+-= ⎪ ⎪⎝⎭⎝⎭, 当且仅当23m n ==,即1a =,12b =时等号成立.。

北京市海淀实验中学2022-2023学年高三上学期期末考试数学试卷(word版,含答案)

北京市海淀实验中学2022-2023学年高三上学期期末考试数学试卷(word版,含答案)
A.第一象限B.第二象限C.第三象限D.第四象限
3.下列函数在定义域中既是奇函数又是减函数的是()
A. B.
C. D.
4.某公司为了解用户对其产品 满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.
若甲地区和乙地区用户满意度评分的中位数分别为 方差分别为 ,则下面正确的是()
8.过点 的直线 与圆 相交于A, 两点,则 的最小值是()
A B. C. D.4
9.已知函数 , 为 图象的对称中心, 、 是该图象上相邻的最高点和最低点,且 ,则下列结论正确的是()
A.函数 的对称轴方程为
B.若函数 在区间 内有 个零点,则在此区间内 有且只有 个极小值点
C.函数 在区间 上单调递增
【解析】
【分析】
化简集合B,根据并集运算即可.
【详解】 或 ,

故选:D
【点睛】本题主要考查了集合并集的运算,属于容易题.
2.【答案】D
【解析】
【分析】由题意可得: ,据此确定复数所在的象限即可.
【详解】由题意可得: ,
则复数z对应的点为 ,位于第四象限.
本题选择D选项.
【点睛】本题主要考查复数的运算法则,各个象限内复数的特征等知识,意在考查学生的转化能力和计算求解能力.
15.如图,已知在四棱锥 中,底面 是菱形,且 底面 , 分别是棱 的中点,对于平面 截四棱锥 所得的截面多边形,有以下几个结论:
①截面的面积等于 ;
②截面是一个五边形且只与四棱锥 四条侧棱中的三条相交;
③截面与底面所成锐二面角为 ;
④截面在底面的投影面积为 .
其中,正确结论的序号是___________.

2023届海南省高三高考全真模拟卷(八)数学试卷(word版)

2023届海南省高三高考全真模拟卷(八)数学试卷(word版)

2023届海南省高三高考全真模拟卷(八)数学试卷(word版)一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★★) 2. 已知i是虚数单位,复数,则z的共轭复数为()A.B.C.D.(★★) 3. 已知向量,,,,,则()A.B.2C.4D.(★★★) 4. 古代最初的长度计量常常借助于人体的某一部分或某种动作来实现.《孔子家语》说:“布指知寸,布手知尺,舒肘知寻,斯不远之则也.”“布手知尺”是指中等身材人的大拇指和食指伸开之间的距离,相当于1尺,折合现代的长度约16厘米.古代一位中等身材的农民买到一个正四棱台形状的容器盛粮食,由于没有合适的测量工具,于是用自己的手按上述方式去测量,得到正四棱台的两底面边长分别为3尺和1尺,斜高(侧面梯形的高)为2尺,则按现代的方式计算,该容器的容积约为()(1升=1000立方厘米,)A.27升B.31升C.33升D.35升(★★) 5. 函数的部分图象如图所示,将函数的图象向左平移1个单位长度后得到函数的图象,则()A.B.C.D.1(★★★) 6. 我国实行个人所得税专项附加扣除制度,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等多项专项附加扣除.某单位老年、中年、青年员工分别有90人、270人、180人,现采用分层抽样的方法,从该单位上述员工中抽取6人调查专项附加扣除的情况,再从这6人中任选2人,则选取的2人中恰有一名是中年员工的概率为()A.B.C.D.(★★★★) 7. 已知,,,则()A.B.C.D.(★★★★) 8. 已知抛物线C:的焦点为F,直线m与抛物线C切于点P,交x轴于点A.直线n经过点P,与x轴交于点B,与C的另一个交点为Q,若,则下列说法错误的是()A.P A的中点在y轴上B.C.存在点P,使得D.的最小值为二、多选题(★★★) 9. 已知,则下列不等式成立的是()A.B.C.D.(★★★) 10. 已知双曲线C:的左、右焦点分别为,,设点P为C右支上一点,P点到直线的距离为d,过的直线l与双曲线C的右支有两个交点,则下列说法正确的是()A.的最小值为2B.C.直线l的斜率的取值范围是D.的内切圆圆心到y轴的距离为1(★★★)11. 已知数列满足,且,等差数列的前n项和为,且,,若恒成立,则实数λ的值可以为()A.-36B.-54C.-81D.-108(★★★) 12. 在直三棱柱中,,,,三棱锥的体积为,点M,N,P分别为AB,BC,的中点,则下列说法正确的是()A.B.直线与直线PN为异面直线C.平面ABP⊥平面D.三棱柱外接球的体积为三、填空题(★★) 13. 已知α是第二象限的角,,则 ________ .(★★★) 14. 的展开式中,项的系数为 __________ .(★★★) 15. 已知直线,直线过点且与直线相互垂直,圆,若直线与圆C交于M,N两点,则 _________ .(★★★) 16. 已知函数,过点作曲线的切线,则切线的条数为 _______________ .四、解答题(★★★) 17. 已知数列满足(n≥2,),.(1)求证:数列为等比数列,并求的通项公式;(2)求数列的前n项和.(★★★) 18. 在①;②这两个条件中任选一个,补充在下面问题中并解答.问题:已知△ABC中,点M在线段BC上,且,,,.(1)求的值;(2)求AM的值.注:如果选择多个条件分别解答,按第一个解答计分.(★★★) 19. 白玉蜗牛营养价值、药用价值以及美容价值都极高,目前既是“世界四大名菜之一”,也是降血脂药物和珍贵的高级化妆品原料.此外,白玉蜗牛的外壳还可以用来制作手工艺品和加工成动物高蛋白补钙饲料.某白玉蜗牛养殖户统计了养殖以来7个季度的销售情况,如下表所示,若y与x线性相关.(1)根据前7个季度的统计数据,求出y关于x的经验回归方程;(2)预测该养殖户在第9个季度的销售额;(3)若该养殖户每季度的利润W与x,y的关系为,试估计该养殖户在第几季度所获利润最大.附:经验回归方程中的系数,.(★★★) 20. 如图所示,在五面体EF-ABCD中,底面ABCD为正方形,.(1)求证:;(2)若,点G为线段ED的中点,求直线DF与平面BAG所成角的正弦值.(★★★) 21. 已知椭圆C:过点,.(1)求椭圆C的标准方程;(2)若斜率为的直线l与椭圆C交于A,B两点,且,,求直线l的方程.(★★★) 22. 已知.(1)求在上的最值;(2)若恒成立,求a的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学测试题
(2009年3月23日)
班别: 姓名: 学号: 成绩: 一、选择题
1、(2009揭阳)已知函数:c bx x x f ++=2
)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12
(2)4
f f ≤⎧⎨
-≤⎩为事件为A ,则事件A 发生的概率为 ( )
A .
14 B . 58 C . 12 D . 38
2、(2009吴川)已知α、β是两个不同平面,m 、n 是两条不同直线,则下列命题不正确...的是 ( )
A .//,,m αβα⊥则m β⊥
B .m ∥n ,m ⊥α,则n ⊥α
C .n ∥α,n ⊥β,则α⊥β D.m ∥β,m ⊥n ,则n ⊥β
3(2009广东五校)如图所示,在一个边长为1的正方形AOBC 内,曲线2
y x =和曲线
y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形
AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )
(A )
12 (B )1
3 (C )1
4 (D )16
4、(2009澄海)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;
③若m ∥α,n ∥α,则m ∥n ;④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是 ( )A .①和② B .②和③ C .③和④ D .①和④
5、(2009番禺)设,(0,1)a b ∈,则关于x 的方程2
20x ax b ++=在(,)-∞+∞上有两个零
点的概率为( )B A.
14 B. 13 C. 12 D. 2
3
6、(2009番禺)一个几何体的三视图如右图,其中主视图和左视图都是边长为1的正三角形,那么这个几何体的侧面积为 ( )
A . 12π
B .
C
D .4
π 7、(2009惠州)若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆2
2
16x y += 内的概率为 ( )
A .
736 B . 2
9
C .
1
6
D .
14
8、(2009潮州)设x 、y 、z 是空间不同的直线或平面,对下列四种情形:
① x 、y 、z 均为直线;② x 、y 是直线,z 是平面;③ z 是直线,x 、y 是平面;④ x 、
y 、z 均为平面。

其中使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题的是
( )A ③ ④ B ① ③ C ② ③
D ① ②
二、解答题: 9、(2009广东六校)在某次乒乓球比赛中,甲、乙、丙三名选手进行单循环赛(即每两个比赛一场),共比赛三场.若这三人在以往的相互比赛中,甲胜乙的概率为3
1
,甲胜丙的概率为
41,乙胜丙的概率为3
1
.(Ⅰ)求甲获第一、丙获第二、乙获第三的概率; (Ⅱ)若每场比赛胜者得1分,负者得0分,设在此次比赛中甲得分数为X ,求EX .
10、(2009广州)某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为30cm 、20cm 、10cm ,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次一次得到的环数这个随机变量x ,求x 的分布列及数学期望.
010
98
11、(2009广雅)已知四棱锥P ABCD -的三视图如下图所示,E 是侧棱PC 上的动点.
(1) 求四棱锥P ABCD -的体积;
(2) 是否不论点E 在何位置,都有BD AE ⊥?证明你的结论; (3) 若点E 为PC 的中点,求二面角D AE B --的大小.
12、(2009东莞)在直三棱柱111C B A ABC -中,1==AC AB ,090=∠BAC ,且异面
直线B A 1与11C B 所成的角等于060,设a AA =1. (1)求a 的值;
(2)求平面11BC A 与平面11BC B 所成的锐二面角的大小.
俯视图正视图A B
C D P E
13、(2009朝阳)某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,
版本 人教A 版 人教B 版 苏教版 北师大版 人数
20
15
5
10
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机
变量ξ的变分布列和数学期望。

14、(2009广州)如图,四棱锥P ABCD -中,PA ⊥平面
ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的
中点.若3PA AD ==,6CD =
.(Ⅰ)求证://AF 平面
PCE ;
(Ⅱ) 求点F 到平面PCE 的距离; (Ⅲ)求直线FC 平面PCE 所成角的正弦值.
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档