高三数学阶段性测试卷(附答案)
2023届河北省高三上学期阶段性检测一数学试卷及答案

2022--2023学年第一学期第一次阶段测试卷高三数学考试说明:1.本试卷共150分,考试时间120分钟.2.请将各题答案填在答题卡上.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,1,2,3A =-,2=12B x x ≤-⎧⎫⎨⎬⎩⎭,则A B ⋂=()A.{}1- B.{}1,1- C.{}1,1,2- D.{}1,1,2,3-2.已知命题p :N x ∃∈,e <0x (e 为自然对数的底数),则命题p 的否定是()A.N x ∀∈,e <0xB.N x ∀∈,e >0xC.N x ∃∈,e 0x ≥ D.N x ∀∈,e 0x ≥3.设0.3log a =,b =,0.10.2c =,则a ,b ,c 的大小关系为()A.b a c<< B.c a b<< C.a c b << D.c b a<<4.下列函数中,在区间()0,+∞上单调递增的是()A.xy -=B.13log y x =C.y =D.12y x =-5.已知函数()cos f x x =,()()14g x x f x '=+,则()g x 的图像大致是()A.B.C.D.6.已知函数()41sin cos 55f x x x =+,当x β=时,()f x 取得最大值,则cos β=()A.17B.17C.47D.177.已知函数()=y f x 是定义在R 上的奇函数,且满足()()2f x f x +=-,当[]2,0x ∈-时,()2f x x x =+,则当[]4,6x ∈时,()=f x ()A.2712x x -+B.2920x x -+-C.2712x x -+- D.2920x x -++8.已知函数()()πsin 03f x x ⎛⎫=+> ⎪⎝⎭ωω,设甲:函数()f x 在区间ππ,63⎛⎫- ⎪⎝⎭上单调递增,乙:ω的取值范围是10,3⎛⎤⎥⎝⎦,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。
江苏省连云港市灌南县第二中学2023-2024学年高三上学期阶段性测试一数学试卷(含解析)

灌南县第二中学数学阶段性测试姓名:班级:学号:一.单选题1.函数f (x )=lg (x 2+3x +2)的定义域是( ) A .(﹣2,﹣1) B .[﹣2,﹣1] C .(﹣∞,﹣2)⋃(﹣1,+∞) D .(﹣∞,﹣2]⋃[﹣1,+∞) 2.设集合A ={x |x >1},集合,则(∁R A )∩B =( ) A .B .C .{x |x ≤1}D .3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A .B .a 2<b 2C .a |c |>b |c |D .的值为()则已知函数)4(,0),3(0,12)(.42f x x f x x x f ⎩⎨⎧>-≤+= 3.A 9.B 19.C 33.D的最小值为则已知121,0,0,1.5++>>=+y xx x y y x ( )45.A 0.B 1.C 22.D6.若不等式mx 2+mx ﹣4<2x 2+2x ﹣1对任意实数x 均成立,则实数m 的取值范围是( )A .(﹣2,2)B .(﹣10,2]C .(﹣∞,﹣2)∪[2,+∞)D .(﹣∞,﹣2)7.若集合A={x|2a +1≤x ≤3a -5},B={x|5≤x ≤16},则能使A ⊆B 成立的所有a 组成的集合为 ( )A.{a |2≤a ≤7}B.{a |6≤≤7}C.{a |a ≤7}D.{a |a<6}8.已知方程05)2(2=-+-+m x m x 有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是 ( )A.(-5,-4)∪(4,+∞)B.(-5,+∞)C.(-5,-4)D.(-4,-2)∪(4,+∞) 二.多选题9.“关于x 的不等式ax 2﹣4ax +4>0对∀x ∈R 恒成立”的一个充分不必要条件是( ) A .B .0<a <1C .0≤a <1D .a ≥010.已知实数x ,y 满足﹣1≤x +y ≤3,4≤2x ﹣y ≤9,则4x +y 可能取的值为( ) A .1B .2C .15D .1611.下列命题中正确的是( )A .命题:“∀x ≥0,x 2≥0”的否定是“∃x <0,x 2<0”B .函数f (x )=a x ﹣4+1(a >0且a ≠1)恒过定点(4,2)C .已知函数f (2x +1)的定义域为[﹣1,1],则函数f (x )的定义域为[﹣1,3]D .若函数,则f (x )=x 2﹣x ﹣2(x ≥﹣1) 12.下列命题中的真命题有( ) A .当x >1时,的最小值是3B .的最小值是2C .当0<x <10时,的最大值是5D .若正数x ,y 为实数,若x +2y =3xy ,则2x +y 的最大值为3 三.填空题的最小值为则,且,已知21131,73231.13-+-=+>>y x y x y x .的取值范围为则已知y x y x -<<-<<,31,42.14 .15.若函数f (x )=lg (x 2﹣mx +1)的定义域为R ,则实数m 的取值范围是 .. 则实数,123+234,=+满足,实数16.2取值范围为的恒成立且不等式若正m m m yx y x y x --≥+四、解答题17.已知二次函数y =f (x )的图象过点A (1,1),不等式f (x )>0的解集为(0,2). (1)求f (x )的解析式;(2)若函数y =f (x )图象的顶点在函数g (x )=b (x ﹣m )2+f (m )(m ≠1)图象上,求关于x 的不等式g (x )<(2﹣m )x 的解集.18.如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,E 为PD 上的中点.(1)求证:PB 平面AEC ;(2)设PA=AB=1,求平面AEC 与平面AED 夹角的余弦值..已知ABC 的内角;6,求ABC 面积的最大值.(n na ++=21.已知函数()ln f x x ax =-,()()211g x a x =+-,()R a ∈.(1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程;(2)当()()()2h x f x g x =-时,讨论()h x 的单调性.22.已知双曲线C 的渐近线为430x y ±=,右焦点为()5,0F ,右顶点为A . (1)求双曲线C 的标准方程;(2)若斜率为1的直线l 与双曲线C 交于M ,N 两点(与点A 不重合),当0AM AN ⋅=时,求直线l 的方程.参考答案1. C2.A3.D4.B5.A6.B7.C8. C9.AB 10.BC 11.BCD 12.AC13.1 14.(-1,5) 15.(-2,2) 16.[-1,3]17.解:(1)因为f(x)>0的解集为(0,2),所以设f(x)=ax(x﹣2),因为f(1)=﹣a=1,所以a=﹣1,所以f(x)=﹣x(x﹣2);(2)由(1)可知f(x)=﹣x(x﹣2)=﹣(x﹣1)2+1,函数y=f(x)的顶点(1,1)在g(x)的图象上,则g(1)=b(1﹣m)2﹣m(m﹣2)=1,则b(m﹣1)2=(m﹣1)2,m≠1,所以b=1,所以g(x)=(x﹣m)2﹣m(m﹣2)<(2﹣m)x,整理为:x2﹣(m+2)x+2m<0,即(x﹣2)(x﹣m)<0,当m>2时,不等式的解集为(2,m),当m=2时,不等式的解集为∅,当m<2且m≠1时,不等式的解集为(m,2),综上,当m>2时,不等式的解集为(2,m),当m=2时,不等式的解集为∅,当m<2且m≠1时,不等式的解集为(m,2).18.【详解】(1)如图,连接BD交AC于点O,连接EO,则O为BD的中点,E为PD的中点,OE PB∴∥AEC PB⊄平面AEC,又OE⊂平面,∴平面AEC.PB(2)方法一:由于CD AD ⊥,,ADPA A AD PA =⊂平面AE ⊂平面PAD ,所以CD AE ⊥由于,PA AD E =为PD 中点,所以因此CED ∠即为平面AEC 与平面由于1,CD ED =22⎝⎭(110,,,1,1,022AE AC ⎛⎫∴== ⎪⎝⎭平面ADE 的法向量为(1,0,0AB =设平面AEC 的法向量为(,,n x y z =0,0,AE AC ⋅=⋅=即(1,n ∴=-1,13AB n =⨯设平面AEC 与平面ADE3,3AB n =,与平面ADE 夹角的余弦值为)由正弦定理可得3,sin 0,A A ≠π3⎫=⎪,由于所以π3B -=2ac +,,当且仅当a =(n na ++=222a S +=()1n n a -++-()122n n S --+也适合上式,所以)2,故数列()1n ++-()1n ++-122222n n =+++-)12+.定义域为()0,∞+,(f ',77而()(1123,,AM x y AN x =-=-,则(1AM AN x ⋅=-()212122(3)x x m x x m +-+++)214418(7m m ++化简得27542250m m --=,即75)(3)0m +=,而75。
北京市第四中学2023-2024学年高三下学期阶段性测试(零模)数学试题(解析版)

高三数学(试卷满分:150分考试时间:120分钟)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|03}A x x =≤≤,3{|log 1}B x x =<,则A B ⋃=()A.[0,3]B.[0,3)C.(0,3)D.(0,3]【答案】A 【解析】【分析】先解对数函数不等式化简集合B ,然后利用并集运算求解即可.【详解】因为3log 1{|}{|03}B x x x x =<=<<,又{|03}A x x =≤≤,所以A B ⋃=[]{|03}0,3x x ≤≤=.故选:A2.在复平面内,复数(2)i i -对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】A 【解析】【详解】试题分析:()212i i i -=+,对应的点为()1,2,在第一象限考点:复数运算3.命题“()0,x ∃∈+∞,ln 1x x =-”的否定是()A.()0,x ∃∈+∞,ln 1x x ≠-B.()0,x ∃∉+∞,ln 1x x =-C.()0,x ∀∈+∞,ln 1x x ≠-D.()0,x ∀∉+∞,ln 1x x =-【答案】C 【解析】【分析】结合特称命题的否定的方法即可.【详解】命题“()0,x ∃∈+∞,ln 1x x =-”的否定是()0,x ∀∈+∞,ln 1x x ≠-.故选:C4.在平面直角坐标系xOy 中,设12,F F 是双曲线22:12y C x -=的两个焦点,点M 在C 上,且120MF MF ⋅= ,则12F F M △的面积为()A.B.2C.D.4【答案】B 【解析】【分析】利用双曲线的几何性质求解即可.【详解】因为点M 在C 上,12,F F 是双曲线的两个焦点,由双曲线的对称性不妨设12MF MF >,则1222MF MF a -==①,122F F c ===,因为120MF MF ⋅=,所以12MF MF ⊥,由勾股定理得222121212MF MF F F +==②,①②联立可得11MF =+,21MF =,所以1212122F F M S MF MF == ,故选:B5.函数()2xf x x =+,()2log g x x x =+,()h x x =+的零点分别为a ,b ,c ,则a ,b ,c ,的大小顺序为()A.a b c >>B.b a c>> C.b c a >> D.c a b>>【答案】C 【解析】【分析】利用函数与方程之间的关系,转化为两个函数的交点问题,利用数形结合求解即可.【详解】令()0f x =,即2x x =-,令()0g x =,即2log x x =-,令()0h x =x =-,分别作出2xy =,2log y x =,y =和y x =-的图象,如图所示:由图象可知:0c =,所以b c a >>.故选:C .6.在平面直角坐标系xOy 中,已知P 是圆()()22:341C x y -+-=上的动点.若(),0A a -,(),0B a ,0a ≠,则PA PB +的最大值为()A.16B.12C.8D.6【答案】B 【解析】【分析】根据题意得到2PA PB PO +=,max1PO OC =+ ,即可得到答案.【详解】因为2PA PB PO +=,max116POOC =+== ,所以max12PA PB +=.故选:B7.在无穷项等比数列{}n a 中,n S 为其前n 项的和,则“{}n a 既有最大值,又有最小值”是“{}n S 既有最大值,又有最小值”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B 【解析】【分析】设出公比为()0q q ≠,分10a >且1q >,10a >且01q <<,10a <且1q >,10a <且01q <<,10a <且10q -<<,10a <且10q -<<,1q <-及1q =±等情况,进行分类讨论,从而得到答案.【详解】设公比为()0q q ≠,当10a >,1q >时,110n n a a q -=>,此时()11111110n n n n n a a a q a qa q q --+-=-=->,故10n n a a +>>,所以{}n a 为单调递增数列,此时{}n a 无最大值,{}n S 无最大值,当10a >,01q <<时,110n n a a q -=>,此时()11111110n n n n n a a a q a qa q q --+-=-=-<,故10n n a a +<<,所以{}n a 为单调递减数列,此时{}n a 无最小值,{}n S 无最大值,当10a <时,1q >时,110n n a a q -=<,此时()11111110n n n n n a a a q a qa q q --+-=-=-<,故10n n a a +<<,所以{}n a 为单调递减数列,此时{}n a 无最小值,{}n S 无最小值,当10a <时,01q <<时,110n n a a q -=<,此时()11111110n n n n n a a a q a qa q q --+-=-=->,故10n n a a +>>,所以{}n a 为单调递增数列,此时{}n a 无最大值,{}n S 无最小值,当10q -<<时,11n n a a q-=,{}n a 为摆动数列,且()11111110nn n n n a a a q a q a qq --+-=-=-<,故1n n a a +<,所以随着n 的增大,11n n a a q -=趋向于0,故{}n a 有最大值,也有最小值,若10a >且10q -<<,()1101nn a q S q-=>-,111n n n n S a S a q ++-==,当n 为奇数时,1n n S S +<,当n 为偶数时,1n n S S +>,且随着n 的增大,()111nn a q S q-=-趋向于11a q-,其中111011a a q S q q -=<--,()21112110111a a a q S a q q q q -=-+=>---,故111a S q <-且121a S q>-,故{}n S 有最大值1S ,也有最小值2S ,若10a <且10q -<<,()1101nn a q S q-=<-,111n n n n S a S a q ++-==,当n 为奇数时,1n n S S +>,当n 为偶数时,1n n S S +<,且随着n 的增大,()111nn a q S q-=-趋向于11a q-,其中111011a a q S q q -=>--,()21112110111a a a q S a q q q q-=-+=<---,故111a S q >-且121aS q<-,故{}n S 有最大值2S ,也有最小值1S ,当1q <-时,11n n a a q-=,{}n a 为摆动数列,且()11111110n n n n n a a a q a q a qq --+-=-=->,故1n n a a +>,所以随着n 的增大,11n n a a q -=趋向于正无穷或负无穷,故{}n a 无最大值,也无最小值,此时{}n S 无最大值,无最小值,当1q =时,{}n a 为常数列,此时{}n a 有最大值,也有最小值,此时{}n S 无最大值或无最小值,故充分性不成立,当1q =-时,{}n a 有最大值,也有最小值,此时{}n S 有最大值和最小值,综上,当{}n S 既有最大值,又有最小值时,{}n a 既有最大值,又有最小值,必要性成立,故“{}n a 既有最大值,又有最小值”是“{}n S 既有最大值,又有最小值”的必要不充分条件.故选:B8.在ABC 中,4B π=,BC 边上的高等于13BC ,则cos A =()A.31010 B.1010C.1010-D.31010-【答案】C 【解析】【详解】试题分析:设2,2,sin cos ,sin ,cos cos2AD a AB CD a AC a A ααββ=⇒=⇒==⇒10cos()10αβ=+=-,故选C.考点:解三角形.9.在棱长为1的正方体1111ABCD A B C D -中,点F 是棱1CC 的中点,P 是正方体表面上的一点,若1D P AF ⊥,则线段1D P 长度的最大值是()A. B.344C.32D.【答案】C 【解析】【分析】通过线面垂直的性质找到点P 的轨迹,然后利用梯形的性质求解即可.【详解】连接1111,,,AC BD A C B D ,在正方体1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,四边形1111D C B A 是正方形,因为11B D ⊂平面1111D C B A ,所以111AA B D ⊥,又1111AC B D ⊥,1111AA AC A ⋂=,且1AA ⊂平面11AACC ,11AC ⊂平面11A ACC ,所以11B D ⊥平面11A ACC ,因为AF ⊂平面11A ACC ,所以11B D AF ⊥,所以当点P 在线段11B D (点1D 除外)时,1D P AF ⊥,取BC 的中点E ,连接1,BF B E ,在正方形11B BCC 中,因为E 为BC 的中点,F 是棱1CC 的中点,所以1BF B E ⊥,因为AB ⊥平面11B BCC ,1B E ⊂平面11B BCC ,所以1AB B E ⊥,因为AB BF B = ,且AB ⊂平面ABF ,BF ⊂平面ABF ,所以1B E ⊥平面ABF ,又AF ⊂平面ABF ,所以1B E AF ⊥,因为1111B E B D B = ,且11B D ⊂平面11D B E ,1B E ⊂平面11D B E ,所以AF ⊥平面11D B E ,设平面11D B E ⋂平面ABCD GE =,则11//GE D B ,所以//GE DB ,则G 是棱CD 的中点,所以当点P 在正方体1111ABCD A B C D -的表面线段1111D B B E EG GD ---上时,1D P AF ⊥,由题意可知,在梯形11D GEB 中,11D B =1152D G B E ==,22EG =,132D E ===,所以线段1D P 长度的最大值是132D E =.故选:C10.如图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C ,的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段 ,,AB BCCA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则()A.123x x x >>B.132x x x >>C.231x x x >>D.321x x x >>【答案】C 【解析】【分析】根据每个三岔路口驶入与驶出相应的环岛路段的车辆数列出等量关系,即可比较出大小.【详解】依题意,有13350555x x x =+-=-,所以13x x <,同理,211302010x x x =+-=+,所以12x x <,同理,32230355x x x =+-=-,所以32x x <,所以132x x x <<.故选:C .【点睛】本题主要考查不等关系的判断,属于基础题.二、填空题:共5小题,每小题5分,共25分.11.已知等差数列{}n a 满足12a =,公差0d ≠,且125,,a a a 成等比数列,则d =______.【答案】4【解析】【分析】由等差数列通项公式结合等比数列性质计算求解即可.【详解】因为11252,,,a a a a =成等比数列,所以2215a a a =,即()()22224d d +=+,即240d d -=,解得4d =或0d =(舍).故答案为:412.621x x ⎛⎫- ⎪⎝⎭的展开式中常数项为__________.(用数字作答)【答案】15【解析】【详解】621x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()122123166C 1C 1r r r r r rr r T x x x ---+=-⋅⋅=-⋅,令1230r -=,4r =,故该展开式中的常数项为46C 15=,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn rr r n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.13.抛物线24x y =-的焦点到双曲线2213y x -=的渐近线的距离为___________.【答案】12##0.5【解析】【分析】求出抛物线的焦点坐标、双曲线的渐近线方程,再利用点到直线距离公式计算即得.【详解】抛物线24x y =-的焦点(0,1)F -,双曲线2213y x -=的渐近线方程为y =,所以点F到直线0y -=的距离为12d ==.故答案为:1214.在平面直角坐标系xOy 中,角α的始边为x 轴的非负半轴,终边与单位圆O 交于点P (P 不在坐标轴上).过点P 作x 轴的垂线,垂足为M .若记()f α为点M 到直线OP 的距离,则()f α的最大值为___________,此时α的一个取值为___________.【答案】①.12##0.5②.π4(答案不唯一)【解析】【分析】根据给定条件,利用三角函数的定义得(cos ,sin )P αα,再利用等面积法求得()f α,借助正弦函数性质求得答案.【详解】依题意,(cos ,sin )P αα,R α∈且π,Z 2k k α≠∈,1,cos ,sin OP OM MP αα===,由()1122OP f OM MP α⋅=⋅,得11()|cos |sin ||sin 2|22|f αααα=⋅=≤,当且仅当sin 21α=-或sin 21α=,即π2π,Z 2k k α=+∈,ππ,Z 42k k α=+∈时取等号,所以()f α的最大值为12,ππ,Z 42k k α=+∈.故答案为:12;π415.设n 是正整数,且2n ≥,数列{}{},k k a b 满足:()10a a a =>,()211,2,,1kk k a a a k n n+=+=⋅⋅⋅-,()11,2,,k k b k n a n==⋅⋅⋅+,数列{}k b 的前k 项和为k S .给出下列四个结论:①数列{}k a 为单调递增数列,且各项均为正数;②数列{}k b 为单调递增数列,且各项均为正数;③对任意正整数,{}1,2,,1k n ∈⋅⋅⋅-,111k k S a a +=-;④对任意正整数{}1,2,,k n ∈⋅⋅⋅,1k S <.其中,所有正确结论的序号是__________.【答案】①③④【解析】【分析】由210k k k a a a n+-=>和10a >可确定①正确;由10k k b b +-<知②错误;根据已知等式可得11111k k k k a n a a a ++⋅=-及1k k k a a n a n ++=,推导得到111k k k b a a +=-,加和可得③正确;由已知等式可推导得到1111k k a a n +->-,累加得到1111k a a+>-,进而得到1k S <,知④正确.【详解】对于①,,()10a a a => ,210k k k a a a n +∴-=>,∴数列{}k a 为单调递增数列,10a > ,0k a ∴>,即数列{}k a 各项均为正数,①正确;对于②,()()111111k k k k k k k k a a b b a n a n a n a n ++++--=-=++++,由①知:10k a n ++>,0k a n +>,10k k a a +-<,∴数列{}k b 单调递减数列,②错误;对于③,由21k k k a a a n +=+得:21k k ka a a n +=-,11111k k k k a n a a a ++∴⋅=-又11k k k k a a a n a n n ++=+=,11111k k k k k k a b a n na a a ++∴===-+,122311111111111111k k k k k S a a a a a a a a a a +++∴=-+-+⋅⋅⋅+-=-=,③正确;对于④,由21k k k a a a n +=+得:()1111k k k k k n a a a n a a n +==-++,11111k k k a a a n n +∴-=->-+,1112111111111111k k kkk a a a a a a a a a ++-⎛⎫⎛⎫⎛⎫∴=-+-+⋅⋅⋅++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1111k a a +∴-<-,1111111k a a a a+∴-<+-=,即1k S <,④正确.故答案为:①③④.【点睛】关键点点睛:本题考查根据数列递推关系式研究数列相关性质及前n 项和的问题;求解关键是能够对已知递推关系式进行变形,得到111k k k b a a +=-、1111k k k a a a n+-=-+等关系式,结合累加法、放缩法来进行求解.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数1()cos cos )2f x x x x =-+.(1)求π()3f 的值;(2)当π[0,2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.【答案】(1)1;(2)1(1,)2--.【解析】【分析】(1)利用二倍角公式及两角差的正弦公式化简,再代入求值即可;(2)由x 的取值范围求出π26x -的取值范围,从而得到函数的值域,由()2c f x c <<+,即可得到不等式组,解得即可;【详解】解:(1)()21cos cos +2f x x x x-1=sin 2cos222x x -π=sin(2)6x -,所以π()13f =.(2)因为π02x ≤≤,所以ππ5π2666x -≤-≤,所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭.由不等式()2c f x c <<+恒成立,得1221c c ⎧<-⎪⎨⎪+>⎩,解得112c -<<-.所以实数c 的取值范围为11,2⎛⎫--⎪⎝⎭.【点睛】本题考查三角恒等变换与三角函数的性质的应用,属于基础题.17.如图,在四棱锥P ABCD -中,平面PAB ⊥平面π,//,32ABCD AD BC ABC PA PB ∠===,1,2,3BC AB AD ===,点O 是AB的中点.(1)求证:PO CD ⊥;(2)求直线CP 与平面POD 所成角的正弦值.【答案】(1)证明见解析;(2)25.【解析】【分析】(1)根据给定条件,利用面面垂直的性质及线面垂直的性质推理即得.(2)以点O 为原点建立空间直角坐标系,求出相关点及向量的坐标,利用空间向量求出线面角的正弦.【小问1详解】在四棱锥P ABCD -中,由PA PB =,点O 是AB 的中点,得PO AB ⊥,而平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,则PO ⊥平面ABCD ,又CD ⊂平面ABCD ,所以PO CD ⊥.【小问2详解】在平面ABCD 内过点O 作Oy AB ⊥,由(1)知直线,,OB Oy OP 两两垂直,以点O 为原点,直线,,OB Oy OP 分别为,,x y z轴建立空间直角坐标系,由π//,,32AD BC ABC PA PB ∠===,1,2,3BC AB AD ===,得PO ==则(0,0,0),(1,1,0),(1,3,0)O P C D -,(1,1,(1,3,0)PC OP OD =-==-,设平面POD 的一个法向量(,,)n x y z =,则030n OP n OD x y ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1y =,得(3,1,0)n = ,所以直线CP 与平面POD所成角的正弦值为||2|cos ,|5||||n PC n PC n PC ⋅〈〉==.18.已知表1和表2是某年部分日期的天安门广场升旗时刻表.表1:某年部分日期的天安门广场升旗时刻表日期升旗时刻日期升旗时刻日期升旗时刻日期升旗时刻1月1日7∶364月9日5∶467月9日4∶5310月8日6∶171月12日7∶314月28日5∶197月27日5∶0710月26日6∶362月10日7∶145月16日4∶598月14日5∶2411月13日6∶563月2日6∶476月3日4∶479月2日5∶4212月1日7∶163月22日6∶156月22日4∶469月20日5∶5912月20日7∶31表2:某年2月部分日期的天安门广场升旗时刻表日期升旗时刻日期升旗时刻日期升旗时刻2月1日7∶232月11日7∶132月21日6∶592月3日7∶222月13日7∶112月23日6∶572月5日7∶202月15日7∶082月25日6∶552月7日7∶172月17日7∶052月27日6∶522月9日7∶152月19日7∶022月29日6∶49(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7∶00的概率;(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记X为这两人中观看升旗的时刻早于7∶00的人数,求X的分布列和数学期望()E X;(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7∶31化为31760).记表2中所有升旗时刻对应数据的方差为2s,表1和表2中所有升旗时刻对应数据的方差为2*s,判断2s与2*s的大小﹒(只需写出结论)【答案】(1)3 4(2)分布列见解析,()2 3E X=(3)22*s s<【解析】【分析】(1)记事件A为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,由此能求出从表1的日期中随机选出一天,这一天的升旗时刻早于7:00的概率;(2)X 可能的取值为0,1,2,记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则51()153P B ==.2(1()3P B P B =-=,由此能求出X 的分布列和数学期望;(3)由方差性质推导出22*s s <.【小问1详解】记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,()P A ∴153204==.【小问2详解】X 可能的取值为0,1,2.记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则51()153P B ==.2(1()3P B P B =-=.4(0)(()9P X P B P B ===,()121241C 339P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,1(2)()()9P X P B P B ==⋅=,所以X 的分布列为:X012P 4949194412()0129993E X =⨯+⨯+⨯=.【小问3详解】由表1所有升旗时刻对应数据比较集中,而表2所有升旗时刻对应数据比较分散,可得22*s s <.19.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为()2,0A -,两个焦点与短轴一个顶点构成等边三角形,过点()1,0P 且与x 轴不重合的直线l 与椭圆交于,M N 两点.(1)求椭圆C 的方程;(2)若过点P 且平行于AM 的直线交直线52x =于点Q ,求证:直线NQ 恒过定点.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)由题意列关于,,a b c 的方程组,即可得到结果;(2)设方程为1x my =+,()11,M x y ,()22,N x y ,联立直线MN 方程和椭圆的方程可得()121232my y y y =+,表示出直线NQ 方程,对称性可知直线NQ 恒过的定点在x 轴上,令0y =,将()121232my y y y =+代入化简即可得出答案.【小问1详解】由题意得,2,a b ==,所以222244b c c a +===,解得1c =,所以23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】由题意直线MN 过点()1,0P 且斜率不为0,故设直线MN 方程为1x my =+,()11,M x y ,()22,N x y ,联立221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得,()2234690m y my ++-=,所以122122Δ0634934m y y m y y m ⎧⎪>⎪-⎪+=⎨+⎪-⎪=⎪+⎩,所以()121232my y y y =+,因为112AM PQ y k k x ==+,则PQ :()1112y y x x =-+,令52x =,解得11324yy x =+,所以1135,224y Q x ⎛⎫ ⎪+⎝⎭,故直线QN 的方程为:()12122232452y y x y y x x x -+-=--,根据对称性,直线QN 所过的定点在x 轴上,不妨令0y =,则222211221121221510532332424y x y y x y x x x y y y x y y x ⎛⎫-- ⎪--+⎝⎭=+=---+,将11221,1x m y x m y =+=+代入得所以()()()()()2211221122112212121212121221051311533153218232143623639y y my y my y y y y y y my y y x y y my y y y my y y y y y y --+++-+-+-+--=====-+-----+-,故直线NQ 恒过定点()2,0.20.已知函数()ln .f x x a x =-(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求()f x 的单调区间;(3)若关于x 的方程ln =0x a x -有两个不相等的实数根,记较小的实数根为0x ,求证:()01a x a ->【答案】(1)(1)y a x a =-+;(2)当0a 时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(3)证明见解析.【解析】【分析】(1)求函数导数得切线斜率,再由点斜式可得解;(2)由()af x x x'-=,分0a ≤和0a >两种情况讨论导函数的正负,可得函数的单调区间;(3)分析可得要证0(1)a x a ->,0010x lnx -->,令000()1g x x lnx =--,利用导数证得0()0g x >,即可得证.【详解】(1)()ln f x x a x =-,()11f =,()1af x x'=-,()11f a '=-,所以在点()()1,1f 处的切线方程为1(1)(1)y a x -=--,整理得:(1)y a x a =-+,(2)函数()ln f x x a x =-定义域为(0,)+∞,()1a x a f x x x'-=-=当0a ≤时,()0f x '≥,此时()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '=,得x a =,此时在(0,)a 上()0f x '<,()f x 单调递减,在(,)a +∞上()0f x ¢>,()f x 单调递增,综上:0a ≤时,()f x 在(0,)+∞上单调递增0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(3)证明:由(2)可知,当0a >时,()0f x x alnx =-=才有两个不相等的实根,且00x >,则要证0(1)a x a ->,即证011a a x ->,即证0111a x ->,而000x alnx -=,则000(1x a x lnx =≠,否则方程不成立),所以即证00011lnx x x ->,化简得0010x lnx -->,令000()1g x x lnx =--,则000011()1x g x x x -'=-=,当001x <<时,0()0g x '<,0()g x 单调递减,当01x >时,0()0g x '>,0()g x 单调递增,所以0()g x g (1)0=,而01x ≠,所以0()0g x >,所以0(1)a x a ->,得证.【点睛】关键点点睛:本题的解题关键是通过证明0111a x ->即可得解,分析函数在极小值左侧的单调性,关键再由证明00011lnx x x ->,利用构造函数的方法即可.21.对给定的正整数n ,令(){}{}12,,,0,1,1,2,,n n i a a a a a i n Ω==⋯∈=⋯∣,对任意的()12,,,…=n x x x x ,()12,,,n n y y y y =⋯∈Ω,定义x 与y 的距离()1122,n n d x y x y x y x y =-+-++- .设A 是n Ω的含有至少两个元素的子集,集合(){},,,D d x y x y x y A =≠∈中的最小值称为A 的特征,记作()A χ.(1)当3n =时,直接写出下述集合的特征:()(){}()()()(){}()()()(){}0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1A B C ===;(2)当2020n =时,设2020ΩA ⊆且()2A χ=,求A 中元素个数的最大值;(3)当2020n =时,设2020ΩA ⊆且()3A χ=,求证:A 中的元素个数小于202022021.【答案】(1)()3A χ=,()2B χ=,()1C χ=(2)20192(3)证明详见解析【解析】【分析】(1)根据x 与y 的距离d 的定义,直接求出(,)d x y 的最小值即可;(2)一方面先证明A 中元素个数至多有20192个元素,另一方面证明存在集合A 中元素个数为20192个满足题意,进而得出A 中元素个数的最大值;(3)设{}12,,,m A x x x = ,定义x 的邻域2020(){Ω|(,)1}i i N x a d a x =∈≤,先证明对任意的1i j m ≤≤≤,()i N x 中恰有2021个元素,再利用反证法证明()()i j N x N x ⋂=∅,于是得到12()()()m N x N x N x 中共有2021m 个元素,但2020Ω中共有20202个元素,所以202020212m ≤,进而证明结论.【小问1详解】依题意可得()3A χ=,()2B χ=,()1C χ=.【小问2详解】(a )一方面:对任意的()12320192020,,,,,a a a a a a A =∈ ,令()()12320192020,,,,,f a a a a a a = ,则()()2020,1212d a f a a =-=<,故()f a A ∉,令集合(){}|B f a a A =∈,则A B ⋂=∅,则2020ΩA B ⊆ 且A 和B 的元素个数相同,但2020Ω中共有20202个元素,其中至多一半属于A ,故A 中至多有20192个元素.(b )另一方面:设()123201920202020122020{,,,,,Ω|A a a a a a a a a a ==∈++⋯+ 是偶数},则对任意的()122020,,,x x x x = ,()122020,,,y y y y A =∈ ,x y ≠,都有A 中的元素个数为024202020192020202020202020C C C C 2+++⋯+=,易得1122(,)n n d x y x y x y x y =-+-+⋯+-与112220202020x y x y x y ++++⋯++奇偶性相同,故(,)d x y 为偶数,又x y ≠,则(,)0d x y >,所以(,)2d x y ≥,注意到()0,0,0,0,,0,0 ,()1,1,0,0,,0,0A ∈ 且它们的距离为2,故此时A 满足题意,综上,A 中元素个数的最大值为20192.【小问3详解】当2020n =时,设2020A ⊆Ω且()3A χ=,设{}12,,,m A x x x = ,则对任意的i x A ∈,定义x 的邻域2020(){Ω|(,)1}i i N x a d a x =∈≤,(a )一方面:对任意的1i m ≤≤,()i N x 中恰有2021个元素,事实上,①若(,)0i d a x =,则i a x =,恰有一种可能;,②若(,)1i d a x =,则a 与i x ,恰有一个分量不同,共2020种可能;综上,()i N x 中恰有2021个元素,(b )对任意的1i j m ≤≤≤,()()i j N x N x ⋂=∅,事实上,若()()i j N x N x ⋂≠∅,不妨设()()i j a N x N x ∈⋂,()()122020122020,,,,,,,i j x x x x x x x x ''='= ,则()11112020202020202020(,)2k k k k i j k k kk k k d x x x x xa a x x a a x =====∑-'≤∑-+-'=∑-+∑-'≤,这与()3A χ=矛盾,由(a )和(b )可得12()()()m N x N x N x 中共有2021m 个元素,但2020Ω中共有20202个元素,所以202020212m ≤,即202022021m ≤,注意到m是正整数,但202022021不是正整数,上述等号无法取到,所以,集合A中的元素个数m小于20202 2021.【点睛】关键点睛:本题考查集合的新定义,集合的含义与表示、集合的运算以及集合之间的关系,反证法的应用,考查学生分析、解决问题的能力,正确理解新定义是关键,综合性较强,属于难题.。
江苏省徐州市如东一中、宿迁一中、徐州中学2025届高三上学期第一次阶段性测试数学试题(含答案)

江苏省如东一中、宿迁一中、徐州中学2025届高三上学期第一次阶段性测试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={x|sin x>12},B={1,3,5}则A∩B=A. {1}B. {3}C. {1,3}D. {1,3,5}2.已知α,β是两个平面,l,m是两条不同的直线,则下列说法正确的是A. 若m//α,l//α,则m//lB. 若m//α,n⊥α,则m⊥nC. 若α//β,m⊥α,l⊥m,则l//αD. 若α⊥β,m⊥α,则m//β3.设向量a=(x,x+4),b=(2,x),若a//b,则x=A. 0或−6B. 4或−2C. 2或−4D. 0或−24.生物丰富度指数d=S−1ln N是河流水质的一个评价指标,其中S,N分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数S没有变化,生物个体总数由N1变为N2,生物丰富度指数由2.85提高到3.8,则A. 3N1=4N2B. 3N2=4N1 C. N31=N42D. N32=N415.已知函数f(x)的部分图象如图所示,则f(x)的解析式可能是A. f(x)=sin e x−1e x+1B. f(x)=cos e x−1e x+1C. f(x)=e sin x−1e sin x+1D. f(x)=e cos x−1e cos x+16.若函数f(x)=log2(−x2+ax+2)在(1,2)上单调递减,则实数a的取值范围是A. (1,2)B. [1,2)C. (1,2]D. [1,2]7.设矩形ABCD(AB>AD)的周长为12,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,则( )A. △ADP的周长为定值,面积有最大值B. △ADP的周长为定值,面积有最小值C. △ADP的面积为定值,周长有最大值D. △ADP的面积为定值,周长有最小值8.已知a =sin 13,b =tan 13,c =14,则a ,b ,c 的大小关系是A. b >c >aB. b >a >cC. c >b >aD. c >a >b 二、多选题:本题共3小题,共18分。
高三数学阶段测试卷答案

一、选择题(每题5分,共50分)1. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x^2 + 1答案:B解析:奇函数满足f(-x) = -f(x),只有选项B满足条件。
2. 已知等差数列{an}的首项为2,公差为3,那么第10项an是()A. 29B. 31C. 33D. 35答案:B解析:等差数列的第n项公式为an = a1 + (n-1)d,代入得a10 = 2 + (10-1)×3 = 31。
3. 函数y = log2(x+1)的图像与直线y = x的交点个数是()A. 1B. 2C. 3D. 4答案:B解析:由于log2(x+1)的定义域为x > -1,且当x = 0时,y = 1,所以函数图像与直线y = x有两个交点。
4. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示复数z到点(1,0)和点(-1,0)的距离相等,因此z位于实轴上。
5. 下列命题中,正确的是()A. 如果a > b,那么a^2 > b^2B. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a/c < b/c答案:B解析:选项B是正确的,因为当c > 0时,如果a > b,那么ac > bc;当c < 0时,如果a > b,那么ac < bc。
二、填空题(每题10分,共40分)6. 函数f(x) = x^3 - 3x在区间[-2, 2]上的最大值是______。
答案:8解析:f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = ±1。
2024-2025学年四川省成都市树德中学高三上学期10月月考数学试题及答案

1.已知集合2,0,则A .{}2x x ≤B .{}4x x ≤C .{}04x x <≤D .{}02x x <≤2.设()1,2a =- ,()4,b k = ,若a b ⊥,则a b +=A .5B .C .20D .253.设甲:{}n a 为等比数列;乙:{}1n n a a +⋅为等比数列,则A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件4.已知tan 3α=-,则3sin sin sin 2()ααπα-=+A .34-B .34C .310D .310-5.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是A .47(,)-∞B .33(-,)∞C .(]0,-∞D .()0,-∞6.已知抛物线E :24y x =的焦点为F ,以F 为圆心的圆与E 交于,A B 两点,与E 的准线交于,C D两点,若CD =,则AB =A .3B .4C .6D .87.在同一平面直角坐标系内,函数()y f x =及其导函数()y f x ='的图象如图所示,已知两图象有且仅有一个公共点,其坐标为()0,1,则A .函数()e x y f x =⋅的最大值为1B .函数()e xy f x =⋅的最小值为1C .函数()e x f x y =的最大值为1D .函数()exf x y =的最小值为18.已知函数()2ln2x f x x+=-,设()()()220.3log 0.32ln 2,,a f b f c f ===,则,,a b c 的大小关系是A .a c b>>B .a b c >>C .b c a >>D .c b a>>二.多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.小明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,坐公交车平均用时10min ,样本方差为9;骑自行车平均用时15min ,样本方差为1.已知坐公交车所花时间X 与骑自行车所花时间Y 都服从正态分布,用样本均值和样本方差估计,X Y 分布中的参数,并利用信息技术工具画出X 和Y 的分布密度曲线如图所示.若小明每天需在早上8点之前到校,否则就迟到,则下列判断正确的是A .()2103,X NB .若小明早上7:50之后出发,并选择坐公交车,则有60%以上的可能性会迟到C .若小明早上7:42出发,则应选择骑自行车D .若小明早上7:47出发,则应选择坐公交车10.已知函数()y f x =是定义在R 上的偶函数,对于任意x R ∈,都有()()()42f x f x f +=+成立.当[)0,2x ∈时,()21x f x =-,下列结论中正确的有A .()20f =B .函数()y f x =在()2,4上单调递增C .直线4x =是函数()y f x =的一条对称轴D .关于x 的方程()2log 2f x x =+共有4个不等实根11.我国著名科幻作家刘慈欣的小说《三体Ⅱ·黑暗森林》中的“水滴”是三体文明使用新型材料-强互作用力(SIM )材料所制成的宇宙探测器,其外形与水滴相似,某科研小组研发的新材料水滴角测试结果如图所示(水滴角可看作液、固、气三相交点处气—液两相界面的切线与液—固两相交线所成的角),圆法和椭圆法是测量水滴角的常用方法,即将水滴轴截面看成圆或者椭圆(长轴平行于液—固两者的相交线,椭圆的短半轴长小于圆的半径)的一部分,设图中用圆法和椭圆法测量所得水滴角分别为1θ,2θ,则下列结论中正确的有附:椭圆()222210x y a b a b+=>>上一点()00,x y 处的切线方程为00221x x y y a b +=.A .圆法中圆的半径为52B .12tan 3θ=C .12θθ>D .12θθ<三.填空题:本题共3小题,每小题5分,共15分.12.“十一”期间人民群众出游热情高涨,某地为保障景区的安全有序,将增派6名警力去,A B 两个景区执勤.要求A 景区至少增派3名警力,B 景区至少增派2名警力,则不同的分配方法的种数为.13.已知圆台的下底面半径为6,上底面半径为3,其侧面积等于上、下底面积之和,则圆台的高为.14.已知函数()()()()123(0)f x a x x x x x x a =--->,设曲线()y f x =在点()(),i i x f x 处切线的斜率为()1,2,3i k i =,若123,,x x x 均不相等,且22k =-,则134k k +的最小值为.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足)2222sin bc A a c b =+-.(1)求B 的大小;(2)若3b =,ABC ∆,求ABC ∆的周长.16.(15分)已知椭圆2222:1(0)x y C a b a b +=>>经过点,(E P 为椭圆C 的右顶点,O 为坐标原点,OPE ∆的面(1)求椭圆C 的标准方程;(2)过点(1,0)D -作直线l 与椭圆C 交于,A B ,A 关于原点O 的对称点为C ,若||||BA BC =,求直线AB 的斜率.17.(15分)如图,在四棱锥Q ABCD -中,四边形ABCD 为直角梯形,//CD AB ,BC AB ⊥,平面QAD ⊥平面ABCD ,QA QD =,点M 是AD 的中点.(1)证明:QM BD ⊥.(2)点N 是CQ 的中点,22AD AB CD ===,当直线MN 与平面QBC 时,求QM 的长度.18.(17分)已知函数()22ln f x x x a x =-+,()a ∈R .(1)若1a =,求函数()f x 在点()()1,1f 处的切线;(2)若对任意的()12,0,x x ∈+∞,12x x ≠,有()()()1221120x x x f x x f x ⎡⎤-⋅->⎣⎦恒成立,求实数a 的取值范围.19.(17分)2023年10月11日,中国科学技术大学潘建伟团队成功构建255个光子的量子计算机原型机“九章三号”,求解高斯玻色取样数学问题比目前全球最快的超级计算机快一亿亿倍.相较传统计算机的经典比特只能处于0态或1态,量子计算机的量子比特(qubit )可同时处于0与1的叠加态,故每个量子比特处于0态或1态是基于概率进行计算的.现假设某台量子计算机以每个粒子的自旋状态作为量子比特,且自旋状态只有上旋与下旋两种状态,其中下旋表示“0”,上旋表示“1”,粒子间的自旋状态相互独立.现将两个初始状态均为叠加态的粒子输入第一道逻辑门后,粒子自旋状态等可能的变为上旋或下旋,再输入第二道逻辑门后,粒子的自旋状态有p 的概率发生改变,记通过第二道逻辑门后的两个粒子中上旋粒子的个数为X .(1)已知13p =,求两个粒子通过第二道逻辑门后上旋粒子个数为2的概率;(2)若一条信息有()*1,n n n >∈N 种可能的情况且各种情况互斥,记这些情况发生的概率分别为1p ,2p ,…,n p ,则称()()()12n H f p f p f p =++⋅⋅⋅+(其中()2log f x x x =-)为这条信息的信息熵.试求两个粒子通过第二道逻辑门后上旋粒子个数为X 的信息熵H ;(3)将一个下旋粒子输入第二道逻辑门,当粒子输出后变为上旋粒子时则停止输入,否则重复输入第二道逻辑门直至其变为上旋粒子,设停止输入时该粒子通过第二道逻辑门的次数为Y (1,2,3,,,)Y n = ,证明:当n 无限增大时,Y 的数学期望趋近于一个常数.参考公式:01q <<时,lim 0nn q →+∞=,lim 0n n nq →+∞=.树德中学高2022级高三上学期10月阶段性测试数学试题参考答案一.单选题:1-8CAACB DCC 二.多选题:9-11ACD AC AD 三.填空题12-14354181.【答案】C 【详解】由2log 1x ≤,则22log log 2x ≤,所以02x <≤,所以{}{}2log 102A x x x x =≤=<≤,{}04A B x x ⋃=<≤故选:C2.【答案】A 【详解】()1,2a =- ,()4,b k = ,若a b ⊥ ,则有1420a b k ⋅=-⨯+=,解得2k =,则有()()()1,24,23,4a b =-+=+ ,得5a b += .故选:A 3.【答案】A 【详解】充分性:若{}n a 为等比数列,设其公比为q ,则12111n n n n n n a a a a a a q ++--⋅⋅==,所以{}1n n a a +⋅为等比数列,公比为2q ,满足充分性.必要性:若{}1n n a a +⋅为等比数列,公比为2-,则112n n n n a a a a +-⋅=-⋅,即112n n aa +-=-,假设{}n a 为等比数列,此时1212n n a q a +-==-无解,故不满足必要性.所以甲是乙的充分不必要条件.故选:A 4.【答案】C 【详解】因为tan 3α=-,则33sin sin sin sin cos sin 2ααααπαα--=⎛⎫+ ⎪⎝⎭()2222sin 1sin sin cos tan 3cos cos sin 1tan 10ααααααααα---====++.故选:C.5.【答案】B 【详解】当(]0,2x ∈时,由2230ax x a -+<可得22233x a x x x<=++,由基本不等式可得23x x≤+,当且仅当x =3a <.故选:B.6.【答案】D 【详解】由抛物线方程知:12p=,()1,0F ∴,不妨设点A 在第一象限,如图所示,直线CD 与x 轴交于点E ,由CD =,则2ED EF ==,圆的半径()222125r +=,所以5AF =,由抛物线的定义可得:52A px +=,所以4A x =,又因为点A 在抛物线上,所以()4,4A ,248AB ∴=⨯=.故选:D.7.【答案】C 【详解】AB 选项,由题意可知,两个函数图像都在x 轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为()y f x '=,实线部分为()y f x =,故()()()()()0e e e x x xy f x f x f x f x ='''=⋅+⋅+>⋅恒成立,故()e xy f x =⋅在R 上单调递增,则A ,B 显然错误,对于C ,D ,()2()e ()e ()()e e x xxx f x f x f x f x y ''--'==,由图像可知(,0)x ∈-∞,e ()()0x f x f x y '-=>'恒成立,故()e xf x y =单调递增,当(0,)x ∈+∞,()()0e xf x f x y '-'=<,()ex f x y =单调递减,所以函数()e xf x y =在0x =处取得极大值,也为最大值,()010ef =,C 正确,D 错误.故选:C8.【答案】C 【详解】解:函数()2ln2x f x x+=-,由202x x+>-,即(2)(2)0x x +-<,2x <解得()2,2x ∈-显然()()f x f x -=,∴()f x 为偶函数,∴当()0,2x ∈时,()2ln2xf x x+=-在()0,2x ∈单增,()f x ∴在()20,-上为减函数,在()0,2上为增函数()220.30.301=∈,,322222103log 0.3log 0.3log log 232=-=>=所以22103log 0.3log ,232⎛⎫=∈ ⎪⎝⎭3232ln 2ln 4ln 2e =<=,32ln 212⎛⎫∈ ⎪⎝⎭,∴b c a >>.故选:C .二.多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】ACD 【详解】由题意知,()2~10,3X N ,()2~15,1Y N ,A 正确。
四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

2024-2025学年度高三上期数学10月阶段性测试(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合,则( )A .B .C .D .2.已知复数满足,则( )A .B .C .D .3.已知向量满足,且,则( )A .B .C .D .4.如图为函数在上的图象,则的解析式只可能是( )A .B .C .D .5.已知为奇函数,则曲线在点处的切线方程为( )A .B .C .D .6.在体积为12的三棱锥中,,平面平面,若点都在球的表面上,则球的表面积为( )A .B .C .D .7.若,则的最大值为( )ABCD8.设,则( ){{},21x A x y B y y ====+A B = (]0,1(]1,2[]1,2[]0,2z 23i z z +=+3iz+=12i+12i-2i+2i-,a b 222a b a b -=-= 1b = a b ⋅=1414-1212-()y f x =[]6,6-()f x ())ln cos f x x x=+())lnsin f x x x=+())ln cos f x x x=-())ln sin f x x x=-()()cos f x x a x =+()y f x =()()π,πf ππ0x y +-=ππ0x y -+=π0x y -+=0x y +=A BCD -,AC AD BC BD ⊥⊥ACD ⊥ππ,,34BCD ACD BCD ∠=∠=,,,A B C D O O 12π16π32π48π()()sin cos2sin αβααβ+=-()tan αβ+202420230.2024log 2023,log 2022,log 0.2023a b c ===A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列的公比为,其前项和为,前项积为,并满足条件:,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.透明的盒子中装有大小和质地都相同的编号分别为的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则( )A .事件与事件是互斥事件B .事件与事件是对立事件C .事件与事件是相互独立事件D .事件与事件是互斥事件11.已知,其中,则的取值可以是( )A .eB .C .D .第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若,则______.13.设是数列的前n 项和,点在直线上,则数列的前项和为______.14.已知点是轴上的动点,且满足的外心在轴上的射影为,则点的轨迹方程为______,的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设的内角的对边分别为,且,边上的两条中线相交于点.c a b <<b c a <<b a c <<a b c<<{}n a q n n S n n T 2024120242025202511,1,01a a a a a ->><-20242025S S <202420261a a <2024T {}n T {}n T 1,2,3,41A =2A =3A =1A 2A 1A 3A 1A 3A 23A A 13A A 6ln ,6e n m m a n a =+=+e nm ≠e nm +2e23e24e1sin 3α=-()cos π2α-=n S {}n a ()()*,n n a n ∈N 2y x =1n S ⎧⎫⎨⎬⎩⎭n ()()2,0,1,4,A B M N 、y 4,MN AMN =△P y Q P PQ PB +ABC △,,A B C ,,a b c ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC AC ,AD BE P(1)求;(2)若,求的面积.16.(15分)如图,在三棱锥中,是以为斜边的等腰直角三角形,是边长为2的正三角形,为的中点,为上一点,且平面平面.(1)求证:平面;(2)若平面平面,求平面与平面夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:每天看电子产品的时间近视情况超过一小时一小时内合计近视10人5人15人不近视10人25人35人合计20人30人50人附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828.(1)根据小概率值的独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为,每天看电子产品超过一小时的人数为,求的值.BAC ∠2,cos AD BE DPE ==∠=ABC △D ABC -ABC △AB ABD △E AD F DC BEF ⊥ABD AD ⊥BEF ABC ⊥ABD BEF BCD αx α()()()()22()n ad bc a b c d a c b d χ-=++++0.05α=2χX Y ()P X Y =18.(17分)已知函数.(1)求曲线在处的切线方程;(2)讨论函数的单调性;(3)设函数.证明:存在实数,使得曲线关于直线对称.19.(17分)已知椭圆的对称中心在坐标原点,以坐标轴为对称轴,且经过点和.(1)求椭圆的标准方程;(2)过点作不与坐标轴平行的直线交曲线于两点,过点分别向轴作垂线,垂足分别为点,,直线与直线相交于点.①求证:点在定直线上;②求面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知,,所以;当时,,所以,取,则,所以,即,综上,.二、多项选择题:ABC ACD CD .11.【解】令,则,()()ln 1f x x =+()y f x =3x =()()()F x ax f x a =-∈R ()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭m ()y g x =x m =C )⎛- ⎝C ()2,0M l C ,A B ,A B xDE AE BD P P PAB △0.20240.2024log 0.2023log 0.20241c =>=2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=1,01,01c a b ><<<<2n >()()ln 1ln ln 10n n n +>>->()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦2023n =2lg2022lg2024(lg2023)0⋅-<220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅b a <b ac <<()6ln f x x x =-()661xf x x x-=-='故当时,单调递增,当时,单调递减,,又,不妨设,解法一:记,设,则在上恒成立,所以在上单调递减,所以,则,又因为,且在上单调递减,所以,则,所以.解法二:由,两式相减,可得,令,则;令,则,令,则在上恒成立,所以在上单调递增,因为在上恒成立,所以在上单调递增,则,即,所以.解法三:,两式相减得,,可得,三、填空题: ;3()0,6x ∈()()0,f x f x '>()6,x ∈+∞()()0,f x f x '<()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= e n m ≠06e n m <<<12,e nx m x ==()()()()12,0,6g x f x f x x =--∈()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''()0,6()g x ()0,6()()()()()1260,0,6g x f x f x g x =-->=∈()()()11212f x f x f x ->=()1212,6,x x -∈+∞()f x ()6,+∞1212x x -<1212x x +>e 12n m +>6ln ,66lne e nnm m a n a =+==+e 6ln e n nm m =-e (1)n t t m=>()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---()()()1ln 21,1g t t t t t =+-->()11ln 2ln 1t g t t t t t+=+-=+-'1ln 1(1)y t t t =+->221110t y t t t-=-=>'()1,+∞()g t '()1,+∞()()10g t g ''>=()1,+∞()g t ()1,+∞()()10g t g >=()1ln 21t t t +>-()61ln e 121n t tm t ++=>-6ln ,66lne e nnm m a n a =+==+ e 6lne ln n n mm-=-212121ln ln 2x x x xx x -+<<-e 12n m +>79-1n n +24y x =14.【解】设点,则根据点是的外心,,而,则,所以从而得到点的轨迹为,焦点为由抛物线的定义可知,因为,即,当点在线段上时等号成立.四、解答题:15.【解】(1)因为,所以由正弦定理得,由余弦定理得,又,所以.(2)因为是边上的两条中线与的交点,所以点是的重心.又,所以在中,由余弦定理,所以,又,所以,所以,所以的面积为.()0,M t ()0,4)N t -P AMN V (),2P x t -22||PM PA =2224(2)(2)x x t +=-+-2(2),24t x y t -==-P 24y x =()1,0F 1PF PQ =+4,14PF PB BF PF PB PQ PB +≥=+=++≥3PQ PB +≥P BF ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-222b c a bc +-=2221cos 22b c a BAC bc +-∠==0πBAC <∠<π3BAC ∠=P ,BC AC AD BE P ABC △2,AD BE APB DPE ==∠=∠ABP △22222cos c AB PA PB PA PB APB==+-⋅∠22442433⎛⎫=+-⨯= ⎪⎝⎭2c =π2,3BE BAC =∠=2AE BE ==24b AE ==ABC △1π42sin 23⨯⨯⨯=16.【解】(1)是边长为的正三角形,为的中点,则.且平面平面,平面平面平面,则平面.(2)由于底面为等腰直角三角形,是边长为2正三角形,可取中点,连接,则.且平面平面,且平面平面,则平面.因此两两垂直,可以建立空间直角坐标系.是边长为2的正三角形,则可求得高.底面为等腰直角三角形,求得.可以得到关键点的坐标由第(1)问知道平面的法向量可取.设平面的法向量为,且,则,则,解得.则.则平面与平面17.【解】(1)零假设为:学生患近视与长时间使用电子产品无关.计算可得,,根据小概率值的独立性检验,推断不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为,ABD △2E AD BE AD ⊥BEF ⊥ABD BEF ,ABD BE AD =⊂ABD AD ⊥BEF ABC △ABD △AB O OD ,OD AB OC AB ⊥⊥ABC ⊥ABD ABC ABD AB =OD ⊥ABC ,,OC OA OD O xyz -ABD △OD =ABC △1OC OA OB ===()()()(0,1,0,0,1,0,1,0,0,A B C D -BEF (0,AD =-BCD (),,m x y z = ()(1,1,0,BC CD ==- 0m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩x y x +=⎧⎪⎨-+=⎪⎩)m = cos ,m AD m AD m AD ⋅〈〉===⋅ BEF BCD 0H 220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯0.05α=2χ0H ξ则,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是.(3)依题意,,事件包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是,所以.18.【解】(1)切点为.因为,所以切线的斜率为,所以曲线在处的切线方程为,化简得;(2)由题意可知,则的定义域为,当时,,则在上单调递减;当时,令,即,解得,若;若,则在上单调递减,在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增;()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==6991()()1111110,22245525P X Y P X Y ===⨯====⨯=1X Y ==()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=()3,ln4()11f x x '=+()134k f ='=()y f x =3x =()1ln434y x -=-48ln230x y -+-=()()ln 1F x ax x =-+()F x ()1,-+∞()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++0a ≤()101F x a x '=-<+()F x ()1,-+∞0a >()0F x '=10ax a +-=11x a=-()11111,01a ax a x F x a a x '-+--<≤=-=≤+()111,01ax a x F x a x +--'>=>+()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭0a ≤()F x ()1,-+∞0a >()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭(3)证明:函数,函数的定义域为.若存在,使得曲线关于直线对称,则关于直线对称,所以由.可知曲线关于直线对称.19.【解】(1)设椭圆的方程为,代入已知点的坐标,得:,解得,所以椭圆的标准方程为.(2)如图:①设直线的方程为,并记点,由消去,得,易知,则.由条件,,直线的方程为,直线的方程为()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭()g x ()(),10,-∞-+∞ m ()y g x =x m =()(),10,-∞-+∞ x m =12m =-()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211lnln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+()y g x =12x =-C 221(0,0,)mx ny m n m n +=>>≠312413m n m n +=⎧⎪⎨+=⎪⎩1612m n ⎧=⎪⎪⎨⎪=⎪⎩C 22162x y +=l ()20x my m =+≠()()()112200,,,,,A x y B x y P x y 222,162x my x y =+⎧⎪⎨+=⎪⎩x ()223420m y my ++-=()()222Δ16832410m m m =++=+>12122242,33m y y y y m m --+==++()()12,0,,0D x E x AE ()1212y y x x x x =--BD,联立解得,所以点在定直线上.②,而,所以,则令,则,所以,当且仅当时,等号成立,所以.()2121y y x x x x =--()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++P 3x =0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△121212my y y y =+()121212my y y y =+1211211224PABy y S y y y +=-=-==△t =1t >2122PAB t S t t t==≤=++△t =PAB △。
高三数学阶段性试卷及答案

考试时间:120分钟满分:150分一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^3 - 3x^2 + 4$,则$f(x)$的对称中心是:A. $(0, 4)$B. $(1, 2)$C. $(1, 0)$D. $(0, 0)$2. 若复数$z = a + bi$(其中$a, b \in \mathbb{R}$)满足$|z - 1| = |z + 1|$,则实数$a$的取值为:A. $0$B. $1$C. $-1$D. 无解3. 在$\triangle ABC$中,$a = 3$,$b = 4$,$c = 5$,则$\sin A$的值为:A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{3}{4}$4. 下列命题中,正确的是:A. 若$a > b$,则$a^2 > b^2$B. 若$a > b$,则$\log_a b < 1$C. 若$a > b$,则$\sqrt{a} > \sqrt{b}$D. 若$a > b$,则$a^3 > b^3$5. 已知函数$y = \log_2(x + 1)$的图象上一点$P(x, y)$,若点$P$到直线$y = x$的距离为1,则$x$的值为:A. $1$B. $\sqrt{3} - 1$C. $\sqrt{3} + 1$D. $\frac{1}{\sqrt{3}}$6. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$S_5 = 20$,$S_8 = 56$,则公差$d$的值为:A. 2B. 3C. 4D. 57. 在直角坐标系中,若点$A(1, 2)$关于直线$x + y = 1$的对称点为$B$,则$B$的坐标为:A. $(2, -1)$B. $(1, -2)$C. $(-2, 1)$D. $(-1, 2)$8. 已知等比数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1 = 1$,$S_3 = 7$,则公比$q$的值为:A. 2B. $\frac{1}{2}$C. 3D. $\frac{1}{3}$9. 若函数$y = ax^2 + bx + c$的图象开口向上,且顶点坐标为$(h, k)$,则下列不等式中正确的是:A. $a > 0$B. $b > 0$C. $c > 0$D. $ah^2 + bh + c > 0$10. 已知函数$f(x) = x^3 - 3x^2 + 4x - 6$,则$f(x)$的极值点为:A. $x = 1$B. $x = 2$C. $x = 3$D. $x = 4$二、填空题(每题5分,共50分)11. 已知函数$f(x) = 2x^3 - 3x^2 + 2$,则$f'(x) =\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学阶段性测试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合P={x|x=3m+1,m∈N*},Q={y|y=5n+2,n∈N*},则P∩Q=( B)A.{x|x=15k-7,k∈N*}B.{x|x=15k-8,k∈N*}C.{x|x=15k+8,k∈N*}D.{x|x=15k+7,k∈N*}(2)已知tan160o=a,则sin2000o的值是( A)A.a1+a2B.-a1+a2C.11+a2D.-11+a2(3)等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于( B)A.66B.99C.144D.297(4)已知函数f(x)=log2(x2-2ax+4-3a)的值域为实数集R,则实数a的取值范围是( C )A.(-∞,-4) (1,∞)B.[-4,1]C.(-∞,-4] [1,∞)D.(-4,1)(5)设函数f(x)=1-x2+log12(x-1),则下列说法正确的是( D)A.f(x)是增函数,没有最大值,有最小值B.f(x)是增函数,没有最大值、最小值C.f(x)是减函数,有最大值,没有最小值D.f(x)是减函数,没有最大值、最小值(6)已知向量a=(2,-1),b=(1+k,2+k-k2),若a⊥b,则实数k为( B)A.-1B.0C.-1或0D.-1或4(7)设函数y=f(x)的定义域是(-∞,+∞),若对于任意的正数a,函数g(x)=f(x+a)-f(x)都是其定义域y( C)A B C D(8)在直角坐标系中,函数y =-21-(x -1)2的图像关于直线y =x 的对称曲线为 ( D )(9)已知定义在实数集上的函数)(x f 满足f(x +1)=x 2+2,则f -1(x +1)的表达式是 ( B )A.2x -2B.2x -1C.2x +2D.2x +1(10)已知函数f (x )=x 2+ax +b ,且对任意实数x 都有f (x )=f (-m -x ),其中m ∈(0,2),那么( B ) A.f (-2)<f (0)<f (2) B.f (0)<f (-2)<f (2) C.f (0)<f (2)<f (-2) D.f (2)<f (0)<f (-2) (11) 函数y =-3sin x +cos x 在x ∈[-π6,π6]时的值域是 ( D )A. [0,62] B.[-3,0] C.[0,1] D.[0,3] (12)已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出产品 ( C )A.7个B.8个C.9个D.10个 二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.(13)已知命题p :不等式|x |+|x -1|>a 的解集为R ,命题q :f (x )=-(5-2a )x 是减函数,若p ,q中有且仅有一个为真命题,则实数a 的取值范围是 [1,2) . (14)计算:2cos10o -sin20o cos20o=(15)已知f (x )=2x +3x -1,若函数y =g (x )的图象与y =f -1(x )+1的图象关于直线y =x 对称,则g (3)=__7_.(16)给出四个命题①函数y =a |x |与y =log a |x |的图象关于直线y =x 对称(a >0,a ≠1);②函数y =a |x |与yB CD=(1a )|x |的图象关于y 轴对称(a >0,a ≠1);③函数y =log a |x |与log 1a |x |的图象关于x 轴对称(a >0,a ≠1);④函数y =f (x )与y =f-1(x +1)的图象关于直线y =x +1对称,其中正确的命题是 ③ .三、解答题:本大题共6小题;共74分.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)已知定义在R 上的函数f (x )=12(sin ωx +a cos ωx )(a ∈R ,0<ω≤1)满足:f (x )=f (π3-x ),f (x -π)=f (x +π). (I )求f (x )的解析式;(II )若m 2-4n >0,m ,n ∈R ,求证:“|m |+|n |<1”是“方程[f (x )]2+mf (x )+n =0在区间(-5π6,π6)内有两个不等的实根”的充分不必要条件.解:(I )由f (x -π)=f (x +π)知f (x )=f (x +2π),即函数f (x )的周期为2π.∵ f (x )=12(sin ωx +a cos ωx )=a 2+12sin (ωx +ϕ),其中sin ϕ=a a 2+1,cos ϕ=1a 2+1,∴2π|ω|≤2π,即|ω|≥1.又0<ω≤1,∴ ω=1. 又∵ f (x )=f (π3-x ),∴ f (0)=f (π3),即 12(sin0+a cos0)=12(sin π3+a cos π3),解得 a =3,∴ f (x )=sin (x +π3). (II)显然,x ∈(-5π6,π6)等价于x +π3∈(-π2,π2).令u =x +π3,f (x )=t ,g (t )=t 2+mt +n ,则f (x )=sin u ,由|m |+|n |<1得|m +n |≤|m |+|n |<1,∴ m +n >-1. 同理由|m -n |≤|m |+|n |<1得m -n <1. ∴ g (1)=m +n +1>0,g (-1)=1-m +n >0. 又∵|m |≤|m |+|n |<1,∴-m2∈(-1,1).又∵Δ=m 2-4n >0,∴ 一元二次方程t 2+mt +n =0在区间(-1,1)内有两个不等的实根. ∵ 函数y =sin u (u ∈(-π2,π2))与u =x +π3(x ∈(-5π6,π6))都是增函数, ∴ [f (x )]2+mf (x )+n =0在区间(-5π6,π6)内有两个不等实根.∴ “|m |+|n |<1”是“方程[f (x )]2+mf (x )+n =0在区间(-5π6,π6)内有两个不等实根”的充分条件.令m =56,n =16,由于方程t 2+56t +16=0有两个不等的实根-13,-12,且-13,-12∈(-1,1),∴ 方程sin 2(x +π3)+56sin (x +π3)+16=0在(-5π6,π6)内有两个不等的实根,但 |m |+|n |=56+16=1,故“|m |+|n |<1”不是“方程[f (x )]2+mf (x )+n =0在区间(-5π6,π6)内有两个不等实根”的必要条件.综上,“|m |+|n |<1”是“方程[f (x )]2+mf (x )+n =0在区间(-5π6,π6)内有两个不等实根”的充分不必要条件.(18)(本小题满分12分)已知函数f (x )=a x -24-a x -1(a >0,a ≠1).(I)求函数f (x )的定义域、值域;(II)是否存在实数a ,使得函数f (x )满足:对于区间(2,+∞)上使函数f (x )有意义的一切x ,都有f (x )≥0.(I)解:由4-a x ≥0,得a x ≤4.当a >1时,x ≤log a 4;当0<a <1时,x ≥log a 4.即当a >1时,f (x )的定义域为(-∞,log a 4];当0<a <1时,f (x )的定义域为[log a 4,+∞). 令t =4-a x ,则0≤t <2,且a x =4-t 2,∴ f (x )=4-t 2-2t -1=-(t +1)2+4, 当t ≥0时,f (x )是t 的单调减函数,∴f (2)<f (x )≤f (0),即-5<f (x )≤3, ∴ 函数f (x )的值域是(-5,3].(II)若存在实数a 使得对于区间(2,+∞)上使函数f (x )有意义的一切x ,都有f (x )≥0,则区间(2,+∞)是定义域的子集.由(I)知,a >1不满足条件;若0<a <1,则log a 4<2,且f (x )是x 的减函数.当x >2时,a x <a 2.由于0<a 2<1,∴t =4-a x >3,∴f (x )<0,即f (x )≥0不成立. 综上,满足条件的a 的取值范围是 .(19)(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,且PD =a ,P A =PC =2a . (Ⅰ)求证:直线PD ⊥平面ABCD ; (Ⅱ)求二面角A -PB -D 的大小.DBACP(Ⅰ)证明:∵ 在ΔPDA 中,AD =a ,PD =a ,P A =2a ,)∴ AD 2+PD 2=P A 2,即 PD ⊥AD .同理,PD ⊥CD . (第19题) 又AD 、CD ⊂平面ABCD ,AD CD =D ,∴ 直线PD ⊥平面ABCD ; (Ⅱ)解:如图,连接AC 和BD ,设AC BD =O .由(I)知AC ⊥PD .又 AC ⊥BD ,且PD 、BD ⊂平面PBD ,PD BD =D ,∴ 直线AC ⊥平面PBD .过点O 作OE ⊥PB ,E 为垂足,连接AE .由三垂线定理知 AE ⊥PB ,∴ ∠AEO 为二面角A -PB -D 的平面角. ∵ AB ⊥AD ,由三垂线定理知 AB ⊥P A ,∴ 在ΔPAB 中,AE =P A ·AB PB =23a ,在ΔABD 中,OA =22a ,在ΔAOE 中,sin ∠AEO =AEOA=22a 23a =32,即 ∠AEO =60o ,∴ 二面角A -PB -D 为60o .(20)(本小题满分12分)以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.羊毛衫的销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格.某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100/件.针对该品牌羊毛衫的市场调查显示:①购买该品牌羊毛衫的人数是标价的一次函数;②该品牌羊毛衫销售旺季的最高价格是淡季最高价格的32倍;③在销售旺季,商场以140元/件价格销售时能获取最大利润. (I)分别求该品牌羊毛衫销售旺季的最高价格与淡季最高价格;(II)问:在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少? 解:设在旺季销售时,羊毛衫的标价为x 元/件,购买人数为kx +b (k <0), 则旺季的最高价格为-bk元/件,利润函L (x )=(x -100)·(kx +b )=kx 2-(100k -b )-100b ,x ∈[100,-bk],D BACP OE当x =100k -b 2k =50- b 2k 时,L (x )最大,由题意知,50- b 2k =140,解得 - b k =180,即旺季的最高价格是180(元/件),则淡季的最高价格是180×23=120(元/件).现设淡季销售时,羊毛衫的标价为t 元/件,购买人数为mt +n (m <0), 则淡季的最高价格为-nm=120(元/件),即n =-120m ,利润函数L (t )=(t -100)·(mt +n )=(t -100)·(mt -120m ) =-m (t -100)·(120-t ),t ∈[100,120]. ∴ t -100=120-t ,即t =110时,L (t )为最大,∴ 在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件.(21)(本小题满分12分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28且a 3+2是a 2,a 4的等差中项. (I )求数列{a n }的通项公式a n ;(II )若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.解:(I )设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,其中a 1≠0,q ≠0.由题知⎩⎨⎧a 1q +a 1q 2+a 1q 3=28, ①a 1q +a 1q 3=2(a 1q 2+2), ②由②×7-①得 6a 1q 3-15a 1q 2+6a 1q =0, 即 2q 2-5q +2=0, 解得 q =2或q =12.∵ 等比数列{a n }单调递增,∴a 1=2,q =2,∴ a n =2·2n -1=2n . (II )由(I )得 b n =a n log 12a n =2n log 122n =-n ·2n ,∴ S n =b 1+b 2+…+b n =-(1×2+2×22+3×23+…+n ·2n ). 设 T n =1×2+2×22+3×23+…+n ·2n , ③ 则 2T n = 1×22+2×23+3×24+…+n ·2n +1, ④由③-④得 -T n =1×2+1×22+1×23+…+1×2n -n ·2n +1=2n +1-2-n ·2n +1=-(n -1)2n +1-2,∴ S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>30成立,即要 -(n -1)·2n +1-2+n ·2n +1>50,即要 2n >26. ⑤ ∵ 函数y =2x 是单调增函数,且24=16<26,35=32>26, 由⑤得n 的最小值是5.(22)(本小题满分14分)已知F 1(-2,0),F 2(2,0)是椭圆C 的两个焦点,过F 1的直线与椭圆C 的两个交点为M ,N ,且|MN |的最小值为6. (I)求椭圆C 的方程;(II)设A ,B 为椭圆C 的长轴顶点.当|MN |取最小值时,求∠AMB 的大小. 解:(Ⅰ)由题意,设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),其中c =2,a 2-b 2=4.设M (x 1,y 1),N (x 2,y 2).若直线MN ⊥x 轴,则MN 的方程为x =-2,代入x 2a 2+y 2b 2=1,得y 2=b 2(1-4a 2)=b 4a 2,∴ |y 1-y 2|=b 2a ,即|AB |=2b 2a.若直线MN 不与x 轴垂直,则设MN 的方程为y =k (x +2),代入x 2a 2+y 2b2=1,得 x 2a 2+k 2(x 2+4x +4)b 2=1,即 (a 2k 2+b 2)x 2+4a 2k 2x +a 2(4k 2-b 2)=0.△=(4a 2k 2)2-4(a 2k 2+b 2)a 2(4k 2-b 2)=4a 2b 2[(a 2-4)k 2+b 2]=4a 2b 4(1+k 2), ∴ |x 1-x 2|=2ab 21+k 2a 2k 2+b2,∴ |MN |=2ab 21+k 2a 2k 2+b 2·1+k 2=2ab 2(1+k 2)a 2k 2+b2=2b 2a ·1+k 2k 2+b 2a2>2b 2a .综上,|MN |的最小值为2b 2a .由题知 2b 2a=6,即 b 2=3a .代入a 2-b 2=4,得a 2-3a -4=0,解得a =-1(舍),或a =4.∴ b 2=12. ∴ 椭圆C 的方程为x 216+y 212=1.(Ⅱ)由(Ⅰ)知A (-4,0),B (4,0).当|MN |取得最小值时,MN ⊥x 轴. 根据椭圆的对称性,不妨取M (-2,3),∠AMB 即直线AM 到直线MB 的角.∵ AM 的斜率k 1=3-0-2+4=32,BM 的斜率k 2=3-0-2-4=-12,∴ tan ∠AMB =k 2-k 11+k 1k 2=-12-321-12×32=-8.∵ ∠AMB ∈(0,π),∴ ∠AMB =π-arctan8.。