相反数绝对值复习

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

数轴、相反数、绝对值

数轴、相反数、绝对值

数轴、相反数、绝对值数学是研究数量、结构、变化及空间等概念的学科。

在数学中,数轴、相反数和绝对值是非常重要的概念,它们在解决各种实际问题中发挥着关键作用。

一、数轴数轴是数学中的一个基本概念,它是一个有序的直线,用来表示实数和有理数。

数轴上的点表示实数,原点表示零,正半轴表示正数,负半轴表示负数。

通过数轴,我们可以直观地比较两个实数的大小,也可以找出任何实数的相反数和绝对值。

二、相反数相反数是数学中的另一个重要概念。

如果一个数x的相反数是-x,那么它们在数轴上位于原点的两边,并且它们的距离相等。

例如,3的相反数是-3,5的相反数是-5。

在数学中,相反数经常被用于抵消或中和,以解决各种问题。

三、绝对值绝对值是数学中的一个非常有用的概念。

在数轴上,任何一个实数x的绝对值就是从原点到点x的距离。

例如,3的绝对值是3,-5的绝对值也是5。

绝对值的计算公式是|x| = x(x > 0)或 0(x = 0)或 -x(x < 0)。

绝对值的概念可以帮助我们确定一个数的符号和它的大小。

四、总结数轴、相反数和绝对值是数学中的基本概念,它们在解决各种实际问题中发挥着关键作用。

通过了解这些概念,我们可以更好地理解数学的本质,并解决各种复杂的问题。

因此,对于每一个学习数学的人来说,理解这些基本概念都是非常重要的。

《相反数、绝对值复习》课件一、教学目标1、复习相反数和绝对值的概念和性质,掌握它们的计算方法。

2、提高学生对于相反数和绝对值的理解和应用能力。

3、培养学生的思维能力和自主学习能力。

二、教学内容1、相反数的概念及性质。

2、绝对值的概念及性质。

3、相反数和绝对值的计算方法。

三、教学重点与难点重点:掌握相反数和绝对值的计算方法。

难点:理解相反数和绝对值的概念及性质,并应用到实际问题中。

四、教学方法与手段1、通过PPT展示相反数和绝对值的概念和性质,让学生自主思考和讨论。

2、通过例题讲解和练习,让学生掌握计算方法。

数轴、相反数、绝对值 (讲义及答案)

数轴、相反数、绝对值   (讲义及答案)

数轴、相反数、绝对值(讲义)➢课前预习1.为了表示相反意义的量,我们可以把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走5 m可记作+5 m,向西走8 m可记作_____m.(2)一种袋装食品标准净重为200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重205 g记为+5 g,那么食品净重197 g就记为_____g.2.正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5等都是负整数,而-1.5,12-都是负分数.请将下列各数进行分类:3,-2.5,3.14,32-,-9,100,0.其中属于整数的有:__________________________________;其中属于分数的有:__________________________________;其中属于正数的有:__________________________________;其中属于负数的有:__________________________________.3.如图,点A表示小明的家,动物园在小明家西边500米,书店在小明家东边500米,车站在书店东边200米,小明从动物园出发向东走1 000米,到达_________;动物园和书店到小明家的距离都是_______米;小明从家出发,走了500米,可以到达_________________;动物园和车站之间的距离为__________米.DCA1. _______与_______统称为有理数.2. 有理数的分类:有理数_________________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎨⎪⎩⎪⎩_________________________________________________有理数⎧⎧⎨⎪⎩⎪⎪⎪⎨⎪⎪⎪⎧⎨⎪⎩⎩ 3. 非正数:_________________;非负数:________________. 非正整数:_______________;非负整数:______________. 4. 数轴的定义:规定了_______、________、_________的一条数轴.任何一个______都可以用数轴上的一个点来表示.5.数轴的作用:__________________、___________________、___________________________.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越____,越往左数越_____,右边的总比左边的______.正数_____0,负数_______0,正数________负数.7. 相反数的定义:__________________的两个数,互为相反数.特别地,____________________. 互为相反数的两个数,和为0.8. 绝对值的定义:在________上,一个数所对应的点与原点的__________叫做这个数的绝对值. 9. 绝对值法则:正数的绝对值是_________;___________________________;___________________________.1. 若上升5 m 记作+5 m ,则-8 m 表示__________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作+5℃,那么零下2℃记作___________;太平洋中的马里亚纳海沟深达11 034 m ,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔___________,比海平面低30 m 的地方,它的高度记作海拔___________. 2. 选出下列不具有相反意义的量( )A .气温升高4℃与气温为12℃B .胜3局与负4局C .转盘逆时针转4圈与顺时针转6圈D .支出5万元与收入3万元3. 有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2B .-3C .+3D .+44. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( ) A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.015. 把下列各数填入它所在的集合里:-2,7,32-,0,2 020,0.618,3.14,-1.732,-5,+3.①正数集合:{__________________________________…};②负数集合:{__________________________________…}; ③整数集合:{__________________________________…}; ④非正数集合:{________________________________…}; ⑤非负整数集合:{______________________________…}; ⑥有理数集合:{________________________________…}.6.7. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b0aA .0<a <bB .a <0<bC .b <0<aD .a <b <08. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.9. 在数轴上大于-4.12的负整数有______________________.10. 到原点的距离等于3的数是____________.11. 数轴上,将表示-2的点向左移动两个单位后得到点A ,与点A 距离为3个单位的点对应的数是_________.12. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米13. 填空: 13+的相反数是_____;-3.5的相反数是_____;(1)--的相反数是_____;(2)+-的相反数是_____;0的相反数是_____. 14. A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A .B AB .B AC .B AD .B A15. 下列各组数中,互为相反数的两个数是( )A .-3和+2B .5和15C .-6和6D .13-和1216. 下列化简不正确的是( )A .( 4.9) 4.9--=+B .( 4.9) 4.9-+=-C .[]( 4.9) 4.9-+-=+D .[]( 4.9) 4.9+-+=+ 17. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数18. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b按照从小到大的顺序排列正确的是( )aA .b a a b -<-<<B .b a b a >->->C .b a a b -<<-<D .b b a a -<<-<19. 填空:5.3-=______;21+=_______;5--=_______;若x <0,则x =_______,x -=_______; 若m <n ,则m n -=________. 20. 下列各数:-2,31+,3-,0,2-+,-(-2),2--,其中是正数的有_______________________________. 21. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数22. 下列说法正确的是( )A .一个数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 23. 下列说法正确的是( )A .所有的有理数都可以用数轴上的点来表示B .绝对值等于它相反数的数是负数C .如果两个数的绝对值相等,那么这两个数相等D .相反数等于它本身的数是非负数24. 请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示 ( )(2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )25. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=____+____=____; (4)22--+=|_____-_____|=_____; (5)3 6.2-⨯=____×____=_____; (6)21433-÷-=____÷____=____×____=_____.【参考答案】 ➢ 课前预习1. (1)-8 (2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14,32-;其中属于正数的有:3,3.14,100;其中属于负数的有:-2.5,32-,-9.3. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数2.⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数正有理数正分数有理数0负整数负有理数负分数3. 负数和0;正数和0;负整数和0;正整数和04. 原点、单位长度、正方向、直线; 有理数.5. 表示数 比较大小 表示距离6. 大,小;大;大于,小于,大于7. 只有符号不同.0的相反数为0.8. 数轴,距离9.它本身;负数的绝对值是它的相反数;0的绝对值是0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩右侧框内答案 框2:图略框3:-a ,a ,-a +b框4:正数和0,负数和0➢ 精讲精练1. 下降8 m 收入50元 -2℃+50 m -30 m2. A3. A4.B5.①7,2 019,0.618,3.14,+3;②-2,23-,-1.732,-5③-2,7,0,2 019,-5,+3;④-2,23-,0,-1.732,-5⑤7,0,2 019,+3;⑥-2,7,23-,0,2 020,0.618,3.14,-1.732,-5,+36.212101332-3.5<-<-<<<+图略;7. B8.999.-4,-3,-2,-110.±311.-7或-112.B13.13-;3.5,-1,2,014.D15.C16.D17.B18.C19.3.5 12-5 -x -x-m +n20.13+,3-,-(-2)21.C22.C23.A24.(1)√(2)×(3)×(4)×(5)√(6)√(7)×(8)×25.(1)113 -;(2)4.2 4.2 0;(3)3 5 8;(4)2 2 0;(5)3 6.2 18.6;(6)231432331417.。

专题1.2 相反数、绝对值【十大题型】(举一反三)(人教版)(解析版)

专题1.2 相反数、绝对值【十大题型】(举一反三)(人教版)(解析版)

专题1.2 相反数、绝对值【十大题型】【人教版】【题型1 相反数与绝对值的概念辨析】 (1)【题型2 相反数的几何意义的应用】 (3)【题型3 绝对值非负性的应用】 (5)【题型4 化简多重符号】 (6)【题型5 化简绝对值】 (8)【题型6 利用相反数的性质求值】 (9)【题型7 解绝对值方程】 (11)【题型8 绝对值几何意义的应用】 (13)【题型9 有理数的大小比较】 (16)【题型10 应用绝对值解决实际问题】 (18)【知识点1相反数与绝对值】相反数:1.概念:只有符号不同的两个数叫做互为相反数.相反数的表示方法:一般地,a和-a互为相反数,这里的a表示任意一个数可以是正数、负数也可以是零,特别地,一个数的相反数等于它本身这个数是零.2.性质:若a与b互为相反数,那么a+b=0.绝对值:1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.2.性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型1相反数与绝对值的概念辨析】【例1】(2023秋·福建龙岩·七年级校考阶段练习)与-4的和为0的数是()A.14B.4C.-4D.−14【答案】B【分析】与-4的和为0的数,就是-4的相反数4.【详解】解:与-4的和为0的数,就是求出-4的相反数4,【点睛】此题考查相反数的意义,掌握互为相反数的两个数的和为0的性质是解决问题的基础.【变式1-1】(2023·江苏·七年级假期作业)将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于0【答案】C【分析】根据绝对值的含义及绝对值的性质逐项判断即可解答.【详解】解:∵一个非负数的绝对值等于它本身,一个负数的绝对值等于它的相反数,∴A项不符合题意;∵a≥0,表示的是非负数的绝对值,不是负数的绝对值,∴B不符合题意;∵一个非负数的绝对值等于它本身,∴C符合题意;∵a≥0,表述的是非负数的绝对值,不只是0的绝对值,∴选项D不符合题意;故选:C.【点睛】本题考查了绝对值的含义及绝对值的性质,掌握绝对值的性质是解题的关键.【变式1-2】(2023·江苏·七年级假期作业)下列各对数中,互为相反数的是( )A.−(+1)和+(−1)B.−(−1)和+(−1)C.−(+1)和−1D.+(−1)和−1【答案】B【分析】先化简各数,然后根据相反数的定义判断即可.【详解】解:A、−(+1)=−1,+(−1)=−1,不是相反数,故此选项不符合题意;B、−(−1)=1,+(−1)=−1,是相反数,故此选项符合题意;C、−(+1)=−1,不是相反数,故此选项不符合题意;D、+(−1)=−1,不是相反数,故此选项不符合题意;故选:B.【点睛】本题主要考查了相反数.先化简再求值是解题的关键.【变式1-3】(2023秋·江苏盐城·七年级江苏省响水中学阶段练习)绝对值小于2016的所有的整数的和【答案】0【详解】绝对值小于2016的所有整数为:−2015,...,0,1, (2015)故-2015+(-2014)+(-2013)+…+2013+2014+2015=(-2015+2015)+( -2014+2014)+( -2013+2013)+…+(-1+1)+0=0;故答案为0.点睛:由于数比较多,不可能挨个求和,故考虑用“互为相反数的两个数的和等于0”这个性质.【题型2相反数的几何意义的应用】【例2】(2023·全国·七年级假期作业)如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【答案】(1)-1(2)点C表示的数是0.5,D表示的数是-4.5【分析】(1)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C、D表示的数即可.【详解】(1)由点A、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是-1.(2)由点D、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是0.5,D表示的数是-4.5.【点睛】本题考查了相反数的定义和数轴,解题的关键是根据题意找出原点的位置.【变式2-1】(2023秋·七年级课时练习)如图,数轴上两点A、B表示的数互为相反数,若点B表示的数为6,则点A表示的数为()A.6B.﹣6C.0D.无法确定【答案】B【分析】根据数轴上点的位置,利用相反数定义确定出点A表示的数即可.【详解】解:∵数轴上两点A,B表示的数互为相反数,点B表示的数为6,∴点A表示的数为﹣6,故选:B.【点睛】此题考查数轴与有理数,相反数的定义,理解相反数的定义是解题的关键.【变式2-2】(2023·全国·七年级假期作业)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【答案】A【分析】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【详解】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上,故选:A.【点睛】本题考查了相反数的性质,数轴的定义,数形结合是解题的关键.【变式2-3】(2023秋·江苏无锡·七年级校考阶段练习)用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2023⇒2018)⇐(2023⇒2015)=__________【答案】2018.【分析】根据题意,(a⇒b)=-b,(a⇐b)=-a,可知(2023⇒2018)=-2018,(2023⇒2015)=-2015,再计算(-2018⇐-2015)即可.【详解】解:∵(a⇒b)=-b,(a⇐b)=-a,∴(2023⇒2018)⇐(2023⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.【点睛】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.【题型3绝对值非负性的应用】【例3】(2023秋·云南昭通·七年级校考阶段练习)已知|a﹣2|与|b﹣3|互为相反数,求a+b的值.【答案】5.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列非常求出a、b的值,然后代入代数式进行计算即可得解.【详解】∵|a-2|与|b-3|互为相反数,∴|a-2|+|b-3|=0,∴a-2=0,b-3=0,解得a=2,b=3,所以,a+b=2+3=5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式3-1】(2023秋·云南楚雄·七年级校考阶段练习)对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|−1|+a C.|a|+1D.−1+|a|【答案】C【分析】根据绝对值的非负性即可得出答案.【详解】解:A.当a=−1时,a+1=0,则|a+1|=0,故A选项不符合题意;B.当a=−1时,|−1|+a=1−1=0,故B选项不符合题意;C.|a|≥0,则|a|+1≥1,不可能为0,故C选项符合题意;D.当a=±1时,−1+|a|=−1+1=0,故D选项不符合题意;故选:C.【点睛】本题考查了绝对值的非负性,解题的关键是掌握任何数的绝对值都是非负数,两个非负数的和一定为非负数.【变式3-2】(2023秋·山东潍坊·七年级统考期中)若|a−1|+|b+2|=0,求a+|−b|.【答案】3【分析】根据绝对值的非负性求解即可.【详解】解:∵|a−1|+|b+2|=0,∴a−1=0,b+2=0,解得:a=1,b=−2,故a +|−b |=1+2=3.【点睛】本题考查了绝对值的非负性,准确的计算是解决本题的关键.【变式3-3】(2023秋·七年级课时练习)对于任意有理数m ,当m 为何值时,5−|m−3|有最大值?最大值为多少?【答案】5【分析】根据绝对值的非负性得到|m−3|≥0,得到当m =3时,|m−3|最小,代入求解即可;【详解】解:由绝对值都是非负数,得|m−3|≥0.当m =3时,|m−3|最小,最小值为0,此时5−|m−3|有最大值,最大值是5.【点睛】本题主要考查了绝对值的非负性应用,准确计算是解题的关键.【题型4 化简多重符号】【例4】(2023秋·全国·七年级专题练习)化简下列各数:(1)−−=________ ;(2)−=________;(3)−{+[−(+3)]}=________.【答案】 23 −45 3【分析】根据多重符合化简的法则,化简结果的符合由符号的个数决定,确定符号后可得结果.【详解】解:−−=23,−=−45,−{+[−(+3)]}=3,故答案为:23,−45,3.【点睛】本题考查了化简多重符号,多重符号的化简是由“−”的个数来定,若“−”个数为偶数个时,化简结果为正;若“−”个数为奇数个时,化简结果为负.【变式4-1】(2023·浙江·七年级假期作业)下列化简正确的是( )A .+(−6)=6B .−(−8)=8C .−(−9)=−9D .−[+(−7)]=−7【答案】B【分析】根据化简多重符号的方法逐项判断即可求解.【详解】解:A. +(−6)=−6,原选项计算错误,不合题意;B. −(−8)=8,原选项计算正确,符合题意;C. −(−9)=9,原选项计算错误,不合题意;D. −[+(−7)]=7,原选项计算错误,不合题意.故选:B .【点睛】本题考查有理数的多重符合化简,化简多重符号就是看数字前负号的个数,如果负号的个数是奇数个则最终符号为负号,如果负号个数为偶数个则最终符号为正号.【变式4-2】(2023秋·江苏无锡·七年级统考期末)在−(+2.5),−(−2.5),+(−2.5),+(+2.5)中,正数的个数是( )A .1B .2C .3D .4【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:∵−(+2.5)=−2.5,−(−2.5)=2.25,+(−2.5)=−2.5,+(+2.5)=2.5,∴正数的个数是2个,故选B .【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【变式4-3】(2023·全国·七年级假期作业)化简下列各式的符号:(1)﹣(+4);(2)+(﹣37);(3)﹣[﹣(﹣325)];(4)﹣{﹣[﹣(﹣π)]}.化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数与什么关系吗?【答案】(1)-4;(2)−37;(3)−325;(4)π;最后结果的符号与﹣的个数有着密切联系,如果一个数是正数,当﹣的个数是奇数,最后结果为负数,当﹣的个数是偶数,最后结果为正数【分析】根据已知数据结合去括号的法则化简各数,进而得出结果的符号与原式中的“-”号的个数的关系.【详解】解:(1)﹣(+4)=﹣4;(2)+(−37)=−37;(3)﹣[﹣(﹣325)]=﹣325;(4)﹣{﹣[﹣(﹣π)]}=π.最后结果的符号与“﹣”的个数有着密切联系,如果一个数是正数,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.【点睛】本题考查了相反数的意义,正确发现数字变化规律是解题的关键.【题型5化简绝对值】【例5】(2023春·黑龙江哈尔滨·六年级统考期中)有理数a,b,c在数轴上的位置如图所示,化简|b+c|+ |a−c|=_______.【答案】a−b−2c【分析】先由数轴判断a,b,c与0的大小关系,其中a>0,b<0,c<0,则b+c<0,a−c>0,再根据绝对值的意义,正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0,进而得出结果.【详解】解:∵a>0,b<0,c<0,∴b+c<0,a−c>0,∴|b+c|+|a−c|=−(b+c)+a−c=−b−c+a−c=a−b−2c故答案为:a−b−2c.【点睛】本题主要考查了数轴上的点以及绝对值的意义,其中正确掌握正负数的绝对值是解题的关键.【变式5-1】(2023秋·江苏宿迁·七年级统考期中)如果|m|=|n|,那么m,n的关系()A.相等B.互为相反数C.都是0D.互为相反数或相等【答案】D【分析】利用绝对值的代数意义化简即可得到m与n的关系.【详解】解:∵|m|=|n|,∴m=n或m=−n,即互为相反数或相等,故选:D.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.【变式5-2】(2023·浙江·七年级假期作业)化简:(1)|−(+7)|;(2)−|−8|;【答案】(1)7(2)−8【分析】(1)先化简括号的符号,然后再根据绝对值的性质化简即可;(2)直接化简绝对值即可.【详解】(1)解:|−(+7)|=|−7|=7(2)−|−8|=−8.【点睛】本题主要考查绝对值的化简,熟练掌握运算法则是解题关键.【变式5-3】(2023·全国·七年级假期作业)求下列各数的绝对值:(1)−38;(2)0.15;(3)a(a<0);(4)3b(b>0);【答案】(1)38(2)0.15(3)−a(4)3b【分析】根据正数与0的绝对值是其本身,负数的绝对值是其相反数即可求解.【详解】(1)|−38|=38;(2)|0.15|=0.15;(3)∵a<0,∴|a|=−a;(4)∵b>0,∴3b>0,∴|3b|=3b【点睛】本题考查了绝对值的性质,准确把握“正数与0的绝对值是其本身,负数的绝对值是其相反数”是解题的关键.【题型6利用相反数的性质求值】【例6】(2023·全国·七年级专题练习)已知-21的相反数是x,-5的相反数是y,z的相反数是0,求x+3y +z 的相反数.【答案】-713【分析】根据相反数的概念求出x ,y ,z 的值,代入x +y +z 即可得到结果.【详解】解:∵-213的相反数是x ,-5的相反数是y ,z 相反数是0,∴x =213,y =5,z =0,∴x +y +z =213+5+0=713.∴x +y +z 的相反数是-713 .【点睛】本题考查了相反数的定义,熟记相反数的概念是解题的关键.【变式6-1】(2023秋·湖北孝感·七年级统考期中)在数轴上表示整数a 、b 、c 、d 的点如图所示,单位长度为1,且a +b =0,则c +d 的值是________.【答案】−4.【分析】根据题意先确定原点的位置,然后得到c 、d 表示的数,再进行计算即可.【详解】解:∵a +b =0,∴a 与b 互为相反数,由数轴可知,如图:∴a =−2,b =2,c =−8,d =4,∴c +d =−8+4=−4;故答案为:−4.【点睛】本题考查了数轴的定义,相反数的定义,解题的关键是熟练掌握所学的知识进行解题.【变式6-2】(2023春·广东河源·七年级校考开学考试)若 a +b =0,则 a b 的值是 ( )A .−1B .0C .无意义D .−1或无意义【答案】D【分析】分b =0,b ≠0两种情形计算即可.【详解】当b ≠0时,∵a +b =0,∴a =−b ,∴a b =−b b =−1;当b =0时,∵a +b =0,∴a =0,∴a b 无意义,∴a b 的值是−1或无意义,故选D .【点睛】本题考查了相反数的意义,及其商的意义,熟练掌握相反数的意义是解题的关键.【变式6-3】(2023秋·湖南永州·七年级校考阶段练习)已知a ,b 互为相反数,则a +2a +3a +⋯+49a +50a +50b +49b +⋯+3b +2b +b =________.【答案】0【分析】根据相反数的概念,得到a +b =0,继而可得出答案.【详解】解:∵a ,b 互为相反数,∴a +b =0.∴a +2a +3a +...+49a +50a +50b +49b +...+3b +2b +b=(a +b )+2(a +b )+3(a +b )+...+50(a +b )=0.故答案为:0.【点睛】本题考查了相反数的概念,属于基础题,注意掌握相反数的概念是关键.【题型7 解绝对值方程】【例7】(2023秋·江苏宿迁·七年级泗阳致远中学校考阶段练习)若|−m|=|−12|,则m 的值为()A .±2B .−12或12C .12D .−12【答案】B【分析】根据绝对值的性质,进行化简求解即可.|【详解】解:|−m|=|−12|−m|=1,2∴m=±1,2故选:B.【点睛】本题考查了绝对值方程问题,解题的关键是掌握绝对值化简的性质,正数的绝对值是本身,负数的绝对值是其相反数.【变式7-1】(2023秋·海南省直辖县级单位·七年级校考阶段练习)如果|x|−2=2,那么x是()A.4B.-4C.±2D.±4【答案】D【分析】根据绝对值意义进行解答即可.【详解】解:∵|x|−2=2,∴|x|=4,∴x=±4,故选:D.【点睛】本题考查了绝对值的意义,绝对值表示该数在数轴表示的点距原点的距离.【变式7-2】(2023秋·湖北孝感·七年级统考期中))已知|a+1|=2,|2b−1|=7,a<b,求|a|+|b|.【答案】5或7【分析】根据绝对值的意义以及a与b的关系求出a和b的值,代入计算即可.【详解】解:∵|a+1|=2,|2b−1|=7,∴a=1或-3,b=4或-3,∵a<b,∴a=1,b=4,或a=-3,b=4,|a|+|b|=5或7.【点睛】本题考查了绝对值的意义,解题的关键是掌握已知一个数的绝对值,求这个数.【变式7-3】(2023秋·江苏·七年级专题练习)解方程:3x−|x|+5=1.【答案】x=−1【分析】根据绝对值的意义,分类讨论求解即可.【详解】解:当x≥0时,3x−x+5=1,解得:x=−2(不符合题意,舍去),当x<0时,3x+x+5=1,解得:x=−1,综上所述:x=−1,∴原方程的解为:x=−1.【点睛】本题考查了绝对值方程,解本题的关键在熟练掌握绝对值的意义.正数的绝对值为它本身,负数的绝对值则是它的相反数,0的绝对值还是为0.【题型8绝对值几何意义的应用】【例8】(2023秋·全国·七年级专题练习)|x−1|+|x−2|+|x−3|+⋅⋅⋅+|x−2021|的最小值是()A.1B.1010C.1021110D.2020【答案】C【分析】x为数轴上的一点,|x-1|+|x-2|+|x-3|+…|x-2021|表示:点x到数轴上的2021个点(1、2、3、…2021)的距离之和,进而分析得出最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|求出即可.【详解】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤2021时,|x-1|+|x-2021|有最小值2020;当2≤x≤2020时,|x-2|+|x-2020|有最小值2018;…当x=1011时,|x-1011|有最小值0.综上,当x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值,最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|=1010+1009+…+0+1+2+…+1010=1011×1010=1021110.故选:C.【点睛】本题考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值是解题关键.【变式8-1】(2023秋·七年级单元测试)小亮把中山路表示成一条数轴,如图所示,把路边几座建筑的位置用数轴上的点,其中火车站的位置记为原点,正东方向为数轴正方向,公交车的1站地为1个单位长度(假设每两站之间距离相同)回答下列问题:(1)到火车站的距离等于2站地的是和.(2)到劝业场的距离等于2站地的是和.(3)在数轴上,到表示1的点的距离等于2的点有个,表示的数是.(4)如果用a表示图中数轴上的点,那么|a|表示该点到火车站的距离,当|a|=2时,a=2或−2.请你结合图形解释等式|a−1|=2表达的几何意义,并求出当|a−1|=2时,a的值.【答案】(1)烈士陵园,北国商城(2)人民商场,博物馆(3)2,−1或3(4)表达的几何意义见解析,a的值为3或−1【分析】(1)由图即可直接得出结论;(2)由图即可直接得出结论;(3)结合数轴即可直接得出结论;(4)结合图形可知|a−1|=2的几何意义为:该点到劝业场的距离等于2,进而可直接得出a的值.【详解】(1)解:由图可知到火车站的距离等于2站地的是人民商场和劝业场.故答案为:烈士陵园,北国商城;(2)解:由图可知到劝业场的距离等于2站地的是人民商场和博物馆.故答案为:人民商场,博物馆;(3)解:在数轴上,到表示1的点的距离等于2的点有2个,分别是−1和3.故答案为:2,−1或3;(4)解:该题中|a−1|=2的几何意义为:该点到劝业场的距离等于2,且为人民商场或博物馆.即到表示1的点的距离等于2的点.结合图形可知当|a−1|=2时,a的值为3或−1.【点睛】本题考查数轴上两点之间的距离,用数轴上的点表示有理数,绝对值的意义.利用数形结合的思想是解题关键.【变式8-2】(2023春·浙江·七年级期末)方程|x|+|x−2022|=|x−1011|+|x−3033|的整数解共有()A.1010B.1011C.1012D.2022【答案】C【详解】根据绝对值的意义,方程表示整数x到0与2022的距离和等于到1011与3033的距离的和,进而得出x为1011与2022之间的整数,据此即可求解.【分析】解:方程的整数解是1011至2022之间的所有整数,共有1012个.故选:C.【点睛】本题考查了绝对值的意义,数轴上两点的距离,理解绝对值的意义是解题的关键.【变式8-3】(2023秋·七年级单元测试)阅读材料:因为|x|=|x−0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1−x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x−2|=3的几何意义是什么?这里x的值是多少?(2)等式|x−4|=|x−5|的几何意义是什么?这里x的值是多少?(3)式子|x−1|+|x−3|的几何意义是什么?这个式子的最小值是多少?【答案】(1)几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,x=−1或5(2)几何意义是点P到点A的距离等于点P到点B的距离,x=412(3)几何意义是点P到点M的距离与点P到点N的距离的和,最小值为2【分析】(1)根据|x1−x2|的几何意义求解可得;(2)先去绝对值,再解方程即可求解;(3)由题意知|x−1|+|x−3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.【详解】(1)解:等式|x−2|=3的几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,这里x=−1或5.(2)解:设数轴上表示数x,4,5的点分别为P,A,B,.则等式|x−4|=|x−5|的几何意义是点P到点A的距离等于点P到点B的距离,即PA=PB,所以x=412(3)解:设数轴上表示数x,1,3的点分别为P,M,N,则式子|x−1|+|x−3|的几何意义是点P到点M的距离与点P到点N的距离的和,即PM+PN.结合数轴可知:当1≤x≤3时,式子|x−1|+|x−3|的值最小,最小值为2.【点睛】本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.【题型9 有理数的大小比较】【例9】(2023·湖北孝感·七年级统考期中))在1,−2,0,32这四个数中,绝对值最小的数是( )A .1B .−2C .0D .32【答案】C【分析】先求绝对值,然后根据有理数大小比较即可求解.【详解】解:∵1,−2,0,32这四个数的绝对值分别为1,2,0,32∴绝对值最小的数是0,故选:C .【点睛】本题考查了绝对值,有理数的大小比较,熟练掌握绝对值的定义,有理数的大小比较是解题的关键.【变式9-1】(2023秋·广东河源·七年级校考开学考试)已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.−5,+3,−|−3.5|,0,−(−2),−1【答案】数轴见解析,−5<−|−3.5|<−1<0<−(−2)<+3【分析】先去括号,去绝对值符号,把各数在数轴上表示出来,按原数从小到大的顺序用“<”把这些数连接起来即可.【详解】解:−|−3.5|=−3.5,−(−2)=2,如图,故−5<−|−3.5|<−1<0<−(−2)<+3.【点睛】本题主要考查数轴上有理数的表示及大小比较,熟练掌握数轴上有理数的表示及大小比较是解题的关键.【变式9-2】(2023·浙江·七年级假期作业)(1)试用“<”“ >”或“=”填空:①|+6|−|+5| |(+6)−(+5)|;②|−6|−|−5| |(−6)−(−5)|;③|+6|−|−5| |(+6)−(−5)|;(2)根据(1)的结果,请你总结任意两个有理数a 、b 的差的绝对值与它们的绝对值的差的大小关系为|a|−|b| |a−b|;(3)请问,当a 、b 满足什么条件时,|a|−|b|=|a−b|?【答案】(1)①=;②=;③<;(2)≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【分析】(1)先计算,再比较大小即可;(2)根据(1)的结果,进行比较即可;(3)根据(1)的结果,可发现,当a、b同号时,|a|−|b|=|a−b|.【详解】解:(1)①|+6|−|+5|=1,|(+6)−(+5)|=1,∴|+6|−|+5|=|(+6)−(+5)|;②|−6|−|−5|=1,|(−6)−(−5)|=1,∴|−6|−|−5|=|(−6)−(−5)|;③|+6|−|−5|=1,|(+6)−(−5)|=11,∴|+6|−|−5|<|(+6)−(−5)|;故答案为:=,=,<;(2)|a|−|b|⩽|a−b|;故答案为:≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【点睛】本题考查了有理数的大小比较及绝对值的知识,解题的关键是注意培养自己由特殊到一般的总结能力.【变式9-3】(2023秋·湖北黄冈·七年级统考期末)有理数a,b,c在数轴上的位置如图所示,下列关系正确的是()A.|a|>|b|B.a>﹣b C.b<﹣a D.﹣a=b【答案】C【分析】先根据各点在数轴上的位置得出b﹤-c﹤0﹤a﹤c,再根据绝对值、相反数、有理数的大小逐个判断即可.【详解】从数轴可知:b﹤-c﹤0﹤a﹤c,∴∣a∣﹤∣b∣,a﹤-b,b﹤-a,-a≠b,所以只有选项C正确,故选:C.【点睛】本题考查了有理数的大小比较、相反数、绝对值、数轴的应用,解答的关键是熟练掌握利用数轴比较有理数的大小的方法.【题型10应用绝对值解决实际问题】【例10】(2023·浙江·七年级假期作业)某汽车配件厂生产一批圆形的零件,现从中抽取6件进行检查,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查记录如下表:123456+0.5−0.3+0.10−0.1+0.2(1)找出哪件零件的质量相对好一些?(2)若规定与标准直径相差不大于0.2毫米的产品为合格产品;则这6件产品中有哪些产品不合格?【答案】(1)第4件质量最好;(2)第1件、第2件产品不合格.【分析】(1)根据绝对值越小质量越好,越大质量越差即可知道哪件零件的质量相对来讲好一些;(2)按绝对值由大到小排即可.【详解】(1)解:∵|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2,∵0<0.1=0.1<0.2<0.3<0.5,∴|0|<|+0.1|=|-0.1|<|+0.2|<|-0.3|<|+0.5|,∴第4件质量最好;(2)解:∵|+0.5|=0.5>0.2,|-0.3|=0.3>0.2,∴第1件、第2件产品不合格.【点睛】本题主要考查绝对值的意义,可以结合绝对值的意义进行解答.【变式10-1】(2023秋·辽宁沈阳·七年级统考期中)如图,为了检测4个足球质量,规定超过标准质量的克数记为正数,不足标准质量的克数记为负数.下列选项中最接近标准的是( )A.B.C.D.【答案】B【分析】根据绝对值最小的最接近标准,可得答案.【详解】解:|−1.4|=1.4,|−0.5|=0.5,|0.6|=0.6,|−2.3|=2.3,0.5<0.6<1.4<2.3,则最接近标准的是−0.5.故选:B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.【变式10-2】(2023秋·山东济南·七年级校考阶段练习)按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_____.威化咸味甜味酥脆+10(g)-8.5(g)+5(g)-7.3(g)【答案】甜味【分析】找出表格中四个数值的绝对值最小的即可得.【详解】解:|+10|=10,|−8.5|=8.5,|+5|=5,|−7.3|=7.3,因为5<7.3<8.5<10,所以最符合标准的一种食品是甜味,故答案为:甜味.【点睛】本题考查了绝对值的应用,理解题意,正确求出各数的绝对值是解题关键.【变式10-3】(2023秋·浙江金华·七年级校考阶段练习)已知零件的标准直径是100mm,超过标准直径的数量记作正数,不足标准直径的数量记作负数,检验员抽查了五件样品,检查结果如下:序号12345直径(mm)+0.10−0.15+0.20−0.05+0.25(1)指出哪件样品的直径最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?【答案】(1)第4件样品的直径最符合要求;(2)第1,2,4件样品是正品;第3件样品为次品;第5件样品为废品.【分析】(1)表中的数据是零件误差数,所以这些数据中绝对值小的零件较好;(2)因为绝对值越小,与规定直径的偏差越小,每件样品所对应的结果的绝对值,即为零件的误差的绝对值,看绝对值的结果在哪个范围内,就可确定是正品、次品还是废品.【详解】解:(1)∵|−0.05|<|+0.10|<|−0.15|<|+0.20|<|+0.25|,∴第4件样品的直径最符合要求.(2)因为|+0.10|=0.10<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18.所以第1,2,4件样品是正品;因为|+0.20|=0.20,0.18<0.20<0.22,所以第3件样品为次品;因为|+0.25|=0.25>0.22,所以第5件样品为废品.【点睛】考查了绝对值,绝对值越小表示数据越接近标准数据,绝对值越大表示数据越偏离标准数据.。

数轴、相反数、绝对值易错点训练

 数轴、相反数、绝对值易错点训练

专题01数轴、相反数、绝对值易错题型训练考点一数轴1.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.﹣2D.﹣42.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.3.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=10,则点A表示的数为()A.﹣5B.0C.5D.﹣104.如图,有一个直径为1个单位长度的圆片,把圆片上的点放在数轴上﹣1处,然后将圆片沿数轴向右滚动一周,点A到达点A'位置,则点A'表示的数是()A.﹣π+1B.C.π+1D.π﹣15.在数轴上,与表示﹣2的点的距离是4个单位的点所对应的数是.6.一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是﹣8,6,现以点C为折点,将数轴向右对折,若点A'落在射线CB上,并且A'B=4,则C点表示的数是()A.1B.﹣1C.1或﹣2D.1或﹣37.在数轴上,点A、B表示的数分别为,,则A、B间的距离为.8.如图1,点A,B,C是数轴上从左到右排列的三点,分别对应的数为﹣4,b,5.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度尺1.5cm处,点C对齐刻度尺4.5cm处.(1)在图1的数轴上,AC=个单位长度;(2)求数轴上点B所对应的数b为.9.一天,某出租车被安排以A地为出发地,只在东西方向道路上营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10.假设该出租车每次乘客下车后,都在停车地等待下一个乘客,直到下一个乘客上车再出发.(1)将最后一名乘客送到目的地,出租车在A地何处?(2)若每千米的价格为3元,司机当天的营业额是多少?10.点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,线段AB的“和谐点”所表示的数为;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,此时a的值为.11.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请写出此时点P表示的数.考点二相反数1.﹣2022的相反数是()A.2022B.﹣2020C.﹣D.2.﹣(﹣5)的相反数是()A.﹣5B.﹣C.D.53.下列说法正确的有()①a的相反数是﹣a②所有的有理数都能用数轴上的点表示③若有理数a+b=0,则a、b互为相反数④﹣1的绝对值等于它的相反数A.1个B.2个C.3个D.4个4.若m与互为相反数,则m的值为()A.﹣3B.C.D.35.若式子3x与7x﹣10互为相反数,则x=.6.如果x的相反数是﹣2021,那么2﹣x的值是.7.已知a、b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c﹣d=.8.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.9.数轴上A点表示+8,B、C两点表示的数为互为相反数,且C到A的距离为3,求点B和点C各对应什么数?10.已知表示数a的点在数轴上的位置如图所示.(1)在数轴上表示出a的相反数的位置.(2)若数a与其相反数相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若数b表示的数与数a的相反数表示的点相距5个单位长度,求b表示的数是多少?考点三绝对值1.下列各数中,绝对值最小的是()A.﹣3B.﹣2C.0D.32.已知﹣3<x<3,下列四个结论中,正确的是()A.|x|>3B.|x|<3C.0≤|x|<3D.0<|x|<33.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)4.如图,检测排球的质量,其中质量超过标准的克数记为正数,不足的克数记为负数,下面已检测的四个排球中其中质量最接近标准的是()A.B.C.D.5.下列各式的结论成立的是()A.若|m|=|n|,则m=n B.若|m|>|n|,则m>nC.若m>n,则|m|>|n|D.若m<n<0,则|m|>|n|6.若a为有理数,且满足|a|=﹣a,则()A.a>0B.a≥0C.a<0D.a≤07.在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是()A.2023B.2021C.1011D.18.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣39.下列说法中正确的是()A.两个负数中,绝对值大的数就大B.两个数中,绝对值较小的数就小C.0没有绝对值D.绝对值相等的两个数不一定相等10.有理数m、n在数轴上的位置如图所示,则|m﹣n|+|m+n|的值为()A.2n B.2m C.﹣2n D.﹣2m11.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±212.下列说法正确的是()①已知a>0,b<0,则=1;②若|a+4|=﹣4﹣a,|b﹣3|=b﹣3,则化简|b+3|﹣|a﹣4|=a﹣b﹣7;③如果定义{a,b}=,当ab<0,a+b>0,|a|>|b|时,则{a,b}的值为a+b.A.①②B.①③C.②③D.①②③13.已知|a﹣1|+|b﹣2|=0.求(1)a+b的值;(2)|a|﹣|b|的值14.对于有理数a,b,n,若|a﹣n|+|b﹣n|=1,则称b是a关于n的“相关数”,例如,|2﹣2|+|3﹣2|=1,则3是2关于2的“相关数”.若x1是x关于1的“相关数”,x2是x1关于2的“相关数”,…,x4是x3关于4的“相关数”.则x1+x2+x3=.(用含x的式子表示)15.对于式子|x﹣1|+|x﹣5|在下列范围内讨论它的结果.(1)当x<1时;(2)当1≤x≤5时;(3)当x>5时.16.综合应用题:|m﹣n|的几何意义是数轴上表示m的点与表示n的点之间的距离.(1)|x|的几何意义是数轴上表示的点与之间的距离,|x||x﹣0|;(选填“>”“<”或“=”)(2)|2﹣1|几何意义是数轴上表示2的点与表示1的点之间的距离,则|2﹣1|=;(3)|x﹣3|的几何意义是数轴上表示的点与表示的点之间的距离,若|x﹣3|=1,则x=;(4)|x﹣(﹣2)|的几何意义是数轴上表示的点与表示的点之间的距离,若|x﹣(﹣2)|=2,则x=;(5)找出所有符合条件的整数x,使得|x﹣(﹣5)|+|x﹣2|=7这样的整数是.。

相反数与绝对值教案

相反数与绝对值教案

相反数与绝对值教案一、教学目标:知识与技能:1. 学生能够理解相反数的概念,能够求出一个数的相反数。

2. 学生能够理解绝对值的概念,能够求出一个数的绝对值。

3. 学生能够运用相反数和绝对值的概念解决一些简单的实际问题。

过程与方法:1. 通过实例引导学生理解相反数和绝对值的概念,培养学生观察、思考的能力。

2. 通过练习题,让学生巩固相反数和绝对值的求法,提高学生的计算能力。

情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。

2. 培养学生合作学习的精神,培养学生的团队意识。

二、教学重点与难点:重点:1. 相反数的概念及求法。

2. 绝对值的概念及求法。

难点:1. 相反数的求法。

2. 绝对值的求法。

三、教学准备:教师准备:1. 相反数和绝对值的定义。

2. 相反数和绝对值的例题。

3. 练习题。

学生准备:1. 预习相反数和绝对值的概念。

2. 准备好笔记本,记录重点知识。

四、教学过程:1. 引入新课:教师通过生活中的实例,如温度、方向等,引导学生思考相反数的概念。

2. 讲解相反数:教师给出相反数的定义,并通过示例讲解相反数的求法。

3. 讲解绝对值:教师给出绝对值的定义,并通过示例讲解绝对值的求法。

4. 练习求相反数和绝对值:教师给出一些数的相反数和绝对值,让学生进行练习。

5. 总结:教师引导学生总结相反数和绝对值的概念及求法。

五、课后作业:1. 完成练习题。

2. 找一些生活中的实例,运用相反数和绝对值的概念,与同学交流分享。

六、教学评估:教师应通过课堂观察、练习题和学生作业来评估学生对相反数和绝对值的理解程度。

重点关注学生是否能正确求出一个数的相反数和绝对值,是否能运用这些概念解决实际问题。

七、教学反馈与调整:八、拓展活动:教师可以设计一些拓展活动,如数学小游戏、数学日记等,让学生在轻松愉快的氛围中进一步巩固相反数和绝对值的知识。

例如,设计一个游戏,让学生通过卡片游戏找出配对的相反数或绝对值相等的数。

数字的绝对值与相反数运算

数字的绝对值与相反数运算

数字的绝对值与相反数运算在数学中,绝对值和相反数是与数字相关的基本概念。

理解这两个概念以及它们之间的运算规则,对于解决数学问题和应用数学在现实生活中的情境非常重要。

本文将介绍数字的绝对值和相反数的定义和运算规则,并且探讨它们在实际问题中的应用。

一、绝对值的定义和运算规则绝对值是一个数在不考虑其正负号的情况下的大小,用符号 |x| 表示,其中 x 可以是任意实数。

绝对值的定义如下:- 当 x 大于等于 0 时,|x| = x;- 当 x 小于 0 时,|x| = -x。

绝对值运算的规则如下:- 两数的和的绝对值小于等于两数绝对值的和:|a + b| ≤ |a| + |b|;- 两数的差的绝对值小于等于两数绝对值的差:|a - b| ≤ |a| + |b|;- 绝对值与乘法的交换律:|a * b| = |a| * |b|;- 绝对值与除法的交换律:|a / b| = |a| / |b|(当 b 不等于 0 时)。

二、相反数的定义和运算规则相反数是指一个数与其相反数相加等于零的数。

设 x 是一个实数,则其相反数为 -x,即 x + (-x) = 0。

相反数运算的规则如下:- 两个数的相反数之和等于零:x + (-x) = 0;- 相反数与加法的交换律:x + (-y) = (-y) + x;- 相反数与减法的交换律:x - y = x + (-y);- 相反数与乘法的交换律:(-x) * (-y) = x * y。

三、绝对值和相反数的应用举例1. 数轴上的距离:数轴上的两个点 A 和 B 之间的距离可以通过计算它们在数轴上的坐标的差值的绝对值来求得。

例如,点 A 的坐标为 -3,点 B 的坐标为 5,那么 AB 的距离为 |(-3) - 5| = 8。

2. 温度计算:在物理学中,温度的绝对值定义为绝对零点,常表示为0K(开氏度)。

相反数用于表示摄氏度和华氏度的温度变化。

例如,在摄氏度和华氏度之间进行转换时,可以利用摄氏度和华氏度的相对关系,通过相反数的运算进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西
-4



-3
3km -2 -1
0
3km 1 2

4

3
这两个有理数互为相反数,到原点的 距离相等.
我距原点的距 离是多少?
我距原点的距 离是多少?


-3 -2 -1
0
1
2
3
4
(1)如何用有理数表示兔子与狗的位置情况? (2)这两个有理数有什么关系? 兔子和狗在数轴上的位置互为相反数.
-3与3互为相反数,把它们在数轴上表 示出来,它们有什么相同之处和不同之处?
再次观察下列数,现在你会比较它 们的大小吗?
> -6___-8 > 5___-7
-2___0 <
负数和负数 正数和负数
负数和0 正数和0
> 2____0
任意几个数比较大小方法: (1)按照负数<0,0<正数,负数<正 数的规定比较; (2)在数轴上找出每个数,观察它们 从左到右的顺序,
练一练
用“<”,“>”,“=”连接下面的数.
6.将下列这些数按从小到大的顺 序排列,并用<连接.
0;-3,|5|,-(-4),-|-5|.
-|-5|< -3 <0< -(-4)<|5|.
7.已知x>4,则|x-3|+ |4-x|.
解: 因为 x>4,
所以x-3>0, 4-x<0, 所以|x-3|+ |4-x|=x-2+(x-4) =2x-6.
随堂练习
5 1. (1)-(+5)是____的相反数;
2 2 (2)( ) 是____的相反数; 3 3
-8.9 (3)-(-8.9)是_____的相反数; 12 (4) +(-12)是_____的相反数.
2.填空.
(1)若-(a-4)是正数,则 a-4 < 0;
(2) -[+(a+b)]若是负数,则 a+b > 0.
随堂练习
1.下列说法正确的是( C )
A.有理数的绝对值一定是正数 B.如果两个数的绝对值相等,那么这两个 数相等 C.符号相反且绝对值相等的数互为相反数 D.一个数的绝对值越大,表示它的点在数 轴上离原点越近
0 2.若|a|+ |b-3| =0.则a =_____, b= _____. 3 3.如果一个数的绝对值等于4.53 , 4.53或-4.53 则这个数是_______________. 3或-1 4.如果|x-1|=2,则x=__________. 5.如果a 的相反数是-0.86,那么|a| 0.86 =______.
3

3

0 1 2 3 4 -3与3在数轴上所表示的点到原点的距 离是3个单位长度,它们的符号不同.我们把 这个距离3叫做+3和-3的绝对值.
-3 -2 -1
知识要点
一般地,数轴上表示数a的点与 原点的距离叫做数a的绝对值,记做 |a| .
互为相反数的两个数的绝对值 有什么关系?
一对相反数虽然分别在原点两边, 但它们到原点的距离是相等的.
(1)-1是1的相反数; (2)1是-1的相反数; 2 5 (3) 与 互为相反数; 5 2 (4)-4是-(-4)相反数.
2.分别说出9,-7,0,-0.2,x 的相反数. 9的相反数是-9; -7的相反数是7;
0的相反数是0;
-0.2的相反数是0.2;
x的相反数是-x.
一个正数的相反数是一个负数; 一个负数的相反数是一个正数; 0的相反数是0.
一般地,a的相反数是
-a的相反数是
-a
.
a
.
a和-a互为相反数
在一个数前面加上“-”号表示求 这个数的相反数,如果在这些数前面加 上“+”号呢?
5→+5 -6→+(-6)
结论:在一个数前面加上“+”仍
表示这个数,“+”号可省略.
0的相反数是多少?(从数 轴上考虑)
0的相反数是0.
练一练
1.判断下列说法是否正确.
3.填空: (1)a-3的相反数是 3-a ,2-b 的相反数是 b-2 ;
1 1 (2) x是 2 x 的相反数; 2
(3)如果-a=-5,那么-a的相反数 是 5 .
甲乙两辆车从某一汽车总站开出,甲车 向东行驶3千米后停止,乙车向西行驶3千 米后停止. (1)如何用有理数表示它们的行驶情况? (2)这两个有理数有什么关系?
练一练
1.写出下列各数的绝对值.
3 12, -5, , -8, 0, 3.2 . 5
12
5
3 5
8
0
3.2
练一练
2.判断下列说法是否正确.
(1)一个数的绝对值是4 ,则这数是-4.× (2)|3|>0. √ (3)|-1.3|>0.√ (4)有理数的绝对值一定是正数.× (5)若a=-b,则|a|=|b|. √ (6)若|a|=|b|,则a=b.× (7)若|a|=-a,则a必为负数. × (8)互为相反数的两个数的绝对值相等.√
哈尔滨 -20℃ 北京 上海 武汉 广州
< -10℃ < 0℃ < 5℃ < 10℃
有理数大小的比较方法:
在数轴上表示的两个数,右边的数总比左 边的数大.

-3 -2 -1 0 1 2

3
负数
<
0
<
正数
例:比较下列各数的大小.
(1)-(-3)和-(+2);
异号两数比 较要考虑它们的 正负.
解:先化简,-(-3)=3, -(+2)=-2, 因为正数大于负数,所以3>-2,即 -(-3)>-(+2)
这里的数a可以表示什么样的数?
这里的数a可以是正数,负数和0.
小红由图得出4的绝对值为3,你 认为对吗?为什么?
3个长度单位
-3 -2 - 1
0
1
2
3
4
绝对值是5的数有几个?各是什么? 有没有绝对值是-4.5的数?
一个正数的绝 对值是它本身
绝对值是 5 的数有两个,各是 5 与-5; 没有绝对值是-4.5的数.
画数轴,在数轴上表示下列各数.
+2,-2,+4, -4,0.
-4

-2



2



-4
-3
-2
-1
0
1
2
3
4
观察所画的数轴及表示的点,回答 下列问题.
-4

-2



2

4

-4
-3
-2
-1
0
1
2
3
4
(1)4与-4分别在原点的 右边 和 左边 . 它们到原点的距离为
4 .
个, +2和-2
(2)数轴上与原点距离是2 的点有 2
练一练
简化下列各数.
(1) -(+3); -3 (2) +(-2); -2 (3)+(+4); 4 (4)-(-5); 5
a的相反数-a前有负号,那么 -a一定是负数吗?
课堂小结
1.相反数成对出现; 2.只有符号不同的两个数才互为相反数; 3.数轴上表示相反数的两个对应点,分 别位于原点两侧,它们到原点距离相等.
小学时学过比较数的大小吗?怎样比 较的?
(1)8____6 >
绝对值大的大 先比整数部分再比小 数部分
(2) 2.3265___2.3266 <
(3)0.3___1 <
分数与小数互化比较
正数大于0 通分后根据同分母比较
(4)0.02___0 > (5) 4 ___ 3 >
5
4
3
两个正数,绝对值大的较大, 正数大于0.
这些点表示的数是

一般地,设a是一个正数,数轴上与原 点的距离是a的点有两个,它们分别在原点 的左右,表示-a和a,我们说这两点关于原 点对称.
注意:到原点的距离相等.
观察下面两个数,有什么异同?
符号不同
+10.5
-10.5
数字相同
知识要点
只有符号不同的两个数叫做互 为相反数.
举几个互为相反数的例子.
6 和-6,
3.6和-3.6, a 和-a.
符号不同,数字相同.
数轴上表示相反数的两个点 和原点有什么关系?
在数轴上表示互为相反数的两个 数的点,分别位于原点的两旁,且与 原点的距离相等.
-a的相反数是-(-a),-a的相反数
是a,所以- (-a) =a.
求一个数的相反数就是在这个数 的前面添上“-”号.
一个负数的绝对 值是它的相反数
绝对值小于2的整数一共有多少个?
绝对值小于2的一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0.
上述三条也可表述成:
(1)当a>0,|a|=a; (2)当a<0,|a|=-a;
a 0
(3)当a=0,|a|=0.
在日常生活和生产中,我们借助绝对值 的意义可以判断某些产品质量的好差,你 能回答下列问题吗? 正式排球比赛对所有排球的质量有严 格的规定,下列5个质量检测结果:(用正 数记超过质量的克数,用负数记不足质量 的克数) +15,-10,+25,-25,-8 请指出哪个排球的质量好一些.
知识要点
(1)正数大于0,0大于负数,正数 大于负数; (2)两个负数,绝对值大的反而小.
2.
-3.5

3 2

2 3 0.75
●●
-4
-3
-2
-1
0
1
2
3
4
1 9 3. 4,- 2, 1.5, 0, - , . 3 4
相关文档
最新文档