人教版七年级数学数轴、相反数、绝对值测试题
数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
人教版七年级数学上册第一章 专题训练(一) 数轴、相反数与绝对值的应用

8.如图所示,一个单位长度表示2,观察图形,回答问题: (1)若B与D所表示的数互为相反数,则点D所表示的数为多少? (2)若A与D所表示的数互为相反数,则点D所表示的数为多少? (3)若B与F所表示的数互为相反数,则点D所表示的数的相反数为多少?
解:(1)因为B与D所表示的数互为相反数,且B与D之间有4个单位长度, 每个为2,所以可得点D所表示的数为4 (2)同理A与D所表示的数互为相反数,且它们之间距离为10, 所以点D表示的数为5 (3)B与F所表示的数互为相反数,B,F两点间距离为12, 可得C,D中间的点为原点,则D表示的数为2,它的相反数为-2
15.(1)式子|m-3|+6的值随m的变化而变化, 当m为何值时,|m-3|+6有最小值?最小值是多少? (2)当a为何值时,式子8-|2a-3|有最大值?最大值是多少? 解:(1)当m-3=0,即m=3时,|m-3|+6有最小值,最小值为6
(2)当 2a-3=0,即 a=32 时,8-|2a-3|有最大值,最大值为 8
解:(1)因为|a|=5,|b|=2,所以a=5或-5,b=2或-2, 由数轴可知,a<b<0,所以a=-5,b=-2 (2)表示a,b两数的点之间的距离为3
(3)①当点 C 在点 B 右侧时,根据题意,可知点 C 到点 B 距离为32 , 则点 C 表示的数为-12 ; ②当点 C 在点 B 左侧时,根据题意,可知点 C 到点 B 距离为34 , 则点 C 表示的数为-141 . 综上所述,点 C 表示的数为-12 或-141
用“<”把各数连接起来为-2.5<-|-2|<0<12 <2<-(-3)
3.有理数a,b,c在数轴上的对应点如图所示:
(1)在横线上填入“>”或“<”; a__<__0,b_>___0,c_<___0,|c|__<__|a|; (2)试在数轴上找出表示-a,-b,-c的点; (3)试用“<”号将a,-a,b,-b,c,-c,0连接起来. 解:(2)略 (3)a<-b<c<0<-c<b<-a
七年级相反数和绝对值练习题

七年级数学 【1 】相反数和绝对值测试题班级姓 名 得分一.选择题(每题3分,共30分)1.有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )A .72分B .+8分C .-8分D .-72分2. 下列各数中,互为相反数的是( )A.│-32│和-32B.│-23│和-32C.│-32│和23D.│-32│和323. 下列说法错误的是( )A.一个正数的绝对值必定是正数B.一个负数的绝对值必定是正数C.任何数的绝对值都不是负数D.任何数的绝对值 必定是正数4.若向西走10m 记为-10m,假如一小我从A 地动身先走+12m 再走-15m,又走+18m,最后走-20m,则此人的地位为( )A .在A 处B .离A 东5mC .离A 西5mD .不肯定5.一个数的相反数小于它本身,这个数是( )A .随意率性有理数B .零C .负有理数D .正有理数6. │a │= -a,a 必定是( )A.正数B.负数C.非正数D.非负数7. 下列说法准确的是( )A.两个有理数不相等,那么这两个数的绝对值也必定不相等B.任何一个数的相反数与这个数必定不相等C.两个有理数的绝对值相等,那么这两个有理数不相等D.两个数的绝对值相等,且符号相反,那么这两个数是互为相反数.8.下列说法中,准确的是().(A)|-a|是正数(B)|-a|不是负数(C)-|a|是负数(D)不是正数9.如图所示,用不等号衔接|-1|,|a|,|b|是()A.|-1|<|a|<|b|B.|a|<|-1|<|b|C.|b|<|a|<|-1|D.|a|<|b|<|-1|10. -│a│= -3.2,则a是()A.3.2B.-3.2C. 3.2D.以上都不合错误二.填空题(每题3分,共30分)11. 如a = +2.5,那么,-a=假如-a= -4,则a=12. ―(―2)= ; 与―[―(―8)]互为相反数.13. 假如a 的相反数是最大的负整数,b的相反数是最小的正整数,a+b= .14. a - b的相反数是 .15. 假如 a 和 b是符号相反的两个数,在数轴上a所对应的数和 b所对应的点相距6个单位长度,假如a=-2,则b的值为 .16. 在数轴上与暗示3的点的距离等于4的点暗示的数是_______.17.假如将点B向左移动3个单位长度,再向右移动5个单位长度,这时点B暗示的数是0,那么点B本来暗示的数是____________.18. 若a,b互为相反数,则|a|-|b|=______.19.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;20. 若a 为整数,|a|<1.999,则a 可能的取值为_______.三.解答题(共40分)31. 盘算││×││×│-40│(6分)32.盘算 (6分)33.比较下列各组数的大小: (8分)34. 已知│a │=3,│b │=5,a 与b 异号,求a 与b 的值. (10分)35.质检员抽查某种零件的长度,超出划定长度的记为正数,缺少划定长度的记为负数.检讨成果如下:第一个为0.13毫米,第二个为-0.2毫米,第三个为-0.1毫米,第四个为0.15毫米,则长度最小的零件是第几个?哪一个零件与划定长度的误差最小? (10分)填补演习1. 已知b a 和互为相反数,m .n 互为倒数,(),2--=c 求c mn b a ++. 2. 已知y x y x y x +>==求且,,12,7的值. 3. 已知c b a c b a 32,0432++=-+-+-计算.4. 在数轴上有三个点A .B .C ,如图所示:⑴将B点向左移动4个单位,此时该点暗示的数是若干?⑵将C点向左移动6个单位得到数x1,再向右移2个单位得到x2,x1,x2分离是若干?用“>”把B,x1,x2衔接起来.⑶如何移动A.B.C中的两点,才干使3个点暗示的数雷同?有几种办法?。
人教版七年级数学上册练习题

人教版七年级数学上册练习题数轴、相反数、绝对值巩固练习一、填空题:1.若上升5 m 记作+5 m,则-8 m 表示 ;如果-10元表示支出10元,那么+50元表示 ;如果零上5℃记作+5℃,那么零下2℃记作 ;太平洋中的马里亚纳海沟深达11 034 m,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔 ,比海平面低30 m 的地方,它的高度记作海拔 .2.(实验月考)在数轴上大于-4.12的负整数有 .3.(阳光月考)到原点的距离等于3的数是 .4.(外中月考)数轴上表示-2和+10的两个点分别为A,B,则A,B 两点间的距离是 .5. (二中月考 )在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N 表示的数是 .6.(三中月考)已知数轴上点A 与原点的距离为2,则点A 对应的有理数是 ,点B 与点A 之间的距离为3,则点B 对应的有理数是 .7.填空:5.3-= ; 21+= ; 5--= ; 若x<0,则x = ,x -= ; 若m<n,则m n -=. 8.(育才月考)若3a =,则a= ;若3a -=,则a= ; 若2a -=,a<0,则a= ;若a b =,b=7,则a= ; 若a b =,b=7,a ≠b,则a= . 9.填空:(1)311--= -311 ;(2)2.42.4--= - = ; (3)53++-= + = ; (4)22--+=| - |= ; (5)3 6.2-⨯= × = ; (6)21433-÷-= = = . 10.把下列各数填入它所在的集合里: 2,7,32-,0,2 018,0.618,3.14,-1.732,-5,+3①正数集合:{ } ②负数集合:{ } ③整数集合:{ } ④非正数集合:{ } ⑤非负整数集合:{ } ⑥有理数集合:{ } 二、选择题:11.(外中月考)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B-3 C .+3 D .+412.(实验月考)某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .10 g B .8 g C .7 g D .5 g13.(市直期末)a,b 为有理数,在数轴上的位置如图所示,则下列关于a,b,0三者之间的大小关系,正确的是( )aA .0<a<bB .a<0<bC .b<0<aD .a<b<014.(三中月考)文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店 B .文具店 C .文具店西边40米 D .玩具店东边60米15.(育才月考)下列各组数中,互为相反数的是( ) A .0.4与-0.41 B .3.8与-2.9 C .)8(--与8- D .)3(+-与(3)+- 16.(实验月考)下列化简不正确的是( ) A .( 4.9) 4.9--=+ B .( 4.9) 4.9-+=- C .[]( 4.9) 4.9-+-=+ D .[]( 4.9) 4.9+-+=+ 17.(外中月考)下列各数中,属于正数的是( ) A .)2(-+ B .3的相反数 C .)(a -- D .-3的相反数 18.(三中月考)有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数 19.(阳光月考)下列说法正确的是( ) A .一个数的绝对值一定大于它本身 B .只有正数的绝对值等于它本身 C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 20.(市直期末)若x x =-,则x 的取值范围是( ) A .1x =- B .0x = C .x ≥0 D .x ≤0 三、解答题:21.(市直期中22.请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
2022-2023人教版七年级数学上册第一单元 数轴、相反数与绝对值 常考易错习题检测 (带答案)

2022-2023人教版七年级数学上册第一单元数轴、相反数与绝对值常考易错习题检测(带答案)一.选择题(共10小题)1.在数轴上表示下列四个数中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.62.如图,在数轴上,点A、B分别表示数a、b,且a+b=0,若AB=8,则点A表示的数为()A.﹣4B.0C.4D.83.如图,在数轴上,若点A,B表示的数分别是﹣2和10,点M到点A,B距离相等,则M表示的数为()A.10B.8C.6D.44.﹣2022的相反数是()A.2022B.﹣2022C.D.5.在3、0、﹣4、﹣2四个数中最小的数是()A.3B.0C.﹣4D.26.﹣的绝对值是()A.﹣B.﹣C.D.7.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦8.若a为有理数且|a﹣1|=4,则a的取值是()A.5B.±5C.5或﹣3D.±39.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<010.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④二.填空题(共7小题)11.如图所示,直径为单位1的圆从表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,则A点表示的数是.12.点A、B在数轴上对应的数分别为﹣3和2,则线段AB的长度为.13.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N 同时出发,经过秒,点M、点N分别到原点O的距离相等.14.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.15.绝对值不大于3的所有整数有个,它们的和是.16.若|a|=2,|b|=4,且|a﹣b|=b﹣a,则a+b=.17.请你将32,(﹣2)3,0,|﹣|,﹣这五个数按从大到小排列:.三.解答题(共6小题)18.画出数轴,并解答下列问题:(1)在数轴上表示下列各数:5,3.5,﹣2,﹣1;(2)在数轴上标出表示﹣1的点A,写出将点A沿数轴平移4个单位长度后得到的数.19.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为3,点B到点C的距离为8,设点A、B、C所对应的数的和是m.(1)若以A为原点,则数轴上点B所表示的数是;若以B为原点,则m=;(2)若原点O在图中数轴上,且点B到原点O的距离为4,求m的值.20.化简下列各数:①+(﹣3);②﹣(+5);③﹣(﹣3.4);④﹣[+(﹣8)];⑤﹣[﹣(﹣9)].21.先画数轴并在数轴上表示﹣3、﹣|﹣2|、﹣(﹣1)、0、+4、|﹣3|各数的点,再用“<”把这些数连接起来.22.若|x+3|与|y+2|互为相反数,求x+y的值.23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵|﹣2|=2,|1.3|=1.3,|﹣0.4|=0.4,|0.6|=0.6,又∵2>1.3>0.6>0.4,∴离原点最近的是﹣0.4,故选:C.2.【解答】解:∵a+b=0,∴b=﹣a,又∵AB=8,∴b﹣a=8.∴﹣a﹣a=8.∴a=﹣4,即点A表示的数为﹣4.故选:A.3.【解答】解:由题意得:AB=10﹣(﹣2)=10+2=12,∵点M到点A,B距离相等∴MB=12÷2=6,∴10﹣6=4,∴点M表示的数是:4,故选:D.4.【解答】解:﹣2022的相反数是2022,故选:A.5.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣2<0<3,∴在﹣、0、﹣4、﹣2四个数中,最小的数为﹣4.故选:C.6.【解答】解:根据绝对值的定义,得=.故选:C.7.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最低的液体是液态氦.故选:D.8.【解答】解:∵|a﹣1|=4,∴a﹣1=4或a﹣1=﹣4,解得:a=5或a=﹣3.故选:C.9.【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.10.【解答】解:①根据数轴可以知道:﹣2<a<﹣1,∴1<﹣a<2,∴0<﹣a﹣1<1,符合题意;②∵﹣2<a<﹣1,∴﹣1<a+1<0,∴0<|a+1|<1,符合题意;③∵﹣2<a<﹣1,∴1<|a|<2,∴﹣2<﹣|a|<﹣1,∴0<2﹣|a|<1,符合题意;④∵1<|a|<2,∴<|a|<1,符合题意.故选:D.二.填空题(共7小题)11.【解答】解:由直径为单位1的圆从数轴上表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与﹣1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是π﹣1,故答案为:π﹣1.12.【解答】解:∵点A、B在数轴上对应的数分别为﹣3和2,∴AB=2﹣(3)=5.故答案为:5.13.【解答】解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.14.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.15.【解答】解:绝对值不大于3的所有整数有±3±2±10,共7个,和为:(+3)+(﹣3)+(+2)+(﹣2)+(+1)+(﹣1)+0=0,故答案为:7,0.16.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.17.【解答】解:如图所示,故32>|﹣|>0>﹣>(﹣2)3.故答案为:32>|﹣|>0>﹣>(﹣2)3.三.解答题(共6小题)18.【解答】解:(1)如图所示,(2)如图所示:将点A平移4个单位长度后得到的数是3或﹣5.19.【解答】解:(1)∵点A到点B的距离为3,A为原点,∴数轴上点B所表示的数是3,B为原点,∴数轴上点B所表示的数是0,点A表示的数是﹣3,点C表示的数是8,∴m=﹣3+0+8=5,故答案为:3,5;(2)∵点A到点B的距离为3,点B到点C的距离为8,点B到原点O的距离为4,∴当O在B的左边时,A、B、C三点在数轴上所对应的数分别为1、4、12,∴m=1+4+12=17,当O在B的右边时,A、B、C三点在数轴上所对应的数分别为﹣7、﹣4、4,∴m=﹣7﹣4+4=﹣7,综上所述:m的值为﹣7或17.20.【解答】解:①+(﹣3)=﹣3;②﹣(+5)=﹣5;③﹣(﹣3.4)=3.4;④﹣[+(﹣8)]=﹣(﹣8)=8;⑤﹣[﹣(﹣9)]=﹣(+9)=﹣9.21.【解答】解:﹣|﹣2|=﹣2,﹣(﹣1)=1,+4=4,|﹣3|=3,在数轴上表示各数,如图:排列为:﹣3<﹣|﹣2|<0<﹣(﹣1)<|﹣3|<+4.22.【解答】解:∵|x+3|与|y+2|互为相反数,∴|x+3|+|y+2|=0,∴|x+3|=0,|y+2|=0,即x+3=0,y+2=0,∴x=﹣3,y=﹣2.∴x+y=﹣3+(﹣2)=﹣5,即x+y的值是﹣5.23.【解答】解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0。
七年级数学试题(数轴-相反数-绝对值)

七年级数学试题(数轴,相反数,绝对值) 班级___________姓名____________一、填空题1.-2的相反数是 ,0。
5的相反数是 ,0的相反数是 。
2.如果a 的相反数是-3,那么a = 。
如果-a = -4,则a = 3。
―(―2)= . 与―[―(―8)]互为相反数 4。
如果 a ,b 互为相反数,那么a + b = , 5. a+5的相反数是3,那么, a = .6.如果 a 的相反数是最大的负整数,b 的相反数是最小的正整数,则 a + b = 。
7.一个数的相反数大于它本身,那么,这个数是 。
一个数的相反数等于它本身,这个数是 ,一个数的相反数小于它本身,这个数是 。
8. 数轴上表示 -3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________。
9. a - b 的相反数是 .10。
一个点从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是 。
11. ______7.3=-; ______0=;______3.3=--; ______75.0=+-.______31=+;______45=--;______32=-+. 12.当a a -=时,0______a ;当0>a 时,______=a13.在数轴上,绝对值为4,且在原点左边的点表示的有理数为_________ 14。
7=x ,则______=x ; 7=-x ,则______=x .15. 如果3>a ,则 ______3=-a ,______3=-a .16. 已知两个数 556 和 283-,这两个数的相反数的和是_________ 17。
已知m 是6的相反数,n 比m 的相反数小2,则 m n + 等于_________ 18.互为相反数两数和为 ,互为倒数两数积为 19.把数5-,5.2,25-,0,213用“<”号从小到大连起来:20.绝对值大于1而小于4的整数有 个,分别是________________________二、选择题1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0-11
a b
检测题
一、填空题(每小题3分,共30分) 1、在数+8.3、 4-、8.0-
、
51
-、 0、 90、 3
34-、|24|--中,________________是正数,____________________________是整数, 是非负数。
2、用“>”、“<”、“=”号填空:(1)1___02.0-; (2)4
3
___54; (3)][)75.0(___)43
(-+---;(4)14.3___7
22
--。
3、绝对值大于1而小于4的整数有____________,其和为_________。
4、1--的相反数是______,138⎛⎫-- ⎪⎝⎭
的倒数是_________. 5、数轴上表示数5-
和表示14-的两点之间的距离是__________。
6、若0|2|)1(2
=++-b a ,则b a +=_________。
7、观察下面一列数,按规律在横线上填写适当的数
1357
,,,261220
--,______,________. 8、如果a 、b 互为倒数,c 、d 互为相反数,且m 的绝对值为1,则代数式2ab-(c+d )+m 2=_______。
9、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________; 10、观察下列顺序排列的等式: 9×0+1=1; 9×1+2=11; 9×2+3=21; 9×3+4=31; 9×4+5=41; ……
猜想第n 个等式(n 为正整数)应为_________________________ 二、选择题(每小题3分,共30分)
1、有理数a 、b 在数轴上的对应的位置如图所示: 则( ) A .a + b <0 B .a + b >0; C .a -b = 0 D .a -b >0
2、下面说法正确的有( ) ① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数. A.0个 B.1个 C.2个 D.3个
3、下列说法正确的是( )
A.整数就是正整数和负整数
B.负整数的相反数就是非负整数
C.有理数中不是负数就是正数
D.零是自然数,但不是正整数 4、下列代数式中,值一定是正数的是( )
A .x 2 B.|-x+1| C.(-x)2
+2 D.-x 2+1 5、已知两个有理数的和为负数,则这两个有理数( )
A 、均为负数
B 、均不为零
C 、至少有一正数
D 、至少有一负数
6、已知数轴上两点A 、B 分别对应﹣3、﹣6,若在数轴上找一点C ,使得点A 与点C 的距离为4;找一点D ,使得点B 与点D 的距离为1,则下列何数不可能为点C 与点D 的距离( ) A 、0
B 、2
C 、4
D 、6
7、已知a ≠b ,a=-5,|a|=|b|,则b 等于( )
(A)+5 (B)-5 (C)0 (D)+5或-5
8、一个数在数轴上对应的点到原点的距离为m ,则这个数的绝对值为( ) (A)-m (B)m (C)±m (D)2m
9、设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于( ) A -1 B 0 C 1 D 2 10、已知a 为有理数,下列式子一定正确的是 ( )
A .︱a ︱=a
B .︱a ︱≥a
C .︱a ︱=-a
D . 2
a >0 三、计算.(32分)
(1)、15+(-22) (2)、(-13)+(-8) (3)、(-0.9)+1.51
(4)、23+(-17)+6+(-22) (5)(-2)+3+1+(-3)+2+(-4)
(6))1713(134)174()134(-++-+- (7))4
12(216)313()324(-++-+-
(8)(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)
四、已知|a|=7,|b|=3,求a+b 的值。
(6分)
五、若a<0时,化简(5分)
六、已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值. (5分)
七、观察数表.(4分)
根据其中的规律,在数表中的方框内填入适当的数.
八、同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。
试探索: (1)求|5-(-2)|=______。
(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是_____。
(3)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有写出最小值如果没有说明理由。
(8分)。