七年级数学相反数绝对值测试题2
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
2.3.2绝对值与相反数:相反数(7大题型提分练)七年级数学上册同步精品课堂「含答案」

2.3.2 绝对值与相反数:相反数求一个数的相反数1.的相反数是( )A B .C D .2.|3|--的相反数是( )A .3-B .3C .13D .13-3.a b c +-的相反数是( )A .a b c--+B .a b c-+C .a b c-++D .a b c---4.填空:(13)--是 的相反数;()20-+是 的相反数.5.已知a 是5-的相反数,b 比最小的正整数大4,c 是相反数等于它本身的数,则32a b c ++的值是 .题型二 相反数的有关辨析6.下列说法中,正确的是( )A .()3--与3-互为相反数B .相反数等于它本身的数有无数个C .有理数a 一定比a -大D .a -的相反数就是a7.下面说法正确的有( )①符号相反的数互为相反数;②()3.8--的相反数是3.8;③一个数和它的相反数不可能相等;④正数与负数互为相反数.A .0个B .1个C .2个D .3个8.下列说法正确的有( )(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)互为相反数的两个数的绝对值相等.A .1个B .2个C .3个D .4个9.下列判断正确的是( )A .若|a|=|b|,则a=b B .若|a|=|b|,则a= -b C .若a=b ,则|a|=|b|D .若a=-b ,则|a|= -|b|10.下列说法:①若a 、b 互为相反数,则a +b =0;②若a +b =0,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-;④若1ab=-,则a 、b 互为相反数.其中正确的结论是( ).A .②③④B .①②③C .①②④D .①②题型三 绝对值与相反数11.若15a -=-,则a 的值为( )A .5±B .15±C .15D .15-12.若26x -=-,则x =.13.若43y y +=-,则y 的值是.题型四 数轴与相反数14.在数轴上表示下列各数:5-,2,0,112-,4.5,0.5,3-,(1)--,并将它们的相反数用“<”符号连接起来.15.在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-16.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上分别用A ,B 两点表示a -,b -;(2)若数b 与b -表示的点相距20个单位长度,则b 与b -表示的数分别是什么?(3)在(2)的条件下,若数a 表示的点与数b 的相反数表示的点相距5个单位长度,则a 与a -表示的数是多少?17.如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A ,B 表示的数是互为相反数,那么点C 表示的数是_______,在此基础上,在数轴上与点C 的距离是3个单位长度的点表示的数是__________(2)如果点D ,B 表示的数是互为相反数,那么点E 表示的数是_______(3)在第(1)问的基础上解答:若点P 从点A 出发,以每秒1个单位长度的速度向点B 的方向匀速运动;同时,点Q 从点B 出发,以每秒2个单位长度的速度向点A 的方向匀速运动.则两个点相遇时点P 所表示的数是多少?题型五 多重符号的化简18.下列化简,正确的是( )A .()1010éù---=-ëûB .()33--=-C .()55-+=D .()88éù--+=-ëû19.若2x -=,则()x ---éùëû的值为 .20.化简下列各数:①()8--= ;②()0.75-+= ;③35éùæö---=ç÷êúèøëû ;④()3.8-+-=éùëû .21.(1)(5)++= ;(2)()12--= ;(3)()3.2éù--+ëû= ;(4)()3.2éù---ëû= ;(5)()27éù-+-=ëû;(6)23ìüéùæö-+-+=íýç÷êúèøëûîþ.题型六 相反数的判定22.下列各组数中,互为相反数的是( )A .()3.2--与 3.2-B .2.3与2.31C .()4.9-+-éùëû与4.9D .()1-+与()1+-23.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .()7--与7C .115--与65æö--ç÷èøD .1100æö--ç÷èø与0.01+-24.下列各对数:“①()4--与()4++;②-53æö-÷çøè与-35æö+÷çøè;③-112æö+÷çøè与+112æö-÷çøè;④()1éù-+-ëû与()1éù-++ëû”中,互为相反数的有( )A .1对B .2对C .3对D .4对题型七 相反数的性质25.已知有理数a 表示数5,b 与c 互为相反数,则233a b c --的值为 .26.如果代数式35x +与2x 的值互为相反数,则x 的值为 .27.若5a -与1-互为相反数,那么=a .28.两个有理数互为相反数,则它们的积( )A .符号为正B .符号为负C .一定不小于0D .一定不大于029.若a 与b 互为相反数,则22520202023224a b ab+=( )A .2020-B .2-C .1D .230.a 为有理数.定义符号“※”:当a >﹣2时,※a=﹣a ;当a <﹣2时,※a=a ;当a=﹣2时,※a=0.根据这种定义.则※[﹣4+※(2﹣3)]的值为( )A .3B .﹣3C .5D .﹣531.用“Þ”与“Ü”表示一种法则:()a b b Þ=-,()a b a Ü=-,如(23)3Þ=-,则()()()()202320242022202120481024512256ÞÜÞÜÞÜÞ=éùéùëûëû .32.求方程32(02)x a a +-=<<的所有解的和.1.C【分析】本题考查了相反数.直接根据相反数的定义作答即可.【详解】解:.故选:C 2.B【分析】根据“只有符号不同的两个数叫做互为相反数”以及去绝对值解答.【详解】解:3||3-= ,33\--=-的相反数是3.故选: B .【点睛】本题考查了相反数以及绝对值,掌握相反数的定义是关键.3.A【分析】本题考查了相反数的定义及去括号法则,解题的关键是熟记定义.根据相反数的定义,即可得到答案.【详解】解:a b c +-的相反数是:()a b c a b c -+-=--+;故选择:A .4.13-20【分析】本题考查相反数的定义,解题的关键是掌握求相反数的方法.【详解】解:(13)--是13-的相反数;()20-+是20的相反数.故答案为:13-,20.5.25【分析】根据()55a =--=,最小的正整数是1,相反数等于它本身的数是0,进行求解即可.【详解】解:∵a 是5-的相反数,∴5a =,∵最小的正整数是1,且b 比最小的正整数大4,∴145b =+=,∵相反数等于它本身的数是0,∴0c =,∴323525025a b c ++=´+´+=.故答案为:25.【点睛】本题主要考查了相反数的定义,代数式求值,解题的关键是熟记相关结论,准确计算.6.D【分析】本题主要考查相反数,根据相反数的意义逐项分析即可得出答案.【详解】解:A. ()33,33--=-=,所以,()3--与3-相等,故选项A 说法错误,不符合题意;B. 相反数等于它本身的数有1个,是0,故选项B 说法错误,不符合题意;C.当0a =时,a a =-,故选项C 说法错误,不符合题意;D. a -的相反数就是a ,说法正确,故选项D 符合题意.故选:D .7.A【分析】根据“只有符号相反的数互为相反数”可对5个选项进行一一分析进而得出答案即可.【详解】解:①只有符号相反的数互为相反数,故此选项错误;②()3.8 3.8--=,3.8的相反数是 3.8-;故此选项错误;③0的相反数等于0,故此选项错误;④正数与负数不一定互为相反数,故此选项错误;故正确的有0个,故选:A .【点睛】本题考查的是相反数的概念,掌握“只有符号相反的数互为相反数”是解题关键.8.A【详解】分析: 根据0的绝对值为0,互为相反数的绝对值相等,即可解答.详解: (1)有理数的绝对值一定比0大,错误,例如,0的绝对值为0;(2)有理数的相反数一定比0小,错误,例如,0的相反数为0;(3)如果两个数的绝对值相等,那么这两个数相等或和相反数,故错误;(4)互为相反数的两个数的绝对值相等,正确.正确的有1个.故选A.点睛: 本题考查了绝对值,相反数,解决本题的关键是熟记绝对值的性质,相反数的性质.9.C【分析】根据相反数、绝对值的意义判断即可.【详解】解:A. 若|a|=|b|,则a=±b,不符合题意;B. 若|a|=|b|,则a=±b,不符合题意;C. 若a=b,则|a|=|b|,正确符合题意;D. 若a=-b,则|a|= |-b|,不符合题意;故选:C.【点睛】本题考查了相反数、绝对值的意义,用到的知识点:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,它们互为相反数.10.C【详解】试题分析:根据相反数的定义逐一分析即可得出答案.解:∵互为相反数的两个数的和为0,又∵a、b互为相反数,∴a+b=0,反之也成立,故①、②正确;∵0的相反数是0,∴若a=b=0时,ab无意义,故③错误;∵ab=−1,∴a=−b,∴a、b互为相反数,故④正确;正确的有①②④.故选C.11.B【分析】本题主要考查绝对值,先把原式化为15a=,从而可求出15a=±.【详解】解:∵15a-=-,∴15a =,∴15a =±,故选:B .12.3或3-【分析】本题考查了绝对值的意义,正确熟练掌握知识点是解题的关键.直接取绝对值即可.【详解】解:26x -=-26x =3x =∴3x =或3-.故答案为:3或3-.13.0.5-##12-【分析】本题考查了绝对值、解一元一次方程,熟练掌握绝对值的定义是解此题的关键;根据绝对值的定义化为两个一元一次方程,解方程即可解答.【详解】Q 43y y +=-,\43y y +=-或()43y y +=--,解得:y 不存在或0.5y =-故答案为:0.5-14.数轴见解析,14.53210.50152-<-<-<-<-<<<【分析】本题主要考查了在数轴上表示有理数,利用数轴比较有理数的大小,将题目中的数据标在数轴上,根据数轴左边的数总是小于右边的数将各数用大于号连接起来,正确表示出各数是解题的关键.【详解】解:在数轴上表示如下:各数的相反数分别为:5,112,0,0.5-,1-,2-,3-, 4.5-,它们的相反数用“<”符号连接为:14.53210.50152-<-<-<-<-<<<.15.数轴见解析,1443 1.50325-<-<-<<-<【分析】本题主要考查了用数轴上点表示有理数,相反数的定义,根据数轴比较有理数的大小,解题的关键是熟练掌握数轴上点的特点.先根据相反数的定义,求出各个数的相反数,然后将各个数表示在数轴上,再比较大小即可.【详解】解:3的相反数是3-,1.5-的相反数是1.5,132-的相反数是132,45-的相反数是45-,0的相反数是0,4-的相反数是4,在数轴上表示如下:比较原数的大小为:1443 1.50325-<-<-<<-<.16.(1)见解析(2)b 表示的数是10-,b -表示的数是10(3)a 表示的数是5,a -表示的数是5-【分析】(1)根据题意作图即可;(2)互为相反数的两个数到原点的距离相等,据此求出b 表示的点到原点的距离为20210¸=,结合数轴即可作答;(3)结合(1)的图形,可得a b <-,先求出a 表示的点到原点的距离为1055-=,问题随之得解.【详解】(1)如图,(2)数b 与其相反数相距20个单位长度,则b 表示的点到原点的距离为20210¸=,∴结合数轴,b 表示的数是10-,即b -表示的数是10;(3)如图,即有a b <-,∵b -表示的点到原点的距离为10,而数a 表示的点与数b 的相反数表示的点相距5个单位长度,∴a 表示的点到原点的距离为1055-=,∴a 表示的数是5,a -表示的数是5-.【点睛】本题考查的是相反数的定义等知识,熟知以上知识是解答此题的关键.17.(1)-1;-4或2;(2)72-;(3)-1【分析】(1)由AB 的长度结合点A ,B 表示的数是互为相反数,即可得出点A ,B 表示的数,由2AC =且点C 在点A 的右边可得出点C 表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点C 的距离是3个单位长度的点表示的数;(2)由BD 的长度结合点D ,B 表示的数是互为相反数,即可得出点D 表示的数,由1DE =且点E 在点D 的右边可得出点E 表示的数;(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,由点P ,Q 相遇可得出关于t 的一元一次方程,解之即可得出t 的值,再将其代入(23)t -+中即可得出两个点相遇时点P 所表示的数.【详解】解:(1)=6AB Q ,且点A ,B 表示的数是互为相反数,\点A 表示的数为3-,点B 表示的数为3,\点C 表示的数为321-+=-.134--=-Q ,132-+=,\在数轴上与点C 的距离是3个单位长度的点表示的数是4-或2.故答案为:1-;4-或2.(2)9BD =Q ,且点D ,B 表示的数是互为相反数,\点D 表示的数为92-,\点E 表示的数为97122-+=-.故答案为:72-.(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,323t t -=-+Q ,2t \=,31t \-=-.答:两个点相遇时点P 所表示的数是1-.【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段AB 的长度结合点A ,B 表示的数互为相反数,找出点A 表示的数;(2)由线段BD 的长度结合点D ,B 表示的数互为相反数,找出点D 表示的数;(3)找准等量关系,正确列出一元一次方程.18.A【分析】本题考查了相反数,掌握一个数的前面加上负号就是这个数的相反数成为解题的关键.根据相反数的定义逐层去括号,然后判断即可解答.【详解】解;A 、()[]101010éù---=-=-ëû,故A 选项正确,符合题意;B 、()33--=,故B 选项错误,不符合题意;C 、()55-+=,故C 选项错误,不符合题意;D 、()[]888éù--+=--=ëû,故D 选项错误,不符合题意.故选:A .19.2【分析】本题考查了多重符号的化简,求代数式的值,根据多重符号的化简方法把()x ---éùëû后可得结果.【详解】解:∵2x -=,∴()2x x éù---=-=ëû.故答案为:2.20.①8;②0.75-;③35-;④3.8【分析】利用化简多重符号的方法即可求解.【详解】解:①()88--=;②()0.750.75-+=-;③3355éùæö---=-ç÷êúèøëû;④()3.8 3.8-+-=éùëû.【点睛】本题考查了相反数的意义,熟练掌握化简多重符号的方法是解题的关键.21. 5 12 3.2 3.2- 27 23【分析】本题主要考查了正负号的化简,熟练掌握相反数的定义,是解决问题的关键.根据正数的相反数是负数,负数的相反数是正数,逐步化简正负号,即得(方法不唯一).【详解】解:(1)()55++=;(2)()121212--=+=;(3)()()3.2 3.2 3.2éù--+=++=ëû;(4)()()3.2 3.2 3.2éù---=+-=-ëû;(5)()()27272727éù-+-=--=+=ëû;(6)22223333ìüéùéùæöæöæö-+-+=--+=++=íýç÷ç÷ç÷êúêúèøèøèøëûëûîþ.故答案为:(1)5;(2)12;(3)3.2;(4) 3.2-;(5)27;(6)23.22.A【分析】先对各项进行化简,再根据相反数的定义进行逐一判断即可.【详解】解:A 、∵()3.2--=3.2,3.2与-3.2是相反数,∴()3.2--与 3.2-互为相反数.故A 选项正确;B 、2.3与2.31不是相反数,故B 选项错误;C 、因为()4.9-+-éùëû=4.9,4.9与4.9不相反数,故C 选项错误;D 、因为()1-+=-1,()1+- =-1,所以()1-+与()1+-不是相反数,故D 选项不正确;故选A.【点睛】本题主要考查了相反数的定义和符号的化简,掌握相反数的定义是解题的关键.23.C【分析】先化简多重符号和绝对值,再根据相反数的定义进行求解即可.【详解】解:A 、()77-+=-与()77+-=-不互为相反数,不符合题意;B 、()77--=与7不互为相反数,不符合题意;C 、111155--=-与6655æö--=ç÷èø互为相反数,符合题意;D 、110.01100100æö--==ç÷èø与0.010.01+-=不互为相反数,不符合题意;故选C .【点睛】本题主要考查了相反数的定义,化简多重符号和绝对值,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.24.B【分析】分别化简多重符号,进而根据相反数的定义,即可求解.【详解】解①()44--=与()44++=,相等,不合题意;②-5533æö-=÷çøè与-3553æö+=-÷çøè,互为相反数,符合题意,;③-111122æö+=-÷çøè与+111122æö-=-÷çøè,相等,不合题意;④()11éù-+-=ëû与()11éù-++=-ëû,互为相反数,符合题意,∴互为相反数的有②④,共2对故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.25.10【分析】本题考查了相反数的定义,求代数式的值,先根据b 与c 互为相反数求出0b c +=,然后代入233a b c --计算即可.【详解】解:∵b 与c 互为相反数,∴0b c +=,∴233a b c--()23a b c =-+253010=´-´=.故答案为:10.26.1-【分析】本题考查相反数与一元一次方程.根据相反数的定义“如果两个数互为相反数,那么它们的和为0”进行计算即可.【详解】解:∵35x +与2x 的值互为相反数,∴3520x x ++=,解得=1x -.故答案为:1-.27.4或6【分析】本题考查绝对值和相反数的定义,互为相反数的两个数和为0,根据相反数的定义得到510a --=,解绝对值方程即可.【详解】解:∵5a -与1-互为相反数,∴510a --=即51a -=解得:4a =或6a =,故答案为:4或6.28.D【分析】任何数都有相反数,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数0,据此作答.【详解】解:只有符号不同的两个数互为相反数,0的相反数是0,所以,一个有理数和它的相反数的积一定是负数或0,即一定不大于0.故选:D .【点睛】本题考查了相反数的意义,注意要把0考虑进去.29.B【分析】本题考查相反数,代数式求值,根据a 与b 互为相反数,可以得到a b =-,然后代入整理后的式子计算即可.【详解】解:∵a 与b 互为相反数,∴0a b +=.∴a b =-,∴()2222222202225202520230234048202420242024b b a b b ab b b -==++=---,故选B .30.B【分析】直接利用已知当a >-2时,※a=-a ;当a <-2时,※a=a ;当a=-2时,※a=0,分别化简得出答案.【详解】解:※[-4+※(2-3)]=※(-4+※-1)=※(-4+1)=-3.故选B.【点睛】此题主要考查了相反数,正确理解题意是解题关键.31.2024-【分析】本题考查了有理数的混合运算,根据题中的新定义化简原式,计算即可得到结果.【详解】解:()a b b Þ=-Q ,()a b a Ü=-,()()()()202320242022202120481024512256éùéù\ÞÜÞÜÞÜÞëûëû,()()2023202420222021éù=-ÞÜÞëû,()20232024éù=--Þëû,()20232024=Þ,2024=-.32.12-【分析】本题考查的是绝对值的性质及一元一次方程的解法,先根据绝对值的性质求出3x +的值,再求出x 的值,再求和即可解答.【详解】解:32(02)x a a +-=<<Q ,32x a \+-=±,32x a +=±,\()32x a +=±±,()23x a =±±-,1x a \=-或5x a =--或1x a =--或5x a =-,32(02)x a a \+-=<<所有解的和为:()()()151512a a a a -+--+--+-=-.故答案为:12-.。
七年级相反数和绝对值练习题

七年级数学 【1 】相反数和绝对值测试题班级姓 名 得分一.选择题(每题3分,共30分)1.有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )A .72分B .+8分C .-8分D .-72分2. 下列各数中,互为相反数的是( )A.│-32│和-32B.│-23│和-32C.│-32│和23D.│-32│和323. 下列说法错误的是( )A.一个正数的绝对值必定是正数B.一个负数的绝对值必定是正数C.任何数的绝对值都不是负数D.任何数的绝对值 必定是正数4.若向西走10m 记为-10m,假如一小我从A 地动身先走+12m 再走-15m,又走+18m,最后走-20m,则此人的地位为( )A .在A 处B .离A 东5mC .离A 西5mD .不肯定5.一个数的相反数小于它本身,这个数是( )A .随意率性有理数B .零C .负有理数D .正有理数6. │a │= -a,a 必定是( )A.正数B.负数C.非正数D.非负数7. 下列说法准确的是( )A.两个有理数不相等,那么这两个数的绝对值也必定不相等B.任何一个数的相反数与这个数必定不相等C.两个有理数的绝对值相等,那么这两个有理数不相等D.两个数的绝对值相等,且符号相反,那么这两个数是互为相反数.8.下列说法中,准确的是().(A)|-a|是正数(B)|-a|不是负数(C)-|a|是负数(D)不是正数9.如图所示,用不等号衔接|-1|,|a|,|b|是()A.|-1|<|a|<|b|B.|a|<|-1|<|b|C.|b|<|a|<|-1|D.|a|<|b|<|-1|10. -│a│= -3.2,则a是()A.3.2B.-3.2C. 3.2D.以上都不合错误二.填空题(每题3分,共30分)11. 如a = +2.5,那么,-a=假如-a= -4,则a=12. ―(―2)= ; 与―[―(―8)]互为相反数.13. 假如a 的相反数是最大的负整数,b的相反数是最小的正整数,a+b= .14. a - b的相反数是 .15. 假如 a 和 b是符号相反的两个数,在数轴上a所对应的数和 b所对应的点相距6个单位长度,假如a=-2,则b的值为 .16. 在数轴上与暗示3的点的距离等于4的点暗示的数是_______.17.假如将点B向左移动3个单位长度,再向右移动5个单位长度,这时点B暗示的数是0,那么点B本来暗示的数是____________.18. 若a,b互为相反数,则|a|-|b|=______.19.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;20. 若a 为整数,|a|<1.999,则a 可能的取值为_______.三.解答题(共40分)31. 盘算││×││×│-40│(6分)32.盘算 (6分)33.比较下列各组数的大小: (8分)34. 已知│a │=3,│b │=5,a 与b 异号,求a 与b 的值. (10分)35.质检员抽查某种零件的长度,超出划定长度的记为正数,缺少划定长度的记为负数.检讨成果如下:第一个为0.13毫米,第二个为-0.2毫米,第三个为-0.1毫米,第四个为0.15毫米,则长度最小的零件是第几个?哪一个零件与划定长度的误差最小? (10分)填补演习1. 已知b a 和互为相反数,m .n 互为倒数,(),2--=c 求c mn b a ++. 2. 已知y x y x y x +>==求且,,12,7的值. 3. 已知c b a c b a 32,0432++=-+-+-计算.4. 在数轴上有三个点A .B .C ,如图所示:⑴将B点向左移动4个单位,此时该点暗示的数是若干?⑵将C点向左移动6个单位得到数x1,再向右移2个单位得到x2,x1,x2分离是若干?用“>”把B,x1,x2衔接起来.⑶如何移动A.B.C中的两点,才干使3个点暗示的数雷同?有几种办法?。
七年级数学上册 2 有理数 相反数与绝对值习题 试题

智才艺州攀枝花市创界学校相反数与绝对值习题课一、选择题:1.以下各式中,正确的选项是〔〕.A.-|-16|>0B.|0.2|>|-0.2|C.-74>-75D.|-6|<0 2.一个数在数轴上的对应点与它的相反数在数轴上的对应点的间隔为12,那么此数为〔〕. A.12或者-12B.14或者-14C.12或者-14D.-12或者143.对-1的表达正确的选项是〔〕.A .最小的负数B .最大的负数C .最小的整数D .最大的负整数4.以下说法中:⑴0是最小的自然数;⑵0是最小的正数;⑶0是最大的负整数; ⑷0属于整数集合;⑸0既非正数也非负数.正确的选项是〔〕.A .⑴⑵⑷B .⑷⑸C .⑴⑷⑸D .⑴⑵⑸5.-103,π,-〔〕. A.103->|π|>|-|B.103->|-|>|π| C.|π|>103->|-|D.103->|π|>|-|6.假设a 表示有理数,那么以下说法中正确的选项是〔〕.A.+a 和-〔-a 〕互为相反数B.+a 和-a 一定不相等C.-a 一定是负数D.-〔+a 〕和+〔-a 〕一定相等7.有理数a ,b 所对应的点在数轴上的如下列图,那么有〔〕.A .-a <0<bB .-b <a <0C .a <0<-bD .0<b <-a8.假设a 表示一个有理数,那么下面说法正确的选项是〔〕.A.-a 是负数B.|a |一定是正数C.|a |一定不是负数D.|-a |一定是负数二、填空题:1.-(-22)是的相反数.2.式子|-4|表示在数轴上表示-4的点到的间隔.3.式子|x |表示在数轴上的间隔.4.假设a =-2,那么|a |=,-a =.5.绝对值等于4的数是.6.||=4.7.假设|x |=4,那么x =.8.数轴上,假设点A 和点B 分别表示互为相反数的两个数,并且这两点的间隔是174, 那么这两点所表示的数分别是和.9.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,断定墨迹盖住局部的整数有.––4–3–2–012310.质检员在抽查某零件的长度时,将超过规定长度的记为正数,缺乏规定长度的记为负数,检查结果如下:第一个为0.13毫米,第二个为-0.2毫米,第三个为-0.1毫米,第四个为0.15毫米,那么长度最小的零件是第个,第个零件与规定的长度的误差最小.11.假设|b -1|=0,那么b =.三、计算:⑴|||.|-⨯362 ⑵|49.2||6.5|-+- ⑶11638--⑷-÷23143。
七年级数学相反数与绝对值课堂练习题

七年级数学相反数与绝对值课堂练习题本文主要介绍七年级数学中的相反数与绝对值概念,并提供相应的课堂练习题,帮助同学们巩固知识点。
相反数在数轴上,如果一个数x的左边有一个数-y,且y与x的距离相等,则称y为x的相反数,即x的相反数为-y。
例如:数轴上的 3 和 -3 互为相反数。
相反数的性质1.一个数和它的相反数的和为0,即x + (-x) = 0。
2.相反数的差等于原数的差,即x - y = x + (-y)。
课堂练习题1.求下列各数的相反数:a.12b. -7c. 0d. -2/3e. 1.52.如果x的相反数是-8,那么x等于多少?3.如果两个数x和y的和是-6,且x的相反数是y的二倍,那么x和y分别是多少?4.证明:任何数的相反数的相反数是它本身。
绝对值对于一个实数x,绝对值|x|表示x到原点的距离(即|x| = x,当x≥0时;|x| = -x,当x<0时)。
例如:|5| = 5,|-5| = 5。
绝对值的性质1.非负数的绝对值等于这个数本身,即|x| = x(x≥0)。
2.负数的绝对值等于这个数相反数,即|-x| = x(x<0)。
3.任何数的绝对值都不会是负数,即|x| ≥ 0(x为任意实数)。
4.绝对值加法等式:|x + y| ≤ |x| + |y|,即一个数的绝对值不超过这个数的绝对值之和。
课堂练习题1.求下列各数的绝对值:a.8b. -4c. 0d. -2/3e. 1.52.设x的绝对值是3/4,那么x的值可能是多少?3.如果|x-3|+|x+2|=5,那么x等于多少?4.如果|a|<x,那么-a和a之间的大小关系是什么?拓展练习题1.如果两个数x和y满足条件:x + y = 5,|x - y| = 3,则x和y分别是多少?2.解方程:|3x - 5| = 4。
3.设x和y都是实数,且满足条件:|x| + |y| ≤ 2,则以下哪些不等式是正确的?A. x + y ≤ 2;B. x - y ≤ 2;C. |x + y| ≤ 2;D. |x - y| ≤ 2。
七年级数学上第二章-第6课时-绝对值与相反数

七年级数学上第二章-第6课时-绝对值与相反数(2)(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--七年级数学(上)第二章有理数第6课时绝对值与相反数(二)1.-15的相反数是 ( )A.5 B.-5 C.-15D.152.下列各数中,互为相反数的是 ( )A.-12和-0.2 B.2和12C.-1.75和314D.2和-(-2)3.如图,表示互为相反数的两个点是 ( )A.点A和点D B.点B和点C C.点A和点C D.点B和点D 4.在-(+2),-(-8),-5,+(-4)中,负数有 ( )A.1个 B.2个 C.3个 D.4个5.a-b的相反数是 ( )A.a+b B.-(a+b) C.b-a D.-a-b6.(1)+3.3的相反数是_________; (2)-5的相反数是________;(3)_________的相反数是-5.6; (4)-(-8)是_________的相反数;(5)-(+6)是__________的相反数.7.若a=8.7,则-a=__________,-(-a)=__________,+(-a)=__________.8.0.5的相反数是__________;-324的相反数是_________;0的相反数是_________.9.(1)符号是“+”号,绝对值是5的数是___________;(2)符号是“-”号,绝对值是8的数是___________;(3)-15的符号是_________,绝对值是____________;(4)_________的绝对值是7.2.10.填空:-(-13)是_________的相反数;-(+20)是_________的相反数.11.化简:+(-3)=_________;23⎛⎫-- ⎪⎝⎭=___________.12.分别写出下列各数的相反数,并将下列各数及其相反数在数轴上表示出来:5,-7.4,-3,+34.13.将下列各数及它们的相反数在数轴上表示出来,并用“<”号连接.5,-135,1,0,-4.5.14.化简下列各数:(1)-(+10); (2)+(-0.15); (3)+(+3);(4)-(-20); (5)12--; (6)-[-(-1.7)].15.互为相反数的两个数在数轴上的距离是11,你能求出这两个数吗你能找出在数轴上互为相反数且距离最小的两个数吗16.(1)2的相反数是___________,-2的相反数是___________.(2)a的相反数是____________,-a的相反数是____________.(3)一位同学认为“a一定是正数,-a一定是负数”,你认为呢为什么参考答案1.D 2.C 3.C 4.C 5.C6.(1) -3.3 (2)5 (3)5.6 (4)-8 (5)+67.-8.7 8.7 -8.78.-0.53249.(1)+5 (2)-8 (3)- 15 (4)±7.2 10.-13 +2011.-3 2 312.图略,相反数为-5,7.4,3,-3 413.略14.(1) -10 (2)-0.15 (3)3 (4)20 (5)-12(6)-1.715.-5.5和5.5,互为相反数且距离最小的两个数都是016.(1)-2 2 (2)-a a (3)a可以是正数、负数或0,则对应的-a可以是负数、正数或0。
七年级数学上册相反数与绝对值练习题(进阶篇)

七年级数学上册相反数与绝对值练习题
(进阶篇)
1. 相反数练题
1. 求下列数的相反数:
a) -3
b) 5
c) -7
d) 12
2. 如果一个数的相反数是15,这个数是多少?
3. 如果两个数的和为0,它们互为相反数。
找出与下列数互为相反数的数:
a) 9
b) -2
c) 0
4. 如果一个数的相反数是它自身的2倍,这个数是多少?
2. 绝对值练题
1. 求下列数的绝对值:
a) 4
b) -9
c) 0
d) -2.5
2. 如果一个数的绝对值是25,这个数可能是多少?
3. 绝对值是正数,求下列数的绝对值所代表的数的符号:
a) -6
b) 0
c) 3
4. 如果两个数的绝对值相等,它们有可能是相反数吗?
3. 相反数与绝对值综合练题
1. 求下列数的相反数,并计算其绝对值:
a) 10
b) -15
c) 7
d) -3.5
2. 如果一个数的相反数的绝对值是20,这个数可能是多少?
3. 互为相反数且绝对值相等的两个数是什么?
4. 如果一个数的相反数的绝对值是它自身的2倍,这个数是多少?
以上是七年级数学上册相反数与绝对值的进阶练习题。
希望能
够帮助你巩固理解和运用相反数与绝对值的概念。
如果有任何问题,请随时向我提问。
祝你学习顺利!。
北师大版七年级数学上册相反数与绝对值--练习题

北师大版七年级数学上册相反数与绝对值--练习题北师大版七年级数学上册相反数与绝对值--练题一、选择题1、绝对值等于它本身的数有()。
A、个;B、1个;C、2个;D、无数个。
2、下列说法正确的是()。
A、—|a|一定是负数;B、只有两个数相等时它们的绝对值才相等;C、若|a|=|b|,则a与b互为相反数;D、若一个数小于它的绝对值,则这个数为负数。
3、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()。
A、a>|b|;B、a|b|;D、|a|<|b|。
4、如果a>0,则的取值范围是()。
A.>0;B.≥0;C.≤0;D.<0.5、下列各数中,互为相反数的是()。
A、│和-B、│-│和-;C、│-│和;D、│-│和。
6、下列说法错误的是()。
A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值都不是负数;D、任何数的绝对值一定是正数。
7、│a│=-a,a一定是()。
A、正数;B、负数;C、非正数;D、非负数。
8、下列说法正确的是()。
A、两个有理数不相等,则这两个数的绝对值也一定不相等;B、任何一个数的相反数与这个数一定不相等;C、两个有理数的绝对值相等,则这两个有理数不相等;D、两个数的绝对值相等,且符号相反,则这两个数是互为相反数。
9、-│a│=-3.2,则a是()。
A、3.2;B、-3.2;C、 3.2;D、以上都不对。
10、如果2a2a,则a的取值范围是()。
A.a>0;B.a≥0;C.a≤0;D.a<0.11、若│a│=8,│b│=5,且a+b>0,则a-b的值是(。
)。
A.3或13;B.13或-13;C.3或-3;D.-3或-13.12、a<0时,化简结果为(。
)。
3a2A.0;B.-1;C.-2a;D.-3.13、如果2a2a,则a的取值范围是()。
A.a>0;B.a≥0;C.a≤0;D.a<0.二、判断题1、-|a|=|a|;(错误)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数与绝对值专项练习
练习一(A级)
一、选择题:
(1)a的相反数是( ) (A)-a (B)1
a
(C)-
1
a
(D)a-1
(2)一个数的相反数小于原数,这个数是( ) (A)正数 (B)负数 (C)零 (D)正分数
(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )
(A)-2 (B)2 (C)5
2
(D)-
5
2
(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为1
2
单位长,则这个数是( )
(A)1
2
或-
1
2
(B)
1
4
或-
1
4
(C)
1
2
或-
1
4
(D)-
1
2
或
1
4
二、填空题
(1)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;
(2)-5的相反数是______,-3的倒数的相反数是____________ 。
(3)10
3
的相反数是________,
11
32
⎛⎫
-
⎪
⎝⎭
的相反数是_______,(a-2)的相反数是______;
三、判断题:
(1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;() (3)-(-3)的相反数是3;()(4)-a一定是负数;() (5)若两个数之和为0,则这两个数互为相反数;() (6)若两个数互为相数,则这两个数一定是一个正数一个负数。
()
练习一(B级)
1.下列各数:2,0.5,2
3
,-2,1.5,-
1
2
,-
3
2
,互为相反数的有哪几对?
2.化简下列各数的符号:(1)-(-17
3
); (2)-(+
23
3
); (3)+(+3); (4)-[-(+9)] 。
3.数轴上A点表示+7,B、
C两点所表示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?
4.若a>0>b,且数轴上表示a的点A与原点距离大于表示b的点B 与原点的距离,试把a,-a,b,-b这四个数从小到大排列起来。
5.一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置?
6.如果a,b表示有理数,在什么条件下,a+b和a-b互为相反数?a+b与a-b的积为2?
练习二(A级)
一、选择题:
1.已知a≠b,a=-5,|a|=|b|,则b等于( ) (A)+5 (B)-5 (C)0 (D)+5或-5
2.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( ) (A)-m (B)m (C)±m (D)2m 3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )
(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+4
4.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>;
(C)<1><3><4>; (D)<2><3><4>
5.一个数等于它的相反数的绝对值,则这个数是( ) (A)正数和零 (B)负数或零;(C)一切正数;(D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( ) (A)a>b (B)a<b (C)不能确定 D.a=b
7.-10
3
,π,-3.3的绝对值的大小关系是( )
(A)
10
3
->|π|>|-3.3|; (B)
10
3
->|-3.3|>|π|; C) (|π|>
10
3
->|-3.3|; (D)
10
3
->|π|>|-3.3|
8.若|a|>-a,则( ) (A)a>0 (B)a<0 (C)a<-1 (D)1<a
二、填空题:
(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________; (2)绝对值为同一个正数的有理数有_______________个; (3)一个数比它的绝对值小10,这个数是________________; (4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________; (5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________; (6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________; (7)绝对值不大一3的整数是____________________,其和为_____________; (8)在有理数中,绝对值最小的数是_____;
在负整数中,绝对值最小的数是_____; (9)设|x|<3,且x>1
x
,若x为整数,则x=_________________;
(10)若|x|=-x,且x=1
x
,则x=_________________。
三、判断题
(1)任何一个有理数的绝对值是正数;() (2)若两个数不相等,则这两个数的绝对值也不相等;()(3)如果一个数的绝对值等于它们的相反数,这个数一定是数;() (4)绝对值不相等的两个数一定不相等;() (5)若|a|>|b|时,则a>b; () (6)当a为有理数时,|a|≥a;()
练习二(B级)
一、若|x|=4,则x=_______________; 若|a-b|=1,则a-b=_________________;
二、去掉下列各数的绝对值符号:
(1)若x<0,则|x|=________________; (2)若a<1,则|a-1|=_______________;
(3)已知x>y>0,则|x+y|=________________; (4)若a>b>0,则|-a-b|=__________________.
三、若-m>0,|m|=7,求m. 四、若|a+b|+|b+z|=0,求a,b的值。
五、比较-(-a)和-|a|的大小关系。
六、若
2
2
x
x
-
-
=-1,求x的取值范围
七、若a<0,b<0且|a|<|b|,试确定下列各式所表示的数是正数还是负数:(1)a+b (2)a-b (3)-a-b (4) b-a。
八、一个有理数在数轴上对应的点为A,将A点向左移
动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点 A的对应的数是什么?
九、化简|1-a|+|2a+1|+|a|,其中a<-2.。