5绝对值倒数相反数综合练习题

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

绝对值和相反数(3个考点七大题型)(原卷版)

绝对值和相反数(3个考点七大题型)(原卷版)

专题02 绝对值和相反数(3个考点七大题型)【题型 1 相反数的概念和表示】【题型 2 相反数的性质运用】【题型 3 绝对值的定义】【题型 4 绝对值的性质与化简】【题型 5 绝对值分非负性】【题型 6 绝对值的几何意义】【题型7 有理数的大小比较】【题型 1 相反数的概念和表示】1.(2023•惠山区三模)﹣4的相反数是()A.B.﹣4C.﹣D.4 2.(2023•东方模拟)有理数﹣(﹣5)的相反数为()A.B.5C.D.﹣5 3.(2022秋•藁城区期末)若数a的相反数是5,则a+1的相反数是()A.﹣5B.﹣4C.4D.64.(2022秋•文峰区校级月考)化简:﹣[+(﹣7)]=,﹣[﹣(﹣2)]=,+[﹣(+a)]=.【题型 2 相反数的性质运用】5.(2022秋•韩城市期末)若x与3互为相反数,则x+4等于.6.(2021秋•宁远县期末)若a与b互为相反数,则代数式2021a+2021b﹣5=.7.(2021秋•苏尼特右旗校级月考)已知a是﹣[﹣(﹣5)]的相反数,b比最小的正整数大3,c是最大的负整数的相反数,且m=﹣m,则a+b+c+m的值为.8.(2022秋•长沙月考)已知a+2与2﹣b互为相反数,则a﹣b的值为.9.(2022秋•东平县校级期末)若x﹣1与2﹣y互为相反数,则(x﹣y)2022=.10.(2021•迎泽区校级开学)已知m,n互为相反数,则3+5m+5n=.11.(2021秋•雨花区校级期中)若a,b互为相反数,则5(a+b)2022=.12.(2021秋•本溪期中)若m,n为相反数,则m+(﹣2021)+n为.【题型 3 绝对值的定义】13.(2023•市北区二模)下列各数中,绝对值等于的数是()A.2B.﹣2C.D.14.(2022秋•邢台期末)若|﹣7|=﹣a,则a的值是()A.7B.﹣7C.D.15.(2022秋•榆阳区校级期末)已知2x﹣3的绝对值与x+6的绝对值相等,则x的相反数为()A.9B.1C.1或﹣9D.9或﹣1 16.(2022秋•忠县期末)若,,,d=﹣2,则绝对值最大的数是()A.a B.b C.c D.d 17.(2022秋•苏州期末)计算|x﹣1|+|x+2|的最小值为()A.0B.1C.2D.3 18.(2022秋•渌口区期末)下列说法中正确的是()A.两个负数中,绝对值大的数就大B.两个数中,绝对值较小的数就小C.0没有绝对值D.绝对值相等的两个数不一定相等19.(2022秋•天河区校级期末)a、b是有理数,且|a|=﹣a,|b|=b,|a|>|b|,用数轴上的点来表示a、b,正确的是()A.B.C.D.【题型 4 绝对值的性质与化简】20.(2023•涪城区模拟)若|5﹣x|=x﹣5,则x的取值范围为()A.x>5B.x≥5C.x<5D.x≤5 21.(2022秋•新市区校级期末)已知a、b、c的大致位置如图所示:化简|a﹣c|﹣|b﹣c|+|a+b|的结果是()A.﹣2a B.2a C.2a+2b﹣2c D.﹣2a+2b﹣2c 22.(2022秋•临朐县期末)已知a、b、c的大致位置如图所示:化简|a+c|+|b ﹣c|﹣|a﹣b|的结果是()A.2a+2c﹣2b B.0C.2c﹣2b D.2c 23.(2023•南皮县校级一模)若ab≠0,那么+的取值不可能是()A.﹣2B.0C.1D.2 24.(2022秋•海林市期末)已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10B.﹣2C.﹣2或﹣10D.2 25.(2022秋•市北区校级期末)当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2 26.(2023春•松江区期中)如果a<1,化简:|2﹣a|﹣|a﹣1|=.27.(2022秋•吉安期末)已知有理数m,n满足mn≠0,则=.28.(2022秋•衡东县期末)若|x+a|+|x+1|的最小值为3,则a的值为.【题型 5 绝对值分非负性】29.(2021秋•叙州区期末)如果|a+3|+|b﹣2|=0,那么(a+b)2022等于()A.1B.﹣1C.2022D.﹣2022 30.(2022秋•锡山区校级月考)若|a﹣1|+|b+3|=0,则a×b﹣的值是()A.﹣B.﹣3C.﹣1D.2 31.(2022秋•增城区期中)已知|a﹣2|+|b+3|=0,则(a+b)2021的值为()A.1B.﹣1C.2021D.﹣2021 32.(2021秋•青龙县期末)若|n+2|+|m+8|=0,则n﹣m等于()A.6B.﹣10C.﹣6D.10 33.(2021秋•八步区期末)如果|x﹣3|+|y+1|=0,那么x﹣y等于()A.﹣4B.4C.2D.﹣2 34.(2022秋•方城县校级月考)已知|a﹣1|+|b+2|=0,则a+b的值为.35.(2022秋•龙子湖区校级月考)若5|x﹣2|+2|y+5|=0,则y x=.36.(2022秋•利州区校级期末)若|a﹣1|与|b﹣2|互为相反数,则a+b的值为.37.(2022秋•花垣县月考)若有理数a,b满足|a﹣20|+|b+19|=0,则|a|﹣|b|=.38.(2020秋•邗江区月考)已知|a+3|+|b﹣4|=0,则(a+b)2020=.39.(2022秋•抚远市期末)如果|m﹣3|+|n+5|=0,求的值.【题型 6 绝对值的几何意义】40.(2022秋•紫金县期中)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.41.(2022秋•江阴市期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.42.(2022秋•顺义区校级月考)已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+4|+|b﹣1|=0,A,B之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值.43.(2022秋•定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索(1)求|5﹣(﹣2)|=;(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x=(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【题型7 有理数的大小比较】45.(2023•茶陵县模拟)下列有理数的大小关系正确的是()A.B.|+6|>|﹣6|C.﹣|﹣3|>0D.46.(2023•广东模拟)四个有理数﹣1,0,1,﹣2中,最小的数是()A.﹣1B.0C.1D.﹣2 47.(2023•台湾)已知a=﹣1,,c=﹣1,下列关于a、b、c三数的大小关系,何者正确()A.a>c>b B.a>b>c C.b>c>a D.c>b>a 48.(2022秋•青神县期末)下列不等式正确的是()A.B.C.0<﹣1D.49.(2022秋•汝阳县期末)有理数a,b,c在数轴上的对应点的位置如图所示,若b+c=0,则a,b,c三个数中绝对值最大的数是()A.a B.b C.c D.无法确定50.(2022秋•崇川区期末)有理数a,b在数轴上的位置如图所示,则数a,b,﹣a,﹣b的大小关系为()A.﹣a<﹣b<b<a B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.﹣a<﹣b<a<b。

相反数,绝对值、倒数专项拓展题

相反数,绝对值、倒数专项拓展题

相反数、绝对值、倒数专项拓展题
先练兵(1)互为相反数,则,(2)互为倒数,则
(3)相反数等于本身的数是,绝对值等于本身的数是
倒数等于本身的数是,平方等于本身的数是
立方等于本身的数是
(4)最大的负整数是最小的正整数是绝对值最小的有理数
例1、
练习1、已知a、b互为相反数,c、d互为倒数,求代数式的值
2、
3、若a,b互为相反数,c,d互为倒数,m的绝对值是3,n在有理数王国里既不是正数也不是负数,求
4、
5、,求3x-2y的值
1
例2、
练习1、

一:填空题:
1、已知a、b互为倒数,x、y互为相反数,|m|=2,则的值为。

2、已知a、b互为相反数,c、d互为倒数,x=2且x+|y|=5,则的值为。

3、已知a、b互为倒数,x、y互为相反数,则代数式4(x+y)+5ab+3的值为。

4、。

5。

6、。

7、。

8、。

9、为。

2
10、。

11、已知m是6的相反数,n比m的相反数小6,则m比n大
3。

绝对值相反数经典习题

绝对值相反数经典习题

相反数与绝对值练习一、选择题:(1)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或141.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|;(B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|;(D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题(1)一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。

数轴、相反数、绝对值及综合练习

数轴、相反数、绝对值及综合练习

数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。

七年级相反数与绝对值专项练习题集

七年级相反数与绝对值专项练习题集

相反数与绝对值专项练习宇文皓月练习一(A级)一、选择题:(1)a的相反数是( )(A)-a (B)1a (C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或14二、填空题(1)一个数的倒数是它自己,这个数是________;一个数的相反数是它自己,这个数是__________;(2)-5的相反数是___5___,-3的倒数的相反数是____________ 。

(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(a-2)的相反数是______;三、判断题:(1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;()(3)-(-3)的相反数是3;() (4)-a一定是负数;()(5)若两个数之和为0,则这两个数互为相反数;()(6)若两个数互为相反数,则这两个数一定是一个正数一个负数。

()练习一(B级)1.下列各数:2,0.5,23,-2,1.5,-12,-32,互为相反数的有哪几对?2.化简下列各数的符号:(1)-(-173); (2)-(+233);(3)+(+3); (4)-[-(+9)] 。

3.数轴上A点暗示+7,B、C两点所暗示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?4.若a>0>b,且数轴上暗示a的点A与原点距离大于暗示b的点B 与原点的距离,试把a,-a,b,-b这四个数从小到大排列起来。

5.一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置?6.如果a,b暗示有理数,在什么条件下,a+b和a-b互为相反数?a+b与a-b的积为2?练习二(A级)一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于自己,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>;(D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不克不及确定 D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|;(B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|;(D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题:(1)在数轴上暗示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;(9)设|x|<3,且x>1x,若x为整数,则x=_________________;(10)若|x|=-x,且x=1x,则x=_________________。

第五讲 数轴、相反数、绝对值、倒数专题练习

第五讲 数轴、相反数、绝对值、倒数专题练习

第五讲 数轴、相反数、绝对值、倒数专题练习【知识梳理】⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 注意:小数和百分数可看成分数,有理数中的小数是指有限小数或无限循环小数,π不是有理数,任何分数都是有理数.最小的正整数是 ,最小的自然数是 ,最大的负整数是 . 数轴的三要素:原点、正方向、单位长度.相反数:只有符号不同的两个数叫做互为相反数.相反数的意义:相反数是成对出现的,不能单独从数轴上看,除0外,互为相反数的 两个数,它们分别在原点两旁且到原点距离相等.绝对值:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a有理数的绝对值都是非负数.倒数:乘积是1的两个数互为倒数. 有理数大小比较法则: ①正数都大于0; ②负数都小于0;③正数大于一切负数;④两个负数比较,绝对值大的其值反而小. 【典型例题解析】 1、若||||||0,a b ab aba b ab+-则的值等于 2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( )A.2aB.2a -C.0D.2b4、已知2(3)|2|0a b -+-=,求ba 的值是( ) A.2B.3C.9D.65、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

6、有3个有理数a,b,c ,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?7、设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。

相反数与绝对值专项练习题集

相反数与绝对值专项练习题集

一、选择题:(1)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或14二、填空题(1)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。

(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(a-2)的相反数是______;三、判断题:(1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;()(3)-(-3)的相反数是3;() (4)-a一定是负数;()(5)若两个数之和为0,则这两个数互为相反数;()(6)若两个数互为相数,则这两个数一定是一个正数一个负数。

()练习二(A级)一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|; (B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|; (D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;(9)设|x|<3,且x>1x,若x为整数,则x=_________________;(10)若|x|=-x,且x=1x,则x=_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值、倒数、相反数练习题
一、选择题
1. -2的绝对值是( )
(A )-2. (B )2. (C )-21. (D )21
.
2. -m的相反数是( )
(A )-m. (B )m. (C )m 1. (D )m 1-.
3. 下列说法错误的是( )
(A )0的相反数是0. (B )正数的相反数是负数.
(C )一个数的相反数必是正数. (D )互为相反数的两个数到原点的距离相等.
4. 若a =34
,则a 的值为( )
(A )34. (B )43. (C )34或34-. (D )43或43-.
5. 绝对值等于本身的有理数共有( )
(A )1个. (B )2个. (C )0个. (D )无数个.
6. 下列各组数中,互为相反数的有( )
⑴ 3. 2 与 -2. 3 ⑵ -(- 4)与 – 8 ⑶ – (- 8)与 – 8 ⑷ -21与-[-(-21
)]
(A )1组. (B )2组. (C )3组. (D )4组.
7. 下列式子正确的是( )
(A )3-->2--. (B )0<
2-. (C )5
-<4--. (D )8--=)8(--.
8. 下列说法正确的个数有( )
⑴所有的有理数都能在数轴上找到唯一的一点 ⑵数轴上每一点都表示有理数 ⑶0是最小的有理数 ⑷因为负数小于零,所以0
31<⎪⎭⎫ ⎝⎛--
(A )1个. (B )2个. (C )3个. (D )0个.
9. 以下是关于5.1-这个数在数轴上的位置的描述,其中正确的描述是( )
(A )在25
-
左边. (B )在0. 1右边.
(C )在原点与34-之间. (D )在56-左边.
10. 在数轴上2-与2之间的有理数有( ) (A )5个. (B )4个. (C )3个. (D )无数个.
二、填空题
11. 最大的负整数是________,最小的正整数是_____________.
12. -2在原点___边,距原点____个单位长度,数5在数轴上距原点____个单位, -5距5___个单位.
13. _________的相反数是本身.
14. ()8--是_________的相反数. ()2-+是___________的相反数.
15. 在数轴上表示离开原点的距离是3,那么a =__________.
16. 2的相反数的绝对值是________________.
17. 绝对值不大于2的整数是__________________.
18. 如果m 2-与1-m 互为相反数,那么m=_____________.
19. 若032=-+-y x ,则____________,__________==y x .
20. 若_____________
,0,2,3=+<==b a b b a 则. 三、解答题
21. 计算下列各题
(1)1113---+- (2)2324-⨯-÷-
(3)
43311-÷- (4)71249-⨯-
22. 把
211,0,5.4,3,2--在数轴上表示出来.
23. 某城市早上测得的温度是3℃,中午测量时发现温度上升了5℃,晚上测量时比中午下降了6℃,问晚上的气温比早上气温变化了多少?记作什么?借助数轴加以分析.
24. 化简下列各数:
(1) ()2-- (2)()6.2+- (3)()5.3++
(4)()8-+ (5)()[]4+-+ (6)()[]6---
25. 已知b a 和互为相反数,m 、n 互为倒数,(),2--=c 求
c mn b a ++.
26. 已知
y
x
y
x
y
x+
>
=
=求
且,
,
12
,7
的值.
27. 已知
c
b
a
c
b
a3
2
,0
4
3
2+
+
=
-
+
-
+
-计算
.
28. 在数轴上有三个点A、B、C,如图所示:
⑴将B点向左移动4个单位,此时该点表示的数是多少?
⑵将C点向左移动6个单位得到数x1,再向右移2个单位得到x2,x1,x2分别是多少?用“>”把B,x1,x2连接起来.
⑶怎样移动A、B、C中的两点,才能使3个点表示的数相同?有几种方法?。

相关文档
最新文档