北京市东城区2017年高三一模数学(理科)试卷及答案
2017,5东城高三数学试题及参考答案(理科)校正稿

北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)本试卷共5页,共150分.考试时长120分钟.考生务必将答案答在答题卡上在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|40}A x x =-<,则A =R ðA .{|2x x ≤-或2}x ≥B .{|2x x <-或2}x >C .{|22}x x -<<D .{|22}x x ≤≤- 2.下列函数中为奇函数的是A .cos y x x =+B .sin y x x =+ C.y D .||e x y -=3.若,x y 满足10,0,0x y x y y -++⎧⎪⎨⎪⎩≥≤≥则2x y +的最大值为A .1-B .0C .12D .2 4.设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 5.已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S A .2716 B .278C .634 D .6326.我国南宋时期的数学家秦九韶(约12021261-)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利 用秦九韶算法求多项式的一个实例. 若输入的5,1,2n v x ===, 则 程序框图计算的是 A .5432222221+++++ B .5432222225+++++ C .654322222221++++++ D .43222221++++7.动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是A .B .C .D .8.据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m m M m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格 低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是 A .若A B p ,B C p ,则A C pB .若A B p ,BC p 同时不成立,则A C p 不成立 C .A B p ,B A p 可同时不成立D .A B p ,B A p 可同时成立第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.复数i(2i)-在复平面内所对应的点的坐标为 .10.在极坐标系中,直线cos sin 10r q q +=与圆2cos (0)a a r q >=相切,则a = . 11.某校开设A 类选修课4门,B 类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B 类课程,则不同的选法共有 种.(用数字作答)12.如图,在四边形ABCD 中,45ABD ∠=︒,30ADB ∠=︒,1BC =, 2DC =,1cos 4BCD ∠=,则BD = ;三角形ABD 的面积为 .13.在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于,A B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则||OA =.14.已知函数|1|,(0,2],()min{|1|,|3|},(2,4],min{|3|,|5|},(4,).x x f x x x x x x x -∈=--∈--∈+∞⎧⎪⎨⎪⎩① 若()f x a =有且只有一个根,则实数a 的取值范围是_______.② 若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围 是_______.三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)已知函数()2cos 2()f x x a x a =+⋅∈R . (Ⅰ)若()26f =π,求a 的值; (Ⅱ)若()f x 在7[,]1212ππ上单调递减,求()f x 的最大值.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该 主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之 比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择 8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17.(本小题共14分)如图,在几何体ABCDEF 中,平面ADE ^平面ABCD ,四边形ABCD 为菱形,且60DAB ∠=︒,2EA ED AB EF ===,EF AB ∥,M 为BC 中点.(Ⅰ)求证:FM ∥平面BDE ;(Ⅱ)求直线CF 与平面BDE 所成角的正弦值; (Ⅲ)在棱CF 上是否存在点G ,使BG DE ^?若存在,求CG CF的值;若不存在,说明理由.设函数2()()e ()x f x x ax a a R -=+-⋅∈.(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(Ⅱ)设2()1g x x x =--,若对任意的[0,2]t Î,存在[0,2]s Î使得()()f s g t ≥成立,求a 的取值范围.19.(本小题共13分)已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为右焦点为(1,0)F ,点M 是椭圆C 上异于左、右顶点,A B 的一点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线AM 与直线2x =交于点N , 线段BN 的中点为E .证明: 点B 关于直线EF的对称点在直线MF 上.20.(本小题共13分)对于n 维向量12(,,,)n A a a a =鬃?,若对任意{1,2,,}i n 巫鬃均有0i a =或1i a =,则 称A 为n 维T 向量. 对于两个n 维T 向量,A B ,定义1(,)||ni i i d A B a b ==-å.(Ⅰ)若(1,0,1,0,1)A =,(0,1,1,1,0)B =,求(,)d A B 的值;(Ⅱ)现有一个5维T 向量序列:231,,,A A A ⋅⋅⋅,若1(1,1,1,1,1)A =且满足:1(,)2i i d A A +=,*i ÎN .求证:该序列中不存在5维T 向量(0,0,0,0,0);(Ⅲ)现有一个12维T 向量序列:231,,,A A A ⋅⋅⋅,若112(1,1,,1)A个=鬃?且满足:1(,)i i d A A m +=, *m N Î,1,2,3,i 鬃?=,若存在正整数j 使得12(0,0,,0)j A个鬃?=,j A 为12维T 向量序列中的项,求出所有的m .东城区2016-2017学年度第二学期高三综合练习(二)高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)B (3)C (4)B (5)D (6)A (7)C (8)C 二、填空题(共6小题,每小题5分,共30分)(9)(1,2) (10)1 (11)14(12)21 (13 (14)(1,)+∞ (4,2)(2,4--U 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)因为()2cos 2=2666f a πππ=⋅+⋅⋅, ………3分 所以31222a +?. ………5分所以1a =. ………6分(Ⅱ)由题意(22)f x x x)x ϕ=+,其中tanϕ=.………8分 所以T =π,且712122πππ-=, ………9分所以当12x π=时,max ()sin()126y f ϕππ==+.所以=+23k k ϕππ(∈)Z . ………10分所以tanϕ=3a =. ………11分所以π())3f x x =+. ………12分所以()f x 的最大值为 ……………………13分(16)(共13分)解:设i A 表示事件“小明8月11日起第i 日连续两天游览主题公园”(1,2,,9i = ). 根据题意,1()9i P A =,且()i j A A i j =乒 . …………1分(Ⅰ)设B 为事件“小明连续两天都遇上拥挤”,则47B A A = . …………2分C所以47472()()()()9P B P A A P A P A ==+=. …………5分 (Ⅱ)由题意,可知X 的所有可能取值为0,1,2, …………6分4784781(0)()()()()3P X P A A A P A P A P A ===++= ,…………7分356935694(1)()()()()()9P X P A A A A P A P A P A P A ===+++= ,…………8分12122(2)()()()9P X P A A P A P A ===+=. …………9分 所以X 的分布列为分故X 的期望14280123999EX =???.…………………11分 (Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.…………13分 (17)(共14分)解:(Ⅰ)取CD 中点N ,连结,MN FN .因为,N M 分别为,CD BC 中点, 所以MN ∥BD . 又BD ⊂平面BDE 且MN Ë平面BDE , 所以MN ∥平面BDE , 因为EF ∥AB ,2AB EF =, 所以EF ∥CD ,EF DN =. 所以四边形EFND 为平行四边形. 所以FN ∥ED .又ED ⊂平面BDE 且FN Ë平面BDE ,所以FN ∥平面BDE , ………2分 又FN MN N = ,所以平面MFN ∥平面BDE . ………3分 又FM Ì平面MFN ,所以FM ∥平面BDE . …………4分C(Ⅱ)取AD 中点O ,连结EO ,因为EA ED =,所以EO ^因为平面ADE ^平面ABCD 所以EO ^平面ABCD ,EO 因为AD AB =,60DAB ∠=所以△ADB 为等边三角形. 因为O 为AD 中点, 所以AD BO ^.因为,,EO BO AO 两两垂直,设4AB =,以O 为原点,,,OA OB OE 为,,x y z 轴,如图建立空间直角坐标系O xyz -.…………6分 由题意得,(2,0,0)A ,B ,(C -,(2,0,0)D -,E ,(1F -.………7分(3,CF =,DE = ,(0,BE =-.设平面BDE 的法向量为(,,)x y z =n ,则0,0,BE DE ì?ïíï?î n n 即0,0.y z x ì-=ïíï=î 令1z =,则1y =,x =-所以(,1)=-n .………9分 设直线CF 与平面BDE 成角为α,sin |cos ,|αCF =< n 所以直线CF 与平面ADE 所成角的正弦值为10. ……………………10分 (Ⅲ)设G 是CF 上一点,且CG CFλ=,[0,1]λ∈.……………11分因此点(34,)G λ-+.……………12分(34,)BGλ=-. 由0BG DE ? ,解得49λ=.所以在棱CF 上存在点G 使得BG ^DE ,此时49CG CF =.………14分解:(Ⅰ)当0a =时,因为2()e x f x x -=?,所以2'()(2)e x f x x x -=-+?, …………1分'(1)3e f -=-. …………2分又因为(1)e f -=, …………3分 所以曲线()y f x =在点(1,(1))f --处的切线方程为e 3e(1)y x -=-+,即3e 2e 0x y ++=. ……………………4分(Ⅱ)“对任意的[0,2]t Î,存在[0,2]s Î使得()()f s g t ³成立”等价于“在区间[0,2]上,()f x 的最大值大于或等于()g x 的最大值”. …………………5分因为2215()1()24g x x x x =--=--, 所以()g x 在[0,2]上的最大值为(2)1g =.2'()(2)e ()e x x f x x a x ax a --=+?+-?2e [(2)2]x x a x a -=-+-- e (2)()x x x a -=--+ 令'()0f x =,得2x =或x a =-. …………………7分 ① 当0a -?,即0a ³时,'()0f x ³在[0,2]上恒成立,)(x f 在[0,2]上为单调递增函数, ()f x 的最大值为21(2)(4)e f a =+?, 由21(4)1ea +壮,得2e 4a ?. ……………9分 ② 当02a <-<,即20a -<<时,当(0,)x a ∈-时,'()0f x <,()f x 为单调递减函数,当(2)x a ∈-,时,'()0f x >,()f x 为单调递增函数. 所以()f x 的最大值为(0)f a =-或21(2)(4)e f a =+?, 由1a -?,得1a ?;由21(4)1ea +壮,得2e 4a ?. 又因为20a -<<,所以21a -<?. ……………11分 ③ 当2a -?,即2a ?时,'()0f x £在[0,2]上恒成立,()f x 在[0,2]上为单调递减函数,()f x 的最大值为(0)f a =-,由1a -?,得1a ?, 又因为2a ?,所以2a ?.综上所述,实数a 的值范围是1a ?或2e4a ?.……………………13分解:(Ⅰ)由题意得2221,.b c a b c ⎧=⎪=⎨⎪=+⎩解得2a =. ……………4分所以椭圆C 的方程为22143x y +=. ………………5分 (Ⅱ)“点B 关于直线EF 的对称点在直线MF 上”等价于“EF 平分MFB Д.……………6分设直线AM 的方程为(2)(0)y k x k =+?,则(2,4),(2,2)N k E k .……7分设点00(,)M x y ,由22(2),1,43y k x x y ì=+ïíï+=ïî得2222(34)1616120k x k x k +++-=,得2020286,3412.34k x k k y k ì-+ï=ï+íï=ï+î……9分 ① 当MF x ^轴时,01x =,此时12k =?. 所以3(1,),(2,2),(2,1)2M N E 北?.此时,点E 在BFM Ð的角平分线所在的直线1y x =-或1y x =-+, 即EF 平分MFB Ð. ……10分 ② 当12k 贡时,直线MF 的斜率为0204114MF y k k x k==--, 所以直线MF 的方程为24(41)40kx k y k +--=. ……11分 所以点E 到直线MF 的距离2d2=22|2(41)||41|k k k +=+|2|||k BE ==. 即点B 关于直线EF 的对称点在直线MF 上. …………………14分解:(Ⅰ)由于(1,0,1,0,1)A =,(0,1,1,1,0)B =,由定义1(,)||niii d A B a b ==-å,可得(,)4d A B =. …………………………4分(Ⅱ)反证法:若结论不成立,即存在一个含5维T 向量序列123,,,,m A A A A L ,使得1(1,1,1,1,1)A =,(0,0,0,0,0)m A =.因为向量1(1,1,1,1,1)A =的每一个分量变为0,都需要奇数次变化,不妨设1A 的第(1,2,3,4,5)i i =个分量1变化了21i n -次之后变成0, 所以将1A 中所有分量1 变为0 共需要12345(21)(21)(21)(21)(21)n n n n n -+-+-+-+- 123452(2)1n n n n n =++++--次,此数为奇数.又因为*1(,)2,i i d A A i +=?N ,说明i A 中的分量有2个数值发生改变, 进而变化到1i A +,所以共需要改变数值2(1)m -次,此数为偶数,所以矛盾. 所以该序列中不存在5维T 向量(0,0,0,0,0). ……………9分 (Ⅲ)此时1,2,3,4,5,6,7,8,9,10,11,12m =. ……………13分易见当m 为12的因子1,2,3,4,6,12时,给 (1分). 答出5,8,10m =给(1分).答出7,9,11m =中任一个给(1分),都对给(2分)。
2017届东城区普通校高三第一学期联考理科数学试卷及答案

2017届东城区普通校⾼三第⼀学期联考理科数学试卷及答案东城区普通校2013-2014学年第⼀学期联考试卷⾼三数学(理科)命题校:北京市第⼆⼗⼆中学 2013年11⽉本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分,共150分,考试⽤时120分钟。
考试结束后,将本试卷和答题卡⼀并交回。
祝各位考⽣考试顺利!第Ⅰ卷⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题列出的四个选项中,只有⼀项是符合题⽬要求的.1.若集合{}20M x x =->,{}(3)(1)0N x x x =--<,则M N =(A) {}23x x << (B ){}1x x < (C ){}3x x > (D ){}12x x << 2. 命题“若a b >,则1a b +>”的逆否命题是(A )若1a b +≤,则a b > (B )若1a b +<,则a b > (C )若1a b +≤,则a b ≤ (D )若1a b +<,则a b <3. “2x >”是“24x >”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件 4. 已知数列{}n a 为等差数列,且1232,13,a a a =+=则456a a a ++等于(A )40 (B )42 (C )43 (D )45 5. 下列函数中,图象关于坐标原点对称的是(A )lg y x = (B )cos y x =(C )||y x =(D )sin y x =6.曲线 331x y =在x=1处切线的倾斜⾓为(A )1 (B )4π- (C )4π(D )54π7. 要得到函数sin24y x π=-()的图象,只要将函数sin 2y x =的图象(A )向左平移π(B )向右平移π单位(C )向右平移8π单位(D )向左平移8π单位 8.下列函数中,在(1, 1)-内有零点且单调递增的是(A )12log y x =(B )21x y =- (C )212y x =-(D) 3y x =- 9.设13log 2a =,2log 3b =,0.31()2c =,则(A )a b c << (B )a c b <<(C )b c a << (D )b a c <<10.如图,是函数)(x f y =的导函数)(x f '的图象,则下⾯判断正确的是(A )在区间(-2,1)上)(x f 是增函数(B )在(1,3)上)(x f 是减函数(C )在(4,5)上)(x f 是增函数(D )当4=x 时,)(x f 取极⼤值11.已知数列}{n a 为等⽐数列,274=+a a ,865-=?a a ,则101a a +的值为(A )7 (B )5- (C )5 (D )7-12. 设函数121()log ()2xf x x =-,2121()log ()2xf x x =-的零点分别为12,x x ,则(A )1201x x << (B )121x x = (C )1212x x << (D )122x x ≥⼆、填空题:本⼤题共6⼩题,每⼩题5分,共30分.13. 函数)1lg()(-=x x f 的定义域是______________.14. 已知53sin =α,且α为第⼆象限⾓,则αtan 的值为 . 15. 若曲线21232-+=x x y 的某⼀切线与直线341+-=x y 垂直,则切点坐标为 .16. 在ABC ?中,若3a b ==,3B 2π∠=,则c =____. 17.已知函数y =f (x ) (x ∈R)满⾜f (-x +2)=f (-x ),当x ∈[-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点的个数为________.18.①命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是“存在x ∈R ,x 3-x 2+1>0”;②函数2()2xf x x =-的零点有2个;③若函数f (x )=x 2-|x +a |为偶函数,则实数a =0;④函数[]sin (,)y x x ππ=∈-图象与x 轴围成的图形的⾯积是π-πsin d S x x =;⑤若函数f (x )=a x -5x >6 ,? ??4-a 2x +4 x ≤6 ,在R 上是单调递增函数,则实数a 的取值范围为(1,8).其中真命题的序号是(写出所有正确命题的编号).三、解答题:本⼤题共4⼩题,共60分.解答应写出⽂字说明、证明过程或演算步骤.19.(本⼩题满分14分)已知函数2()cos cos f x x x x -.(Ⅰ)求()f x 的最⼩正周期;(Ⅱ)当[0,]2x π∈时,求函数()f x 的最⼤值及相应的x 的值.20. (本⼩题满分14分)在锐⾓ABC ?中,⾓A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (Ⅰ)求sin C ;(Ⅱ)当2c a =,且b =a .21.(本⼩题共14分)在公差不为0的等差数列{}n a 中,410a =,且3a ,6a ,10a 成等⽐数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2(*)n an b n =∈N ,求数列{}n b 的前n 项和公式.22.(本⼩题共18分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 在[1,3]上的最⼩值;(Ⅱ)若存在1[,e]ex ∈(e 为⾃然对数的底数,且e =2.71828 )使不等式22()3f x x ax ≥-+-成⽴,求实数a 的取值范围;(Ⅲ)若)(x F 的导函数为)(x f ,试写出⼀个符合要求的)(x F (⽆需过程).东城区普通校2013-2014学年第⼀学期联考试卷答题纸⾼三数学(理科)命题校:北京市第⼆⼗⼆中学 2013年11⽉第Ⅰ卷1_______2_______3_______4_______5_______6_______7_______8_______9______10______11_______12______13. 14.15. 16学号17. 18. 19解:20. 解:21. 解:号学22. 解:东城区普通校2013-2014学年第⼀学期联考答案⾼三数学(理科)参考答案(以下评分标准仅供参考,其它解法⾃⼰根据情况相应地给分)命题校:北京市第⼆⼗⼆中学 2013年11⽉⼀.选择题1 A2 C3 A4 B5 D6 C7 C8 B9 B 10C 11D 12A⼆.填空题13. {x | x >1 } 14. 43-15. (1,2)16.①③(写对⼀个给2分,写错⼀个不得分)三.解答题19.解:(Ⅰ)因为11()2cos 2222--1sin(2)62x π=--,所以22T ππ==,故()f x 的最⼩正周期为π. …………………… 7分(Ⅱ)因为 02x π≤≤,所以52666x πππ--≤≤.所以当262ππ=-x ,即3x π=时,)(x f 有最⼤值12. ………………14分20.解:(Ⅰ)由已知可得2312sin 4C -=-.所以27sin 8C =.因为在ABC ?中,sin 0C >,所以sin 4C =. ……………………………………………7分(Ⅱ)因为2c a =,所以1sin sin 28A C ==.因为ABC ?是锐⾓三⾓形,所以cos C =,cos A =.所以sin sin()B A C =+sin cos cos sin A C A C =+=+=A=,所以a =…………………………14分 21.解:(Ⅰ)设数列{}n a 的公差为d ,⼜410a =,可得310a d =-,6102a d =+, 10106a d =+.由3a ,6a ,10a 成等⽐数列得23106a a a =,即2(10)(106)(102)d d d -+=+,整理得210100d d -=,解得0d =或1d =.由0d ≠,可得1d =.14310317a a d =-=-?=,所以1(1)6n a a n d n =+-=+. …………………7分(Ⅱ)由2(*)n an b n =∈N ,6n a n =+,可得62n n b +=.所以1612128b +==.因为716222n n n n b b +++==,所以数列{}n b 是⾸项为128,公⽐为2的等⽐数列.所以{}n b 的前n 项和公式为7128(12)212812n n n S +-==--.………14分 22.解:(Ⅰ)由()ln f x x x =,可得()ln 1f x x '=+,当1(0,)ex ∈时,()0,()f x f x '<单调递减;当1(,)ex ∈+∞时,()0,()f x f x '>单调递增.所以函数)(x f 在[1,3]上单调递增.⼜(1)ln10f ==,所以函数()f x 在[1,3]上的最⼩值为0. …………………7分(Ⅱ)由题意知,22ln 3,x x x ax ≥-+-则32ln a x x x ≤++.若存在1[,e]ex ∈使不等式2只需a ⼩于或等于32ln x x x++的最⼤值.设()()32ln 0h x x x x x =++>,则()()()2231231x x h x x x x+-'=+-=.当1[,1)x e∈时,()()0,h x h x '<单调递减;当(1,e]x ∈时,()()0,h x h x '>单调递增.由11()23e e e h =-+ +,3(e)2e e h =++,12()(e)2e 40e eh h -=-->,可得1()(e)eh h >.所以,当1[,e]e x ∈时,)(x h 的最⼤值为11()23e e eh =-++.故123e ea ≤-++. ………………14分(Ⅲ)4ln 2)(22x x x x F -=………………18分。
东城区2017-2018第一学期理科答案8稿

东城区2017-2018学年第一学期期末教学统一检测高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)C (3)D (4)B (5)B (6)C (7)A (8)C 二、填空题(共6小题,每小题5分,共30分) (9)1- (10)40 (11)20 (12)(1,)+∞ (13)1,222x y -=等 (14)23π,②④ 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)因为2a =,2sin sin A C =,由正弦定理sin sin a cA C=,得4c =. (Ⅱ)由21cos 22cos 14C C =-=-,得23cos 8C =.因为02C π<<,得cos 4C =.所以sin C ==方法一:因为2sin sin A C =,所以sin 88A A == 所以所以1sin 2ABC S ac B ∆== 方法二:由余弦定理2222cos c a b ab C =+-,得2120b -=, 解得b =b =.sin sin[()]sin()sin cos cos sin B A C A C A C A C =π-+=+=+=+=所以1sin 2ABC S ab C ∆==(16)(共13分)解:(I )由于收盘价的中位数为169,且开盘价的中位数与收盘价的中位数相同,所以a =169. (II )由于只有周四和周五的开盘价比其收盘价低,所以ξ的所有可能取值为0,1,2.33351(0)10C P C ξ===,2132353(1)5C C P C ξ⋅===,1232353(2)10C C P C ξ⋅===. 所以ξ的分布列为故ξ的数学期望1336012105105E ξ=⨯+⨯+⨯=. (III )168.(17)(共14分) 证明:(Ⅰ)取线段AE 中点P .连接BP 、MP . 因为点M 为DE 中点,所以//MP AD ,12MP AD =. 又因为B C D O 为正方形,所以//BC AD ,BC AD =,所以//BC MP ,BC MP =.所以四边形BCMP 为平行四边形,所以//CM BP . 因为CM ⊄平面ABE ,BP ⊂平面ABE , 所以//CM 平面ABE . (Ⅱ)连接EO .因为AE DE =,O 为AD 中点,所以EO AD ⊥.. 因为EO ⊂平面ADE ,平面ADE ⊥平面ABCD , 平面ADE 平面ABCD AD =所以 ,EO OB EO OD ⊥⊥ 又因为正方形BCDO ,所以OB OD ⊥. 如图所示,建立空间直角坐标系O xyz -.()0,1,0A -,()1,0,0B ,()1,1,0C ,()0,1,0D ,()0,0,1E ,110,,22M ⎛⎫⎪⎝⎭.设平面ABE 的法向量为(),,m x y z =,()1,1,0AB = ,()0,1,1AE =,则有0,0.AB m AE m ⎧⋅=⎪⎨⋅=⎪⎩即0,0.x y y z +=⎧⎨+=⎩ 令1y =-,则1x z ==,即平面ABE 的一个法向量为()1,1,1m =-.()0,1,1DE =-,cos ,DE DE DE⋅=== m m m . 所以直线DE 与平面ABE(Ⅲ)设ON OD λ= ,所以()0,,0N λ=,所以()1,,0NB λ=- ,111,,22MB ⎛⎫=-- ⎪⎝⎭ .设平面BMN 的法向量为(),,n u v w =,则有0,0.NB n MB n ⎧⋅=⎪⎨⋅=⎪⎩ 即0,110.22u v u v w λ-=⎧⎪⎨--=⎪⎩ 令1v =,则()0,1,1n =. 因为0CN n ⋅=,则,21u w λλ==-.即平面BMN 的一个法向量为(),1,21n λλ=-.因为平面BMN ⊥平面ABE ,所以0m n ⋅=.解得23λ=,所以53AN =.(18)(本题满分共13分) 解:(Ⅰ)()f x 的定义域为(0,)+∞. 由已知得21ln 21)('2--=x x x f ,且32)1(=f . 所以0)1('=f .所以曲线)(x f y =在点(1,)1(f )处的切线方程为32=y . (Ⅱ)设()'()g x f x =,(1x e e<<) 则211'()x g x x x x-=-=.令'()0g x =得1x =.当x 变化时,'()g x 符号变化如下表:则()(1)0g x g ≥=,即'()0f x ≥,当且仅当1x =时,'()0f x =. 所以()f x 在1(,)e e上单调递增. 又e e e f 2161)(3-=, 所以a 的最小值为为31162e e -. (19)(本题满分共14分)解:(I )由题意得22121.a ab ⎧=⎪⎨⎪=+⎩解得 1.a b ⎧=⎪⎨=⎪⎩ 故椭圆C 的方程为2212x y +=. (II )当直线MN 斜率存在时,设直线MN 的方程为(1)(0)y k x k =+≠.由22(1),1,2y k x x y =+⎧⎪⎨+=⎪⎩消去y 得2222(12)4(22)0k x k x k +++-=. 易得0∆>.设1122(,),(,)M x y N x y ,则2122212241222.12k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 设(,0)Q t .由点,M N 在x 轴异侧,则问题等价于 “QF 平分MQN ∠ ”,且12,x t x t ≠≠,又等价于“12120QM QN y yk k x t x t+=+=--”,即1221()()0y x t y x t -+-=. 将1122(1),(1)y k x y k x =+=+代入上式,整理得12122()(1)20x x x x t t ++--=. 将①②代入上式,整理得20t +=,即2t =-,① ②所以(20)Q -,.当直线MN 的斜率不存在时,存在(20)Q -,也使得点F 到直线QM ,QN 的距离相等. 故在x 轴上存在定点(20)Q -,,使得点F 到直线QM ,QN 的距离总相等. (20)(共13分) 解:(I )1,1,3,4,5.(II )1i =时,由111a ≤≤知11a =,由题意知111b a =≥,结论成立;2i ≥时,设(1)i a k k i =≤≤,若1k =,则i i b a ≥;若2k i ≤≤,则由1211,2,,1k a a a k -≤≤≤- 知121,,,k a a a - 均不与i a 相等. 于是()1i a k τ≥-,()1i i i b a k a τ=+≥=. 综上,(1,2,,)ii b a i n ≥= .(III )当1i =时,由111a ≤≤知11a =,结论成立; 当2i ≥时,假设121,,,i a a a - 中存在一项和i a 相等,设为k a .在数列121,,,,,,k i i a a a a a - 中,由1i i a a -≠,i k a a =可知,第i 项之前与i a 不相等的 项比第k 项之前与k a 不相等的项至少多了一项1i a -,则()()i k a a ττ>. 于是()1()1i i k k b a a b ττ=+>+=,可得i i k k a b b a =>=,与i k a a =矛盾. 于是121,,,i a a a - 均不与i a 相等,则()1i i i a b a i τ==+=. 综上,若数列A 相邻两项均不相等,且B 与A 为同一个数列, 则(1,2,,)i a i i n == .。
北京市2017届高三数学(理)综合练习66 含答案

北京市2017届高三综合练习数学(理)本试卷分第I 卷和第II 卷两部分,共150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试题卷上作答无效.考试结束后,将本试题卷和答题卡一并交回.第I 卷 (选择题 共40分) 一、本大题共8个小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数11i z i+=-等于A .iB .2iC .1+iD .1-i2.参数方程cos ,sin 3x y θθ==-⎧⎨⎩(θ为参数)化为普通方程是A .()2231x y +-= B .()2231y x ++=C .30x y ++=D .2213y x+=3.如图,程序框图所进行的求和运算是A .1+2+22+23+24+25B .2+22+23+24+25C .1+2+22+23+24D .2+22+23+244.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是 A .AB AC BC += B .12AB BC DA =+C .AD DC AC -= D .2CD BA CA +=5.已知一个空间几何体的三视图如图所示,其中正 视图为等腰直角三角形,侧视图与俯视图均为正开始是输出S 否 n =1,S = 0 n <5 S = S +2 n n = n +1结束方形,那么该几何体的表面积是 A .16 B .20 C .1242+ D .1642+6.有1位老师与2名女生2名男生站成一排合影,两名女生之间只有这位老师,这样的不同排法共有A .48种B .24种C .12种D .6种7.某汽车销售公司在A ,B 两地销售同一种品牌车,在A 地的销售利润(单位:万元)是1913.5y x=-,在B 地的销售利润(单位:万元)是21 6.24yx =+,其中x 为销售量(单位:辆).若该公司在这两地共销售11辆这种品牌车,则能获得的最大利润是A .19.45万元B .22。
2017年北京各城区一二模拟理科20题答案

17年东城二模理(20)(共13分)解:(Ⅰ)由于(1,0,1,0,1)A =,(0,1,1,1,0)B =,由定义1(,)||n i i i d A B a b ,可得(,)4d A B . …………………………4分(Ⅱ)反证法:若结论不成立,即存在一个含5维向量序列,使得1(1,1,1,1,1)A ,(0,0,0,0,0)mA .因为向量1(1,1,1,1,1)A 的每一个分量变为0,都需要奇数次变化,不妨设1A 的第(1,2,3,4,5)i i 个分量1变化了21i n 次之后变成0, 所以将1A 中所有分量1 变为0 共需要12345(21)(21)(21)(21)(21)n n n n n 123452(2)1n n n n n 次,此数为奇数.又因为*1(,)2,i i d A A iN ,说明中的分量有个数值发生改变,进而变化到,所以共需要改变数值次,此数为偶数,所以矛盾. 所以该序列中不存在5维T 向量(0,0,0,0,0). ……………9分 (Ⅲ)此时. ……………13分 17年东城一模理(20)(共13分)解:(Ⅰ)由于{1,2,3,4,5,6,7,8,9,10}A =,{1,2,3,4,5}M =,所以{6,7,8,9,10}N =,{5,6,7,8,9}N =,{4,5,6,7,8}N ={3,4,5,6,7}N =,{2,3,4,5,6}N =,回答其中之一即可 ………3分(Ⅱ)若集合12{,,,}n A a a a =,如果集合A 中每个元素加上同一个常数t ,形成新的集合12{,,,}n M a t a t a t =+++. ……………5分根据1()||j i i j nT A a a ≤<≤=-∑定义可以验证:()()T M T A =. ……………6分取1nii C a t n=-=∑,此时11112{,,,}nnniiii i i n C a C a C a B a a a nnn===---=---∑∑∑.通过验证,此时()()T B T A =,且1nii bC ==∑. ……………8分(Ⅲ)由于2m21314121()()()()()m T A a a a a a a a a =-+-+-++- 324222()()()m a a a a a a +-+-++-T 123,,,,m A A A A i A 21i A +2(1)m -1,2,3,4,5,6,7,8,9,10,11,12m =4323()()m a a a a +-++-221()m m a a -+-121212=(21)(23)(23)(21)m m m m m a m a a a m a m a +-------+++-+-212121=(21)()(23)()()m m m m m a a m a a a a -+--+--++-2121=(21)()(23)()()m m m m b a m a a a a -+--+--++- ………11分由于2120m a a b a -<-<-,2230m a a b a -<-<-, 2340m a a b a -<-<-,10m m a a b a +<-<-.所以2(21)()()()m b a T A m b a --<<-.………13分17年西城一模理20.(本小题满分13分)解:(Ⅰ) 3S 的所有可能的取值为3,5,7,9. [ 3分] (Ⅱ) 令i a i = (1,2,,)i n =,则无论12,,,n b b b 填写的顺序如何,都有2n S n =.[ 5分]因为 i a i =, 所以 {1,2,,2}i b n n n ∈++,(1,2,,)i n =. [ 6分]因为 i i a b < (1,2,,)i n =,所以 22111111||()nnnnn nn i i i i i i i i i i i n i S a b b a b a i i n=====+==-=-=-=-=∑∑∑∑∑∑. [ 8分]注:12{,,,}{1,2,,}n a a a n =,或12{,,,}{1,2,,2}n a a a n n n =++均满足条件.(Ⅲ)解法一:显然,交换每一列中两个数的位置,所得的n S 的值不变.不妨设i i a b >,记1ni i A a ==∑,1ni i B b ==∑,其中1,2,,i n =.则 1111||()n n n nn i i i i i i i i i i S a b a b a b A B =====-=-=-=-∑∑∑∑. [ 9分]因为 212(21)(21)2ni n n A B i n n =++===+∑, 所以 A B +与n 具有相同的奇偶性. [11分]又因为 A B +与A B -具有相同的奇偶性, 所以 n S A B =-与n 的奇偶性相同,所以 n S 的所有可能取值的奇偶性相同. [13分]解法二:显然,交换每一列中两个数的位置,所得的n S 的值不变.考虑如下表所示的任意两种不同的填法,1||n n i i i S a b ==-∑,1||nni i i S a b ='''=-∑,不妨设i i a b <,i i a b ''<,其中 1,2,,i n =. [ 9分]111111()()()()n ni i i i i i i i i i i i i i S S b a b a b b a a ======'''''+=-+-=+-+∑∑∑∑∑∑. 对于任意{1,2,,2}k n ∈,① 若在两种填法中k 都位于同一行,则k 在n n S S '+的表达式中或者只出现在11n n i i i i b b =='+∑∑中,或只出现在11n ni i i i a a =='+∑∑中,且出现两次,则对k 而言,在n nS S '+的结果中得到2k ±. [11分]② 若在两种填法中k 位于不同行,则k 在n nS S '+的表达式中在11n n i i i i b b =='+∑∑与11n ni i i i a a =='+∑∑中各出现一次, 则对k 而言,在n nS S '+的结果中得到0. 由 ① ② 得,对于任意{1,2,,2}k n ∈,n nS S '+必为偶数. 所以,对于表格的所有不同的填法,n S 所有可能取值的奇偶性相同. [13分]17年西城二模理20.(本小题满分13分)解:(Ⅰ)当3n =时,6{1,2,3,4,5,6}A =,4113n +=. [ 1分]① 对于6A 的含有5个元素的子集{2,3,4,5,6}, 因为 234513+++>,所以 5不是集合6A 的“相关数”. [ 2分] ② 6A 的含有6个元素的子集只有{1,2,3,4,5,6}, 因为 134513+++=,所以 6是集合6A 的“相关数”. [ 3分] (Ⅱ)考察集合2n A 的含有2n +个元素的子集{1,,1,,2}B n n n n =-+. [ 4分]B 中任意4个元素之和一定不小于 (1)(1)(2)42n n n n n -+++++=+. 所以 2n +一定不是集合2n A 的“相关数”. [ 6分] 所以 当2m n +≤时,m 一定不是集合2n A 的“相关数”. [ 7分] 因此 若m 为集合2n A 的“相关数”,必有 3m n +≥.即 若m 为集合2n A 的“相关数”,必有 30m n --≥. [ 8分] (Ⅲ)由(Ⅱ)得 3m n +≥.先将集合2n A 的元素分成如下n 组:(,21)(1)i i n C i n i =+-≤≤.对2n A 的任意一个含有3n +个元素的子集P ,必有三组123,,i i i C C C 同属于集合P . [10分]再将集合2n A 的元素剔除n 和2n 后,分成如下1n -组:1(,2)(1)j j n D j n j -=-≤≤.对于2n A 的任意一个含有3n +个元素的子集P ,必有一组4j D 属于集合P .[11分] 这一组4j D 与上述三组123,,i i i C C C 中至少一组无相同元素, 不妨设4j D 与1i C 无相同元素.此时 这4个元素之和为 1144[(21)[(2)]41i n i j n j n ++-++-=+. [12分] 所以 集合2n A 的“相关数”m 的最小值为3n +. [13分]17年海淀一模理20.(本小题满分13分) 解:(Ⅰ)121,2a a ==. (Ⅱ)先证必要性因为121,2a a ==,又12,,,n a a a 成等差数列,故n a n =,所以(1)()2n n S A +=; 再证充分性因为12n a a a <<⋅⋅⋅<,12,,,n a a a 为正整数数列,故有12341,2,3,4,,n a a a a a n ==≥≥⋅⋅⋅≥,所以12()n S A a a a =++⋅⋅⋅+(1)122n n n +≥++⋅⋅⋅+=, 又(1)()2n n S A +=,故m a m =(1,2,,)m n =,故12,,,n a a a 为等差数列.(Ⅲ)先证明12(1,2,,)m m a m n -∀≤=⋅⋅⋅.假设存在12p p a ->,且p 为最小的正整数. 依题意3p ≥,则2112112221p p p a a a ---++⋅⋅⋅+≤++⋅⋅⋅+=-,又因为12n a a a <<<,故当1(21,)p p k a -∈-时,k 不能等于集合A 的任何一个子集所有元素的和.故假设不成立,即12(1,2,,)m m a m n -∀≤=⋅⋅⋅成立.因此112201712221n nn a a a -=++⋅⋅⋅+≤++⋅⋅⋅+=-,即22018n ≥,所以11n ≥.因为2017S =,则1212017n n a a a a -++⋅⋅⋅=-,若20171n n a a -<-时,则当(2017,)n n k a a ∈-时,集合A 中不可能存在若干不同元素的和为k ,故20171n n a a -≥-,即1009n a ≤.此时可构造集合{1,2,4,8,16,32,64,128,256,497,1009}A =.因为当{2,21}k ∈+时,k 可以等于集合{1,2}中若干个元素的和,故当2222{2,21,22,23}k ∈+++时,k 可以等于集合2{1,2,2}中若干不同元素的和, ……故当8888{2,21,22,,2255}k ∈+++时,k 可以等于集合8{1,2,,2}中若干不同元素的和,故当{4973,4974,,497511}k ∈+++时,k 可以等于集合8{1,2,,2,497}中若干不同元素的和,故当{1009,10091,10092,,10091008}k ∈+++时,k 可以等于集合8{1,2,,2,497,1009}中若干不同元素的和,所以集合{1,2,4,8,16,32,64,128,256,497,1009}A =满足题设, 所以当n 取最小值11时,n a 的最大值为1009. 17年海淀二模理20.(本小题满分13分) 解:(Ⅰ)数列{}n a 不具有性质(2)P ;具有性质(4)P .(Ⅱ)(不充分性)对于周期数列1,1,2,2,1,1,2,2,,{1,0,1}T =-是有限集,但是由于21320,1a a a a -=-=,所以不具有性质(0)P ;(必要性)因为数列{}n a 具有性质(0)P ,所以一定存在一组最小的*,m k ∈N 且m k >,满足0m k a a -=,即m k a a = 由性质(0)P 的含义可得11222112,,,,,m k m k m k m m k m a a a a a a a a ++++----==== 所以数列{}n a 中,从第k 项开始的各项呈现周期性规律:11,,,k k m a a a +-为一个周期中的各项,所以数列{}n a 中最多有1m -个不同的项,所以T 最多有21m C -个元素,即T 是有限集.(Ⅲ)因为数列{}n a 具有性质(2)P ,数列{}n a 具有性质(5)P ,所以存在*','M N ∈N ,使得''2M p M a a +-=,''5N q N a a +-=,其中,p q 分别是满足上述关系式的最小的正整数,由性质(2),(5)P P 的含义可得k ∀∈N ,''''2,5M p k M k N q k N k a a a a ++++++-=-=, 若''M N <,则取''k N M =-,可得''2N p N a a +-=; 若''M N >,则取''k M N =-,可得''5M q M a a +-=.记max{','}M M N =,则对于M a ,有2M p M a a +-=,5M q M a a +-=,显然p q ≠, 由性质(2),(5)P P 的含义可得k ∀∈N ,2,5M p k M k N q k N k a a a a ++++++-=-=, 所以(1)(1)(2)()()()2M qp M M qp M q p M q p M q p M p M a a a a a a a a q +++-+-+-+-=-+-++-= (1)(1)(2)()()()5M qp M M pq M p q M p q M p q M q M a a a a a a a a p +++-+-+-+-=-+-++-=所以25M qp M M a a q a p +=+=+. 所以25q p =,又,p q 是满足2M p M a a +-=,5M q M a a +-=的最小的正整数, 所以5,2q p ==,252,5M M M M a a a a ++-=-=,所以k ∀∈N ,252,5M k M k M k M k a a a a ++++++-=-=, 所以k ∀∈N ,22(1)22M k M k M a a a k ++-=+==+,55(1)55M k M k M a a a k ++-=+==+,取5N M =+,则k ∀∈N ,所以,若k 是偶数,则N k N a a k +=+;若k 是奇数,则5(5)5(5)5(5)N k N k N N N a a a k a k a k +++-+==+-=++-=+,所以k ∀∈N ,N k N a a k +=+所以12,,,,,N N N N k a a a a +++是公差为1的等差数列.17年朝阳一模理(20)(本小题满分13分)解:(Ⅰ)集合{1,2,3,4,5}不是“和谐集”. …………………………………3分 (Ⅱ)设集合12{,,,}n Aa a a 所有元素之和为M . 由题可知,i M a (1,2,,i n )均为偶数,因此i a (1,2,,in )的奇偶性相同.(ⅰ)如果M 为奇数,则i a (1,2,,in )也均为奇数,由于12n Ma a a ,所以n 为奇数.(ⅱ)如果M 为偶数,则i a (1,2,,i n )均为偶数,此时设2ii a b ,则12{,,,}n b b b 也是“和谐集”.重复上述操作有限次,便可得各项均为奇数的“和谐集”. 此时各项之和也为奇数,集合A 中元素个数为奇数.综上所述,集合A 中元素个数为奇数. …………………………………8分 (Ⅲ)由(Ⅱ)可知集合A 中元素个数为奇数,当3n 时,显然任意集合123{,,}a a a 不是“和谐集”. 当5n时,不妨设12345a a a a a ,将集合1345{,,,}a a a a 分成两个交集为空集的子集,且两个子集元素之和相等, 则有1534a a a a ①,或者5134a a a a ②;将集合2345{,,,}a a a a 分成两个交集为空集的子集,且两个子集元素之和相等, 则有2534a a a a ③,或者5234a a a a ④.由①、③,得12a a ,矛盾;由①、④,得12a a ,矛盾; 由②、③,得12a a ,矛盾;由②、④,得12a a ,矛盾.因此当5n 时,集合A 一定不是“和谐集”.当7n时,设{1,3,5,7,9,11,13}A ,因为35791113,19135711,91313711,13511713,19113513,3791513,1359711,所以集合{1,3,5,7,9,11,13}A是“和谐集”.集合A 中元素个数n 的最小值是7. ……………………………………13分17年朝阳二模理(20)(本小题满分13分)解:(Ⅰ)5,1,0,2,2. …………3分 (Ⅱ)因为10-≤≤n a n ,所以20,1032≤≤≤≤a a ,又数列}{n a 的前3项互不相等, (1)当02=a 时,若13=a ,则3451a a a ====,且对3≥n ,12)2(0+-=-++nm n n m 都为整数,所以2=m ;若23=a ,则3452a a a ====,且对3≥n ,24)2(20+-=-++nm n n m 都为整数,所以4=m ;(2)当12=a 时,若03=a ,则3450a a a ====,且对3≥n ,nm n n m 1)2(01+=-⋅++都为整数,所以1-=m ,不符合题意; 若23=a ,则3452a a a ====,且对3≥n ,23)2(21+-=-++nm n n m 都为整数,所以3=m ;综上,m 的值为2,3,4. …………8分 (Ⅲ)对于1≥n ,令12n n S a a a =+++,则11111+=+≤+=<++++nS n n S n a S n S n S nn n n n n . 又对每一个n ,nS n 都为正整数,所以11++n S n m Sn S n =≤≤≤1...1,其中“<”至多出现1-m 个.故存在正整数M m >,当n M >时,必有nS n S nn =++11成立.当n S n S n n =++11时,则nSS n S n S S a n n n n n n =-+=-=++)1(11.从而22)1(2212112122+-+=+++=+++=+++++++++n a a a n a n a n S a a n S n n n n n n n n n . 由题设知1212||12<++≤+-++n n n a a n n ,又22++n S n 及1+n a 均为整数,所以=++22n S n =+1n a 11+=+n Sn S n n ,故1212n n n S S S n n n ++====++常数.从而==-+=-=++nSS n S n S S a n n n n n n )1(11常数. 故存在正整数M ,使得n M ≥时,n a 为常数. ………………………………13分17年石景山一模20.(本小题共13分) 解:(Ⅰ)2{(0,0),(0,1),(1,0),(1,1)}R =,2,A B R ∈ ,max (,)2d A B =. …………………3分(Ⅱ)3R 中含有8个元素,可将其看成正方体的8个顶点,已知集合M 中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以{(0,0,0),(1,1,0),(1,0,1),(0,1,1)}M =或{(0,0,1),(0,1,0),(1,0,0),(1,1,1)}M =,集合M 中元素个数最大值为4. ………………8分 (Ⅲ)2,1()(,)A B Pmd P d A B C ∈=∑,其中,(,)A B Pd A B ∈∑表示P 中所有两个元素间距离的总和.设P 中所有元素的第i 个位置的数字中共有i t 个1,i m t -个0,则,1(,)()ni i A B Pi d A B t m t ∈==-∑∑由于2()(1,2,,)4i i m t m t i n -≤=所以2,1(,)()4ni i A B P i nm d A B t m t ∈==-≤∑∑从而222,1()(,)42(1)A B P mmnm nmd P d A B C C m ∈=≤=-∑ …………………13分【注:若有其它解法,请酌情给分】17年顺义二模20.解(1)由题意1(1)(1)2na n n ,---------------------------1分(1)(1)2nn n S n, -----------------------------------2分 若(1)(1)22n kn n S na k , -----------------------------------3分则(1)22n n k n -=+-. 所以,存在*∈N k ,使得n k S a =.所以, 数列是“G 数列. ---------------------------------------4分 (2)解:首先113a S ,当2≥n 时,1132--⨯=-=n n n n S S a ,所以⎩⎨⎧≥⨯==-2,321,31n n a n n , -----------------------------------6分 当2n =时,1923k -=⨯,得k N *∉因此数列{}n a 不是“G 数列”. ----------------8分 (3)若n d bn ,(b 为常数),则数列的前n 项和(1)2n n n S b +=是数列中的第(1)2n n +项,因此数列是“G 数列”. 对任意的等差数列,,(d 为公差),设1nb na ,1()(1)nc da n,则n nna b c ,而数列,都是“G 数列”.--------------------------------13分17年昌平二模(20)(本小题满分13分)解:(I ) 设,由题意,化简得,即,或.{}n a {}n d {}n d {}n d {}n a 1(1)n a a n d {}n b {}n c 1n n a q -=2312a a +=2120q q +-=4=-q 3=q所以数列的通项公式为,或.………………4分 (II )当时,,令,有;当,时,,令,则.所以,,,使.………………8分(III )当时,因为中最大元素为,得,中最大元素为,得, 所以,即符合题意.当,时,即又,所以即时., ,所以,与已知矛盾,故不合题意. 综上,.………………13分【各题若有其它解法,请酌情给分】{}n a 1(4)n na -=-13n n a -=1k =22=a {1}T =122===T S a a 2100≤≤k ∈*N k 12+=kk a {}1,2,T k =…,121(+)2+=++==k T k k S a a a a k ∀∈*N 1100k ≤≤∃⊆T U 1T k S a +=1≥+m r A m13-≥=m A m S a B r 111231+139+3(31)332--≤+++=+++=-<≤r rr m B r S a a a a ≥A B S S 1≥+m r 1<+m r ∈*N m .m r ≤=∅AB .m r ≠1≤-m r 111231+139+3(31)332--≤+++=+++=-<≤m mm r A m S a a a a 13-≥=r B r S a <A B S S 1<+m r 1m r ≥+。
2017东城区高三(上)期末数学(理科)

2017东城区高三(上)期末数学(理科)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.)1.(5分)已知集合A={x|(x﹣1)(x﹣3)<0},B={x|2<x<4},则A∩B=()A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}2.(5分)抛物线y2=2x的准线方程是()A.y=﹣1 B.C.x=﹣1 D.3.(5分)“k=1”是“直线与圆x2+y2=9相切”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的k值为()A.6 B.8 C.10 D.125.(5分)已知x,y∈R,且x>y>0,则()A.tanx﹣tany>0 B.xsinx﹣ysiny>0C.lnx+lny>0 D.2x﹣2y>06.(5分)已知f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则f(x+1)≥0的解集为()A.(﹣∞,﹣1]B.(﹣∞,1]C.[﹣1,+∞)D.[1,+∞)7.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2 D.8.(5分)数列{a n}表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率r n=0.6(r n=,n∈N*).当这种细菌在实际条件下生长时,其日增长率r n会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率r n的规律描述正确的是()A. B.C.D.二、填空题共6小题,每小题5分,共30分.9.(5分)若复数(2﹣i)(a+2i)是纯虚数,则实数a=.10.(5分)若x,y满足,则x+2y的最大值为.11.(5分)若点P(2,0)到双曲线的一条渐近线的距离为1,则a=.12.(5分)在△ABC中,若AB=2,AC=3,∠A=60°,则BC=;若AD⊥BC,则AD=.13.(5分)在△ABC所在平面内一点P,满足,延长BP交AC于点D,若,则λ=.14.(5分)关于x的方程g(x)=t(t∈R)的实根个数记为f(t).若g(x)=lnx,则f(t)=;若g(x)=(a∈R),存在t使得f(t+2)>f(t)成立,则a的取值范围是.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)15.(13分)已知{a n}是等比数列,满足a1=3,a4=24,数列{a n+b n}是首项为4,公差为1的等差数列.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和.16.(13分)已知函数部分图象如图所示.(Ⅰ)求f(x)的最小正周期及图中x0的值;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PCD⊥平面ABCD,BC=1,AB=2,,E为PA中点.(Ⅰ)求证:PC∥平面BED;(Ⅱ)求二面角A﹣PC﹣D的余弦值;(Ⅲ)在棱PC上是否存在点M,使得BM⊥AC?若存在,求的值;若不存在,说明理由.18.(13分)设函数.(Ⅰ)若f(0)为f(x)的极小值,求a的值;(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.19.(14分)已知椭圆C:=1(a>b>0)经过点M(2,0),离心率为.A,B是椭圆C上两点,且直线OA,OB的斜率之积为﹣,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求的值.20.(13分)已知集合A n={(x1,x2,…,x n)|x i∈{﹣1,1}(i=1,2,…,n)}.x,y∈A n,x=(x1,x2,…,x n),y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+x n y n.若x⊙y=0,则称x与y正交.(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;(Ⅱ)令B={x⊙y|x,y∈A n}.若m∈B,证明:m+n为偶数;(Ⅲ)若A⊆A n,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.参考答案与试题解析一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.)1.【解答】集合A={x|(x﹣1)(x﹣3)<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}.故选:C.2.【解答】抛物线y2=2x的准线方程是:x=﹣.故选:D.3.【解答】若直线与圆x2+y2=9相切,则由得:(1+k2)x2﹣6kx+9=0,故△=72k2﹣36(1+k2)=0,解得:k=±1,故“k=1”是“直线与圆x2+y2=9相切”的充分不必要条件,故选:A.4.【解答】模拟程序的运行,可得S=0,k=0满足条件S≤,执行循环体,k=2,S=满足条件S≤,执行循环体,k=4,S=+满足条件S≤,执行循环体,k=6,S=++满足条件S≤,执行循环体,k=8,S=+++=不满足条件S≤,退出循环,输出k的值为8.故选:B.5.【解答】x,y∈R,且x>y>0,对于A:当x=,y=时,tan=,tan=,显然不成立;对于B:当x=π,y=时,πsinπ=﹣π,﹣sin=﹣1,显然不成立;对于C:lnx+lny>0,即ln(xy)>ln1,可得xy>0,∵x>y>0,那么xy不一定大于0,显然不成立;对于D:2x﹣2y>0,即2x>2y,根据指数函数的性质可知:x>y,恒成立.故选D6.【解答】∵f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,∴函数在(﹣∞,+∞)上是增函数,∵f(0)=0,∴不等式f(x+1)≥0等价为f(x+1)≥f(0),则x+1≥0,得x≥﹣1,即不等式的解集为[﹣1,+∞),故选:C7.【解答】由已知中的三视图可得:该几何体是一个以俯视图中左上角的三角形为底面的三棱锥,其直观图如下图所示:其底面面积S=×2×2=2,高h=2,故棱锥的体积V==,故选:B.8.【解答】由图象可知,第一天到第六天,实际情况与理想情况重合,r1=r2=r6=0.6为定值,而实际情况在第10天后增长率是降低的,并且降低的速度是变小的,故选B.二、填空题共6小题,每小题5分,共30分.9.【解答】∵复数(2﹣i)(a+2i)=(2a+2)+(4﹣a)i是纯虚数,∴2a+2=0,4﹣a≠0,解得a=﹣1.故答案为:﹣1.10.【解答】作出不等式组对应的平面区域,设z=x+2y,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点A时,直线y=的截距最大,此时z最大,由,得,即A(2,2)此时z=2+2×2=6.故答案为:611.【解答】双曲线的一条渐近线方程为:x+ay=0,点P(2,0)到双曲线的一条渐近线的距离为1,可得:=1,解得a=.故答案为:.12.【解答】∵AB=2,AC=3,∠A=60°,∴由余弦定理可得BC==,=,∴AD=,故答案为,.13.【解答】根据题意,不妨设△ABC是等腰直角三角形,且腰长AB=AC=1,建立直角坐标系,如图所示,则A(0,0),B(1,0),C(0,1),∴=(1,0),=(0,1);∴=+=(,),∴=﹣=(﹣,);设点D(0,y),则=(﹣1,y),由、共线,得y=,∴=(0,),=(0,1),当时,λ=.故答案为:.14.【解答】若g(x)=lnx,则函数的值域为R,且函数为单调函数,故方程g(x)=t有且只有一个根,故f(t)=1,g(x)=,当t≤0时,f(t)=1恒成立,若存在t使得f(t+2)>f(t)成立,则x>0时,函数的最大值大于2,且对称轴位于y轴右侧,即,解得:a>1,故答案为:1,a>1三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.)15.【解答】(Ⅰ)设等比数列{a n}的公比为q.a1=3,a4=24得q3==8,q=2.所以a n=3•2n﹣1.又数列{a n+b n}是首项为4,公差为1的等差数列,所以a n+b n=4+(n﹣1)=n+3.从而b n=n+3﹣3•2n﹣1.(Ⅱ)由(Ⅰ)知b n=n+3﹣3•2n﹣1.数列{n+3}的前n项和为.数列{3•2n﹣1}的前n项和为=3×2n﹣3.所以,数列{b n}的前n项和为为﹣3×2n+3.16.【解答】(Ⅰ)∵函数,∴函数的最小正周期为T==π;…(2分)因为点(0,1)在f(x)=2sin(2x+φ)的图象上,所以2sin(2×0+φ)=1;又因为|φ|<,所以φ=,…(4分)令2x+=,解得x=,所以x0=π+=;…(6分)(Ⅱ)由(Ⅰ)知f(x)=2sin(2x+),因为0≤x≤,所以≤2x+≤;当2x+=,即x=时,f(x)取得最大值2;当2x+=,即x=时,f(x)取得最小值﹣1.…(13分)17.【解答】证明:(Ⅰ)设AC与BD的交点为F,连结EF.因为ABCD为矩形,所以F为AC的中点.在△PAC中,由已知E为PA中点,所以EF∥PC.又EF⊂平面BFD,PC⊄平面BFD,所以PC∥平面BED.…(5分)(Ⅱ)取CD中点O,连结PO.因为△PCD是等腰三角形,O为CD的中点,所以PO⊥CD.又因为平面PCD⊥平面ABCD,PO⊂平面PCD,所以PO⊥平面ABCD.取AB中点G,连结OG,由题设知四边形ABCD为矩形,所以OF⊥CD.所以PO⊥OG.…(1分)如图建立空间直角坐标系O﹣xyz,则A(1,﹣1,0),C(0,1,0),P(0,0,1),D(0,﹣1,0),B(1,1,0),O(0,0,0),G(1,0,0).=(﹣1,2,0),=(0,1,﹣1).设平面PAC的法向量为=(x,y,z),则,令z=1,得=(2,1,1).平面PCD的法向量为=(1,0,0).设的夹角为α,所以cosα==.由图可知二面角A﹣PC﹣D为锐角,所以二面角A﹣PC﹣B的余弦值为.…(10分)(Ⅲ)设M是棱PC上一点,则存在λ∈[0,1]使得.因此点M(0,λ,1﹣λ),=(﹣1,λ﹣1,1﹣λ),=(﹣1,2,0).由,得1+2(λ﹣1)=0,解得.因为∈[0,1],所以在棱PC上存在点M,使得BM⊥AC.此时,=.…(14分)18.【解答】(Ⅰ)f(x)的定义域为(﹣1,+∞),因为,所以f′(x)=﹣,因为f(0)为f(x)的极小值,所以f′(0)=0,即﹣=0,所以a=1,此时,f′(x)=,当x∈(﹣1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)在x=0处取得极小值,所以a=1.…(5分)(Ⅱ)由(Ⅰ)知当a=1时,f(x)在[0,+∞)上为单调递增函数,所以f(x)>f(0)=0,所以f(x)>0对x∈(0,+∞)恒成立.因此,当a<1时,f(x)=ln(x+1)﹣>ln(x+1)﹣>0,f(x)>0对x∈(0,+∞)恒成立.当a>1时,f′(x)=,所以,当x∈(0,a﹣1)时,f′(x)<0,因为f(x)在[0,a﹣1)上单调递减,所以f(a﹣1)<f(0)=0,所以当a>1时,f(x)>0并非对x∈(0,+∞)恒成立.综上,a的最大值为1.…(13分)19.【解答】(Ⅰ)由题意得,解得.∴椭圆C的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),Q(x3,y3),∵点P在直线AO上且满足|PO|=3|OA|,∴P(3x1,3y1).∵B,Q,P三点共线,∴.∴(3x1﹣x2,3y1﹣y2)=λ(x3﹣x2,y3﹣y2),即,解得,∵点Q在椭圆C上,∴.∴.即,∵A,B在椭圆C上,∴,.∵直线OA,OB的斜率之积为,∴,即.∴,解得λ=5.∴=|λ|=5.20.【解答】(Ⅰ)A4中所有与x正交的元素为(﹣1,﹣1,1,1)(1,1,﹣1,﹣1),(﹣1,1,﹣1,1),(﹣1,1,1,﹣1),(1,﹣1,﹣1,1),(1,﹣1,1,﹣1).…(3分)(Ⅱ)对于m∈B,存在x=(x1,x2,…,x n),x i∈{﹣1,1},y=(y1,y2,…,y n),其中x i,y i∈{﹣1,1};使得x⊙y=m.令,;当x i=y i时,x i y i=1,当x i≠y i时,x i y i=﹣1.那么x⊙y=.所以m+n=2k﹣n+n=2k为偶数.…(8分)(Ⅲ)8个,2个n=8时,不妨设x1=(1,1,1,1,1,1,1,1),x2=(﹣1,﹣1,﹣1,﹣1,1,1,1,1).在考虑n=4时,共有四种互相正交的情况即:(1,1,1,1),(﹣1,1,﹣1,1),(﹣1,﹣1,1,1),(1,﹣1,﹣1,1)分别与x1,x2搭配,可形成8种情况.所以n=8时,A中最多可以有8个元素.…(10分)N=14时,不妨设y1=(1,1…1,1),(14个1),y2=(﹣1,﹣1…﹣1,1,1…1)(7个1,7个﹣1),则y1与y2正交.令a=(a1,a2,…a14),b=(b1,b2,…b14),c=(c1,c2,…c14)且它们互相正交.设a、b、c相应位置数字都相同的共有k个,除去这k列外a、b相应位置数字都相同的共有m个,c、b相应位置数字都相同的共有n个.则a⊙b=m+k﹣(14﹣m﹣k)=2m+2k﹣14.所以m+k=7,同理n+k=7.可得m=n.由于a⊙c=﹣m﹣m+k+(14﹣k﹣2m)=0,可得2m=7,m=矛盾.所以任意三个元素都不正交.综上,n=14时,A中最多可以有2个元素.…(13分)word下载地址。
(完整版)2017年高考北京理科数学试题及答案(解析版),推荐文档

2017 年普通高等学校招生全国统一考试(北京卷) 数学(理科)第一部分(选择题 共 40 分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项.(1)【2017 年北京,理 1,5 分】若集合 A {x | –2 x 1} , B {x | x –1或x 3},则 A B =( )(A) {x | –2 x 1}(B) {x | –2 x 3}(C) {x | –1 x 1}(D) {x |1 x 3}【答案】A【解析】 A B x 2 x 1,故选 A.() 【2017 年北京,理 2,5 分】若复数 1 ia i 在复平面内对应的点在第二象限,则实数 a 的取值范围是()(A) ,1(B) , 1(C)1, (D)1, 【答案】B【解析】z1iaia11ai,因为对应的点在第二象限,所以a1 0,解得: a 1 ,故选1 a 0B.() 【2017 年北京,理 3,5 分】执行如图所示的程序框图,输出的 s 值为( )(A)23 (B)2(C) 5 3(D)8 5【答案】C【解析】k 0 时,0 3 成立,第一次进入循环11k 1, s 2 ,1 3 成立,第二次进入循环,1k2, s2 13,23成立,第三次进入循环k3,s3 21 5,33否,输出22332s5,3故选 C.x 3,() 【2017 年北京,理 4,5 分】若 x y 满足 x y 2,则 x 2 y 的最大值为( ),y x,(A)1(B)3(C)5(D)9【答案】D【解析】如图,画出可行域, z x 2 y 表示斜率为 1 的一组平行线,当过点 C 3, 3时,2目标函数取得最大值zmax323 f(9x),故3x选 (1D.() 【2017 年北京,理 5,5 分】已知函 数)x ,则 f (x) ( ) 3 (B)是偶函数,且在 R 上是增函数(A)是奇函数,且在 R 上是增函数(D)是偶函数,且在 R 上是减函数(C)是奇函数,且在 R 上是减函数【答案】A1【解析】 f x 3x 1x 1 x 3x f x,所以函数是奇函数,并且 3x 是增函数, 1x 是减函数,根 3 3 3 据增函数-减函数=增函数,所以函数是增函数故选 A.() 【2017 年北京,理 6,5 分】设 m,n 为非零向量,则“存在负数 ,使得 m n”是“ m n < 0 ”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【解析】若 0 ,使m n,即两向量反向,夹角是1800,那么m n m n cos1800 m n0,反过来, 若 m n0,那么两向量的夹角为900,1800,KS5U 并不一定反向,即不一定存在负数 ,使得m n,所以是充分不必要条件,故选 A.() 【2017 年北京,理 7,5 分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 ()(A) 3 2(B) 2 3(C) 2 2(D)2【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线, l 22 22 22 2 3 ,故选 B.() 【2017 年北京,理 8,5 分】根据有关资料,围棋状态空间复杂度的上限 M 约为 3361 , 而可M观 (测参宇考宙数中据普:通lg物3质 0的.4原8 子)总数 N 约为1080 .则下列各数中与 N 最接近的是( )(A) 1033【答案】D【解析】设 M x 3361N1080(B) 1053(C) 1073(D) 109333613618093.28,两边取对数,lgxlg 1080lg 3 lg10 361 lg 3 80 93.28 ,所以 x 10,即 M 最接近1093 ,故选 D. N第二部分(非选择题 共 110 分)二、填空题:共 6 小题,每小题 5 分,共 30 分。
2017北京市高三一模理科数学数列压轴汇编答案

i 1
i 1
n
n
n
n
则 Sn | ai bi | (ai bi ) ai bi A B .
i 1
i 1
i 1
i 1
[ 9 分]
3
因为 A B 2n i 2n(2n 1) n(2n 1) ,
i 1
2
所以 A B 与 n 具有相同的奇偶性.
又因为 A B 与 A B 具有相同的奇偶性,
n
记 Sn | ai bi | | a1 b1 | | a2 b2 | | an bn | . i 1
(Ⅰ)当 n 3 时,若 a1 1 , a2 3 , a3 5 ,写出 S3 的所有可能的取值;
(Ⅱ)给定正整数 n .试给出 a1, a2 , , an 的一组取值,使得无论 b1,b2, ,bn 填写的顺 序如何, Sn 都只有一个取值,并求出此时 Sn 的值;
设 ai bi ,ai bi ,其中 i 1,2, ,n .
[ 9 分]
a1
a2
an
a1
a2
an
b1
b2
bn
b1
b2
bn
n
n
n
n
n
n
Sn Sn (bi ai ) (bi ai) ( bi bi) ( ai ai) .
(Ⅲ)求证:对于给定的 n 以及满足条件的所有填法, Sn 的所有取值的奇偶性相同.
解:(Ⅰ) S3 的所有可能的取值为 3,5,7,9.
[ 3 分]
(Ⅱ) 令 ai i (i 1, 2, , n) ,则无论 b1,b2, ,bn 填写的顺序如何,都有 Sn n2 .
[ 5 分]
因为 ai i ,
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2016-2017学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_______________姓名______________考号___________本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|20}A x x x =--<,{|13}B x x =<<,则A B =U(A ){|13}x x -<< (B ){|11}x x -<< (C ){|12}x x << (D ){|23}x x <<(2)已知命题:,2np n ∀∈>N p ⌝是(A),2nn ∀∈≤N (B),2n n ∀∈<N(C),2nn ∃∈≤N (D),2n n ∃∈>N(3)已知圆的参数方程为1,x y θθ⎧=-⎪⎨=⎪⎩(θ为参数),则圆心到直线3y x =+的距离为(A )1 (B(C )2 (D) (4)已知m 是直线,,αβ是两个互相垂直的平面,则“m ∥α”是“m β⊥ ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (5)已知向量,a b 满足2+=0a b ,2⋅=-a b ,则(3+)()⋅-=a b a b(A )1 (B )3 (C )4 (D )5(6)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )13(B )23(C )1 (D )43(7)将函数sin(2)6y x π=+的图象向左平移(0)m m >个单位长度,得到函数()y f x =图象在区间[,]1212π5π-上单调递减,则m 的最小值为 (A )12π (B )6π (C )4π (D )3π (8)甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是①甲抛出正面次数比乙抛出正面次数多. ②甲抛出反面次数比乙抛出正面次数少. ③甲抛出反面次数比甲抛出正面次数多. ④乙抛出正面次数与乙抛出反面次数一样多. (A )①②(B )①③(C )②③(D )②④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)已知复数z 满足(1i)2z +=,则||z =______. (10)在2532()x x+的展开式中,常数项为______.(用数字作答). (11)已知{}n a 为等差数列,n S 为其前n 项和.若312S =,244a a +=,则6S =_______. (12)天干地支纪年法,源于中国。
中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,L ,以此类推.排到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,L ,以此类推.已知2017年为丁酉年,那么到新中国成立100年时,即2049年为___年.(13)双曲线22221(0,0)x y a b a b-=>>的渐近线为等边三角形OAB 的边,OA OB 所在直线,直线AB 过双曲线的焦点,且||2AB =,则a = _______.(14)已知函数11,0,21()1,1,20,01x f x x x x ⎧≤<⎪⎪⎪=-≤<⎨⎪⎪<≥⎪⎩或和1,01,()0,01x g x x x 或,≤<⎧=⎨<≥⎩ 则(2)g x =______ ;若,m n ∈Z ,且()()()m g n x g x f x ⋅⋅-=,则m n +=_____ .三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题共13分)在△中,2π3C?. (Ⅰ)若225c a ab =+,求sin sin BA; (Ⅱ)求的最大值.(16)(本小题共13分)近年来共享单车在我国主要城市发展迅速.目前市场上有多种类型的共享单车,有关部门对其中三种共享单车方式(M 方式、Y 方式、F 方式)进行统计(统计对象年龄在1555:岁),相关数据如表1,表2所示.三种共享单车方式人群年龄比例(表1)(Ⅰ)根据表1估算出使用Y 共享单车方式人群的平均年龄;(Ⅱ)若从统计对象中随机选取男女各一人,试估计男性使用共享单车种类数大于女性使用共享单车种类数的概率;(Ⅲ)现有一个年龄在2535:岁之间的共享单车用户,那么他使用Y 方式出行的概率最大,使用F 方式出行的概率最小,试问此结论是否正确?(只需写出结论)ABC sin sin A B ⋅(17)(本小题共14分)如图,在三棱锥P ABC -中,平面PAB ^平面ABC ,AP BP ^,AC BC ^,60PAB ?o ,45ABC ?o ,D 是AB 中点,E ,F 分别为PD ,PC 的中点.(Ⅰ)求证:AE ⊥平面PCD ; (Ⅱ)求二面角B PA C --的余弦值;(Ⅲ)在棱PB 上是否存在点M ,使得CM ∥平面AEF ?若存在,求PMPB的值;若不存在,说明理由.(18)(本小题共13分)已知函数1()2ln ()f x x mx m x=+-∈R . (Ⅰ)当1m =-时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若)(x f 在(0,)+∞上为单调递减,求m 的取值范围; (Ⅲ)设b a<<0,求证:ln ln b a b a -<-(19)(本小题共14分)已知椭圆2222:1(0)x y C a b ab +=>>经过点,且离心率为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设,A B 是椭圆C 的左、右顶点,P 为椭圆上异于,A B 的一点,以原点O 为端点分别作与直线AP和BP平行的射线,交椭圆C于,M N两点,求证:△OMN的面积为定值.(20)(本小题共13分)已知集合12{,,,},1,2,,n i A a a a a ,i n R =∈=L L ,并且2n ≥. 定义1()||j i i j nT A a a ≤<≤=-∑(例如:21313213||||||||j i i j a a a a a a a a ??-=-+-+-å).(Ⅰ)若{1,2,3,4,5,6,7,8,9,10}A =,{1,2,3,4,5}M =,集合A 的子集N 满足:N M ¹,且()()T M T N =,求出一个符合条件的N ;(Ⅱ)对于任意给定的常数C 以及给定的集合12{,,,}n A a a a =L ,求证:存在集合12{,,,}n B b b b =L ,使得()()T B T A =,且1ni i b C ==∑.(Ⅲ)已知集合122{,,,}m A a a a =L 满足:1i i a a +<,1,2,,21i m =-L ,2m ³,12,m a a a b ==,其中,a b ÎR 为给定的常数,求()T A 的取值范围.东城区2016-2017学年度第二学期高三综合练习(一)高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)C (3)B (4)D (5)B (6)D (7)C (8)B 二、填空题(共6小题,每小题5分,共30分) (9(10)40 (11)6(12)己巳 (13)32 (14)11,0,2()10,0.2x g x x x 或⎧≤<⎪⎪=⎨⎪<≥⎪⎩ 4三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设22225c a b ab a ab =++=+,得2b a =.由正弦定理,sin sin b Ba A=, 得sin 2sin BA=. ……………………………6分 (Ⅱ)由(Ⅰ)知.. sin sin a b A B =3A B π∠+∠=sin sin sin sin()3A B A A π⋅=⋅-1sin sin )2A A A =⋅-112cos 244A A =+-11sin(2)264A π=+-因为, 所以当,取得最大值.…………………13分 (16)(共13分)解:(Ⅰ)5a =.由表1知使用Y 共享单车方式人群的平均年龄的估计值为:方式:2020%3055%+4020%+505%=31?创?. 答:Y 共享单车方式人群的平均年龄约为31岁. ……………5分 (Ⅱ)设事件为“男性选择种共享单车”,1,2,3i =, 设事件为“女性选择种共享单车”,1,2,3i =,设事件为“男性使用单车种类数大于女性使用单车种类数”. 由题意知,213132E A B A B A B =U U . 因此213132()()()()P E P A B P A B P A B =++0.58=.答:男性使用共享单车种类数大于女性使用共享单车种类数的概率为0.58.……11分(Ⅲ)此结论不正确. ……………………………13分 (17)(共14分)解:(Ⅰ)在直角三角形中,因为45ABC ?o ,为中点,所以.因为平面平面,CD Ì平面ABC ,所以平面. 因为平面, 所以.在等边△中,为中线,03A π<∠<6A π∠=sin sin A B ⋅14Y i A i i B i E ABC D AB CD AB ⊥PAB ⊥ABC CD ⊥PAB AE ⊂PAB CD ⊥AE PAD AE所以. 因为,所以平面. ……………………………5分 (Ⅱ)在△PAB 中,取AD 中点O ,连接PO ,所以PO AB ^.在平面ABC 中,过O 作CD 的平行线,交于. 因为平面平面, 所以平面. 所以PO OG ^.因为两两垂直, 如图建立空间直角坐标系. 设,则相关各点坐标为:,,,,,,.,.设平面的法向量为,则,即 令,则.所以.平面的法向量为(2,0,0)DC au u u r=, 设,DC u u u rn的夹角为,所以 由图可知二面角为锐角,所以二面角的余弦值为.…………………………10分 (Ⅲ)设是棱上一点,则存在使得.AE PD ⊥PD DC D =I AE ⊥PCD AC G PAB ⊥ABC PO ⊥ABC ,,OG OB OP O xyz -4AB a =(0,,0)A a -(0,3,0)B a (2,,0)C a a )P (0,,0)D a (0,)2a E (,)2a F a (2,2,0)AC a a =u u u r (0,,)PA a =-u u rPAC (,,)x y z =n 0,0,AC PA ⎧⋅=⎪⎨⋅=⎪⎩uuu r uu rn n 0,0.x y y +=⎧⎪⎨+=⎪⎩1z =y =x ==n PAB αcos α=B PAC --B PA C --7M PB [0,1]λ∈PM PB λ=uuu r uu r因此点,.由(Ⅰ)知平面,. 所以. 因为∥, 所以. 又AE EF E =I , 所以PD ^平面AEF . 所以为平面的法向量..因为平面,所以∥平面当且仅当,即. 解得. 因为,所以在棱上存在点,使得∥平面, 此时. …………………………14分 (18)(共13分)解:(Ⅰ)的定义域为.当1m =-时,1()2ln f x x x x=++, 所以221'()1f x x x =-+.因为(1)2f =且'(1)2f =,所以曲线在点处的切线方程为20x y -=.…………4分 (Ⅱ)若函数在上为单调递减,则在上恒成立. 即在上恒成立.(0,3(1))M a λλ-(2,(3(1))CM a a λλ=---u u u rCD ⊥PAB AE ⊥PD CD ⊥PD EF CD EF PD ⊥PDAEF (0,,)PD a =u u u rCM ⊄AEF CM AEF 0CM PD ⋅=uuu r uu ur(2,(3(1))(0,,)0a a a λλ---⋅=23λ=2[0,1]3λ=∈PB M CM AEF 23PM PB λ==)(x f (0,)+∞()y f x =(1,(1))f )(x f (0,)+∞'()0f x ≤(0,)+∞2210m x x--≤(0,)+∞即在上恒成立. 设221()(0)g x x x x=->, 则. 因为, 所以当时,有最大值.所以的取值范围为. ……………………9分(Ⅲ)因为,不等式.即,原不等式转化为. 令, 由(Ⅱ)知在上单调递减, 所以在(1,)+∞上单调递减. 所以,当时,. 即当时,成立. 所以,当时,不等式成立.……………………13分(19)(共14分)解:(Ⅰ)由题意得解得所以椭圆的方程为. …………………………5分(Ⅱ)设点,,.221x m x -≤(0,)+∞max [()]m g x ≥22211()(1)1(0)g x x x x x=-=--+>1x =()g x 1m [1,)+∞b a <<0ln ln b a b a -<-ln ln b a -<lnb a <(1)t t >12ln t t t<-1()2ln h t t t t=+-1()2ln f x x x x=+-(0,)+∞1()2ln h t t t t=+-1t >()(1)0h t h <=1t >12ln 0t t t+-<b a <<0ln ln b a b a -<-222,b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩2,a b ==C 22142x y +=00(,)P x y 11(,)M x y 22(,)N x y①,在轴同侧,不妨设12120,0,0,0x x y y ><>>. 射线的方程为,射线的方程为, 所以,,且.过作轴的垂线,垂足分别为,, ΔΔ'Δ'''OMN OMM ONN MM N N S S S S =--四边形 02011221120011()()2222y x y x x y x y x x x x =-=??-+ . 由得, 即, 同理,所以,,即,所以,.② ,在轴异侧,方法同 ①. 综合①②,△OMN. ………………14分(20)(共13分)解:(Ⅰ)由于{1,2,3,4,5,6,7,8,9,10}A =,{1,2,3,4,5}M =,所以{6,7,8,9,10}N =,{5,6,7,8,9}N =,{4,5,6,7,8}N ={3,4,5,6,7}N =,{2,3,4,5,6}N =,回答其中之一即可 ………3分(Ⅱ)若集合12{,,,}n A a a a =L ,如果集合A 中每个元素加上同一个常数t ,形成新的集合12{,,,}n M a t a t a t =+++L . ……………5分11(,)M x y 22(,)N x y x OM 002y y x x =+ON 002y y x x =-01102y y x x =+02202y y x x =-2200142x y +=,M N x 'M 'N 121211221=[()()]2y y x x x y x y +--+0012121222000441112422y y x x x x x x x y y =⋅=⋅=-⋅--221101101,42,2x y y y x x ⎧+=⎪⎪⎨⎪=⎪+⎩2201102()42y x x x +=+2220010222200004(2)4(2)2(2)2(2)4x x x x x y x x ++===+++++-2202x x =-2222120042x x x y =-=120x x =OMN S ∆=11(,)M x y 22(,)N x y x根据1()||j i i j nT A a a ≤<≤=-∑定义可以验证:()()T M T A =. ……………6分取1nii C a t n=-=∑,此时11112{,,,}nnniiii i i n C a C a C a B a a a nnn===---=---∑∑∑L .通过验证,此时()()T B T A =,且1nii bC ==∑. ……………8分(Ⅲ)由于2m ³21314121()()()()()m T A a a a a a a a a =-+-+-++-L324222()()()m a a a a a a +-+-++-L4323()()m a a a a +-++-LM221()m m a a -+-121212=(21)(23)(23)(21)m m m mm a m a a a m a m a +-------+++-+-L L 212121=(21)()(23)()()m m m m m a a m a a a a -+--+--++-L2121=(21)()(23)()()m m m m b a m a a a a -+--+--++-L ………11分 由于2120m a a b a -<-<-,2230m a a b a -<-<-, 2340m a a b a -<-<-,M10m m a a b a +<-<-.所以2(21)()()()m b a T A m b a --<<-.………13分。