数字图像处理实验报告——图像复原实验

合集下载

图像复原实验

图像复原实验

数字图像处理实验报告1 - 图像复原学生姓名:学号:实验时间:地点:指导教师:一、实验目的运用理论知识,在MA TLAB环境下对图像复原技术进行实验验证,学习算法实现的科学方法,增强对算法及其效果的感性认识。

(1)对图像进行复原处理。

调用MA TLAB中的图像复原函数,编写MA TLAB程序,实现对图像的复原。

(2)C++编程,利用双线性插值将照片放大。

二、实验内容要求:以下实验采用学生本人的照片作为处理对象。

(1)利用MA TLAB做图像复原实验。

实验方法和步骤如下:选择一幅完好的照片,进行退化处理,然后对退化后的图像进行复原,并对不同参数的复原结果进行比较。

(2)用VC++编写程序,采用邻近差值和双线性插值两种方法,将图像放大到原来的1.5倍, 并存储为res0.yuv 和res1.yuv。

三、实验结果(1)①先对图像进行模糊处理,用matlab中fspecial函数产生motion滤波器,然后对灰度图像进行滤波即可得到。

再用deconvwnr函数对图像进行维纳滤波可的如下结果(程序代码详见附录1.1):由此可见滤波效果并不是很明显,其中一个原因就是要取合适的len、theta参数是很困难的,所以导致模糊效果不是很好。

②先对图像进行模糊处理,用matlab中fspecial函数产生motion滤波器,然后对灰度图像进行滤波即可得到。

在对图像加高斯噪声,用imnoise函数。

再用deconvwnr函数对图像进行维纳滤波可见不同参数情况下的滤波情况如下(程序代码详见附录1.2):由此可见,平滑滤波不一定总是能带来很好的效果,如果图像过于模糊,平滑滤波就会导致图像过于平滑,就会使得图像高频分量也就是边缘轮廓十分的不明显。

③先对图像进行模糊处理,用matlab中fspecial函数产生motion滤波器,然后对灰度图像进行滤波即可得到。

在对图像加高斯噪声,用imnoise函数。

再用deconvblind函数对图像进行盲滤波可见不同参数情况下的滤波情况如下(程序代码详见附录1.3):(2)采用双线性插值法对所给图像实现长和宽分别1.5倍的放大。

数字图像处理实验报告——图像复原实验

数字图像处理实验报告——图像复原实验

实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

I=imread('moon.tif');H = fspecial('sobel');subplot(2,2,1)imshow(I);title(' Qriginal Image ');Sobel = imfilter(I,H,'replicate');subplot(2,2,2)imshow(Sobel);title(' Sobel Image ')H = fspecial('laplacian',0.4);lap = imfilter(I,H,'replicate');subplot(2,2,3)imshow(lap);title(' Laplacian Image ')H = fspecial('gaussian',[3 3],0.5);gaussian = imfilter(I,H,'replicate');subplot(2,2,4)imshow(gaussian);title(' Gaussian Image ')3.使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

originalRGB = imread('trees.tif');subplot(3,2,1)imshow(originalRGB);title(' Qriginal Image ');h = fspecial('motion', 50, 45); %motion blurredfilteredRGB = imfilter(originalRGB, h);subplot(3,2,2)imshow(filteredRGB);title(' Motion Blurred Image ');boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');subplot(3,2,3)imshow(boundaryReplicateRGB);title(' 0-Padding');boundary0RGB = imfilter(originalRGB, h, 0);subplot(3,2,4)imshow(boundary0RGB);title('Replicate');boundarysymmetricRGB = imfilter(originalRGB, h, 'symmetric'); subplot(3,2,5)imshow(boundarysymmetricRGB);title(' Symmetric ');boundarycircularRGB = imfilter(originalRGB, h, 'circular'); subplot(3,2,6)imshow(boundarycircularRGB);title(' Circular');5.对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

数字图像处理_图像复原

数字图像处理_图像复原

图像复原1、实验目的1、 熟练掌握图像的几何操作原理,图像几何变换的程序设计技术,可以按要求完成对任意图像几何变换。

2、掌握图像复原的原理及常用图像复原方法。

2、实验原理图像恢复指将退化的图像尽量恢复到原来的状态。

1、几何校正图像与原景物图像相比,会产生比例失调,扭曲,我们把这类图像退化现象称之为几何畸变,消除几何畸变的复原过程,称几何校正。

设两幅图像坐标系统之间几何畸变关系能用解析式来描述若函数h1(x,y)和h2(x,y)已知,则可以从一个坐标系统的像素坐标算出在另一坐标系统的对应像素的坐标。

在未知情况下, 通常h1(x,y)和h2(x,y)可用多项式来近似。

几何校正分平移、旋转、缩放、镜像、转置。

(1)图像旋转使用B=imrotate(A,angle,method); angle 是旋转的角度(单位是“度”);method 是插补的方法,可以是nearest (最邻近插补),bilinear (双线性插补),bicubic (双立方插补)。

还可使用B= B=imrotate(A,angle,method,’crop ’); crop 表示剪切。

(2)图像剪切使用:x2=imcrop(x,map),对索引图像进行交互式剪切;I2=imcrop(I), 对灰度图像进行交互式剪切;RGB2=imcrop(rgb),对彩色图像进行交互式剪切;x2=imcrop(x,map ,RECT),对索引图像进行非交互式剪切;I2=imcrop(I ,RECT), 对灰度图像进行非交互式剪切;rgb2=imcrop(rgb ,RECT),1(,)x h x y '=2(,)y h x y '=1100N N ij ij i j x a x y --=='=∑∑1100N N i j ij i j y b x y --=='=∑∑对彩色图像进行非交互式剪切;RECT是四元素向量[xmin ymin width height] 例如:rgb2=imcrop(rgb,[100 100 80 10]),(3)图像缩放使用B=imresize(A,m,method) 返回为A的m倍]大小的图像;b=imresize(A,[mrows ncols],method),返回为mrows× ncols]大小的图像。

数字图像实验报告 医学图像频域滤波与图像复原

数字图像实验报告 医学图像频域滤波与图像复原

实验七医学图像频域滤波与图像复原实验目的:1.熟悉医学图像离散傅里叶变化的原理和方法;2.掌握医学图像频域滤波的原理;3.掌握使用Matlab中的函数实现医学图像进行频域滤波的方法;4.掌握使用Matlab中的图像退化与复原的方法;实验内容:一、医学图像频域滤波方法与实现使用imnoise给图像BMRI1_24bit.bmp添加概率为0.2的椒盐噪声,对原图像和加噪声后的图像进行傅氏变换并显示变换后的移中频谱图,然后分别使用Butterworth低、高通滤波器对噪声图像进行低通和高通滤波,显示D0为5,10,20,40时的滤波效果图,并说明存两种滤波效果中所存在的差异及原因。

答:>> f=imread('BMRI1_24bit.bmp');>> f=rgb2gray(f);>> g=imnoise(f,'salt & pepper',0.2);>> f=double(f);>> g=double(g);>> F1=fft2(f);>> F2=fft2(g);>> FC1=fftshift(F1);>> FC2=fftshift(F2);>> f=ifft2(F1);>> g=ifft2(F2);>> imshow(uint8(f));title('逆变换后原图像');>> figure,imshow(uint8(g));title('逆变换后的椒盐噪声原图像');>> figure,imshow(F1);title('原图像的傅氏变换');>> figure,imshow(F2);title('椒盐噪声原图像的傅氏变换');>> figure,imshow(log(1+abs(FC1)),[]);title('原图像的移中频谱图');>> figure,imshow(log(1+abs(FC2)),[]);title('椒盐噪声原图像的移中频谱图');Butterworth低通滤波器Butterworthd.mfunction Butterworthd(I)I=rgb2gray(I);[M,N]=size(I);m=fix(M/2);n=fix(N/2);%形容图像的中心点nn=3;%三阶prompt={'Iuput Filter Cutoff(d0):'}; defans={'5'};i=inputdlg(prompt,'input',1,defans);d0=str2num(i{1});% d0=5;% for k=1:4F=fft2(I);FC=fftshift(F);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h=1/(1+(d/d0)^(2*nn));FC(i,j)=h*FC(i,j);endendF=ifftshift(FC);I=ifft2(F);I=uint8(real(I));%real提取它的实部figure,imshow(I);title(['低通d0=',num2str(d0)]);% d0=d0*2;% end>> f=imread('BMRI1_24bit.bmp');>> g=imnoise(f,'salt & pepper',0.2);>> Butterworthd(g);Butterworth高通滤波器Butterworthg.mfunction Butterworthg(I)I=rgb2gray(I);[M,N]=size(I);m=fix(M/2);n=fix(N/2);%形容图像的中心点nn=3;%三阶prompt={'Iuput Filter Cutoff(d0):'};defans={'5'};i=inputdlg(prompt,'input',1,defans);d0=str2num(i{1});% d0=5;%for k=1:4F=fft2(I);FC=fftshift(F);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h=1/(1+(d0/d)^(2*nn));FC(i,j)=h*FC(i,j);endendF=ifftshift(FC);I=ifft2(F);I=uint8(real(I));%real提取它的实部figure,imshow(I);title(['高通d0=',num2str(d0)]);%d0=d0*2;%end>> f=imread('BMRI1_24bit.bmp');>> g=imnoise(f,'salt & pepper',0.2); >> Butterworthg(g);图像从空间域变换到频率域后,其低频分量对应图像中灰度值变化比较缓慢的区域,高频分量则表征图像中物体的边缘和随机噪声等信息。

数字图像处理之图像复原

数字图像处理之图像复原

实验五、图象复原一、实验目的1.了解图象退化的几种原因;2.掌握对相应退化原因的复原方法。

二、实验内容1.使用函数fspecial( )和imfilter( )模拟产生退化图象;2.对于不同的噪声引起图像的退化,采用不同的滤波方法复原图象。

3.学会使用维纳滤波器deconvwnr()函数对图像进行复原的方法。

三、实验步骤1.加性噪声退化图象用imnoise( )函数给图象加噪声,如增加高斯白噪声。

使用平滑滤波器对其进行滤波,可达到复原图像的效果x=imread(‘cameraman.tif’);x=imnoise(x,’gaussian’)imshow(x)h=fspecial(‘average’)y=imfilter(x,h);figureimshow(y)2、周期噪声退化图像对于周期噪声可以通过频域滤波来减弱或消除,实现复原图像。

实验五文件夹中有被正弦周期噪声污染退化的图像'pout_g_64.bmp',使用理想带阻滤波器对其频域滤波,复原图像。

(1) pout_g_64.bmp图像及其傅立叶谱见下图。

(2) 构造理想带阻滤波器close allx=imread('pout_g_64.bmp');xm=size(x,1); xn=size(x,2);M2=floor(xm/2); N2=floor(xn/2);u=-M2:1:M2-1; v=-N2:1:N2-1;[U,V]=meshgrid(u,v);D=sqrt(U.^2+V.^2);D0=64;W=4;H=double(D<(D0-W/2)|D>(D0+W/2));figureMesh(U,V,H) ;title('D0=64,W=4,理想带阻滤波器')思考:使用上述理想带阻滤波器对’pout_g_64.bmp’图像进行频域滤波,得到复原图像,结果类似下图。

close allx=imread('pout_g_64.bmp');xm=size(x,1); xn=size(x,2);M2=floor(xm/2); N2=floor(xn/2);u=-M2:1:M2-1; v=-N2:1:N2-1;[U,V]=meshgrid(u,v);D=sqrt(U.^2+V.^2);D0=64;W=4;H=double(D<(D0-W/2)|D>(D0+W/2));F=fft2(x);f=fftshiFt(F);G=f.*H;subplot(121)imshow(real(G));title('频域滤波')GG=fftshift(G);I=ifft2(GG);subplot(122)imshow(uint8(I))title('复原后图像')3、运动模糊退化图像给图像添加运动模糊,使用deconvwnr()维纳滤波器进行图像复原。

数字图像处理实验三:图像的复原

数字图像处理实验三:图像的复原

南京工程学院通信工程学院实验报告课程名称数字图像处理C实验项目名称实验三图像的复原实验班级算通111 学生姓名夏婷学号 208110408 实验时间 2014年5月5日实验地点信息楼C322实验成绩评定指导教师签名年月日实验三、图像的恢复一、实验类型:验证性实验二、实验目的1. 掌握退化模型的建立方法。

2. 掌握图像恢复的基本原理。

三、实验设备:安装有MATLAB 软件的计算机四、实验原理一幅退化的图像可以近似地用方程g=Hf+n 表示,其中g 为图像,H为变形算子,又称为点扩散函数(PSF ),f 为原始的真实图像,n 为附加噪声,它在图像捕获过程中产生并且使图像质量变坏。

其中,PSF 是一个很重要的因素,它的值直接影响到恢复后图像的质量。

I=imread(‘peppers.png’);I=I(60+[1:256],222+[1:256],:);figure;imshow(I);LEN=31;THETA=11;PSF=fspecial(‘motion’,LEN,THETA);Blurred=imfilter(I,PSF,’circular’,’conv’);figure;imshow(Blurred);MATLAB 工具箱中有4 个图像恢复函数,如表3-1 所示。

这4 个函数都以一个PSF 和模糊图像作为主要变量。

deconvwnr 函数使用维纳滤波对图像恢复,求取最小二乘解,deconvreg 函数实现约束去卷积,求取有约束的最小二乘解,可以设置对输出图像的约束。

deconvlucy 函数实现了一个加速衰减的Lucy-Richardson 算法。

该函数采用优化技术和泊松统计量进行多次迭代。

使用该函数,不需要提供有关模糊图像中附加噪声的信息。

deconvblind 函数使用的是盲去卷积算法,它在不知道PSF 的情况下进行恢复。

调用deconvblind 函数时,将PSF 的初值作为一个变量进行传递。

数字图像处理之图像复原实验报告

数字图像处理之图像复原实验报告

实验三图像复原1. 实验目的熟悉数字图像边缘检测与形态学变换的一般方法2. 实验内容1)练习边缘检测的Matlab命令。

2)练习形态学变换的Matlab命令。

熟悉下列模块函数edgefspecialbwselectbwmorphdilateimnoisebwperim2) 在VC环境下利用例程了解和熟悉数字图像复原的方法。

熟悉例程提供的图像复原菜单下的子菜单3.实验程序1、rice.tif的边缘检测I = imread('rice.tif');BW1 = edge(I,'prewitt'); BW2 = edge(I,'sobel'); BW3 = edge(I,'canny');subplot(2,2,1),imshow(BW1) subplot(2,2,2),imshow(BW2) subplot(2,2,3), imshow(BW3) 2、加入高斯燥声的边缘检测I=imread('rice.tif');J=imnoise(I,'gaussian',0,0.02); subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);BW1 = edge(J,'prewitt');BW2 = edge(J,'sobel');BW3 = edge(J,'canny');figure,imshow(BW1)figure,imshow(BW2)figure, imshow(BW3)3、原图高斯燥声椒盐燥声I=imread('rice.tif');J1=imnoise(I,'gaussian',0,0.02);J2=imnoise(I,'salt & pepper',0.02); subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J1);subplot(2,2,3),imshow(J2)2、加入椒盐燥声的边缘检测I=imread('rice.tif');J=imnoise(I,'salt & pepper',0.02); subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);BW1 = edge(J,'prewitt');BW2 = edge(J,'sobel');BW3 = edge(J,'canny');figure,imshow(BW1)figure,imshow(BW2)figure, imshow(BW3)4.实验结果rice.tif的边缘检测原图高斯燥声椒盐燥声加入高斯燥声的边缘检测加入椒盐燥声的边缘检测5.实验总结通过这次实验,学习了MATLAB命令,在VC环境下利用例程了解和熟悉数字图像边缘检测与形态学变换的方法。

数字图像处理实验九、图像复原

数字图像处理实验九、图像复原

fs(x,y):
FFt
Fs(u,v)
Gs(u,v)
Hs(u,v)=
Fs(u,v)
2.数学建模法 大气湍流的退化函数:
H (u, v) e
k ( n2 v 2 )5 / 6
匀速运动的退化函数:
T H ( u, v) sin[ ( ua vb)]e j ( ua vb ) ( ua vb)
三、退化函数引起图像退化的复原方法 1.逆滤波法: 无噪声时: F(u,v)= G(u,v) H(u,v) N(u,v) H(u,v)
有噪声时: F(u,v)= F(u,v)+ 问
题:在H(u,v)趋于0处,噪声会被急剧放大。
解决办法:增加一个低通滤波器。
1 | H (u, v) |2 ]G(u, v) 2.维纳滤波法: F (u, v) [ 2 H (u, v) | H (u, v) | k
调入原始图像 fxy
计算退化图像的频谱 Guv
K=0.01;%特殊常数,一般要用交互的方式确定 Fuvyp=(Huv.*conj(Huv)).*Guv./(Huv.*(Huv.*conj(Huv)+K)); 计算原始图像频谱 计算噪声的频谱 Nuv Rtuxy=abs(ifft2(Fuvyp)); Fuv=fft2(fxy) subplot(2,2,2),imshow(Rtuxy,[]),title('K=0.01时维纳滤波的结果') 还
生 成 退 化 图 像
原 退 Fuvyp=(Huv.*conj(Huv)).*Guv./(Huv.*(Huv.*conj(Huv)+K)); 化 Rtuxy=abs(ifft2(Fuvyp)); 计算 复原图像的频谱Fuvyp 图 生产退化图像频谱 subplot(2,2,3),imshow(Rtuxy,[]),title('K=0.005时维纳滤波的结果') Guv=Huv· Fuv 像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称数字图像处理导论
专业班级 _______________
姓名 _______________ 学号 _______________
电气与信息学院
和谐勤奋求是创新
附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像
1)读出这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在
同一图像窗口中。

I=imread('');
subplot(1,3,1)
imshow(I);
title(' Qriginal Image ');
J = imnoise(I,'salt & pepper',; %noise density=
subplot(1,3,2)
imshow(J);
title(' salt & pepper ');
K= imnoise(I,'gaussian',,;
subplot(1,3,3)
imshow(K);
title(' gaussian ');
图初始图像及椒盐噪声图像、高斯噪声污染图
2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效
果,要求在同一窗口中显示。

I=imread('');
H = fspecial('sobel');
subplot(2,2,1)
imshow(I);
title(' Qriginal Image ');
Sobel = imfilter(I,H,'replicate');
subplot(2,2,2)
imshow(Sobel);
title(' Sobel Image ')
H = fspecial('laplacian',;
lap = imfilter(I,H,'replicate');
subplot(2,2,3)
imshow(lap);
title(' Laplacian Image ')
H = fspecial('gaussian',[3 3],;
gaussian = imfilter(I,H,'replicate');
subplot(2,2,4)
imshow(gaussian);
title(' Gaussian Image ')
图原图像及各类低通滤波处理图像
3)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填
充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理
后的图像。

originalRGB = imread('');
subplot(3,2,1)
imshow(originalRGB);
title(' Original Image ');
h = fspecial('motion', 50, 45); %motion blurred
filteredRGB = imfilter(originalRGB, h);
subplot(3,2,2)
imshow(filteredRGB);
title(' Motion Blurred Image ');
boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
subplot(3,2,3)
imshow(boundaryReplicateRGB);
title(' 0-Padding');
boundary0RGB = imfilter(originalRGB, h, 0);
subplot(3,2,4)
imshow(boundary0RGB);
title('Replicate');
boundarysymmetricRGB = imfilter(originalRGB, h, 'symmetric');
subplot(3,2,5)
imshow(boundarysymmetricRGB);
title(' Symmetric ');
boundarycircularRGB = imfilter(originalRGB, h, 'circular');
subplot(3,2,6)
imshow(boundarycircularRGB);
title(' Circular');
图原图像及运动模糊图像
图函数imfilter各填充方式处理图像
4)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,
显示均值处理后的图像。

I=imread('');
J = imnoise(I,'salt & pepper',;
subplot(1,3,1)
imshow(J);
title(' salt & pepper Noise');
h=fspecial('average'); %Averaging Filtering
J1=imfilter(J,h);
for i=1:10
J1=imfilter(J,h);
subplot(1,3,2)
imshow(J1);
title(' 10 Averaging Filtering');
end
J2=imfilter(J,h);
for i=1:20
J2=imfilter(J,h);
subplot(1,3,3)
imshow(J2);
title(' 20 Averaging Filtering');
end
图椒盐噪声污染图像经10次、20次均值滤波图像
由图可得,20次滤波后的效果明显好于10次滤波,但模糊程度也更强。

5)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处
理,要求在同一窗口中显示结果
I=imread('');
J = imnoise(I,'salt & pepper',;
subplot(1,3,1)
imshow(J);
title(' Original Image ');
h=fspecial('average'); %Averaging Filtering
J1=imfilter(J,h);
subplot(1,3,2)
imshow(J1);
title(' Averaging Filtering ');
J2=medfilt2(J); %Median Filtering
subplot(1,3,3)
imshow(J2);
title(' Median Filtering ');
图椒盐噪声污染图像及均值、中值滤波图像
从图中可以看出,对于椒盐噪声污染的图像处理,中值滤波效果要明显好于均值滤波。

经均值滤波器处理后的图像比均值滤波器中结果图像更加模糊。

6)设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。

domain=[0 0 8 0 0;
0 0 8 0 0;
8 8 8 8 8;
0 0 8 0 0;
0 0 8 0 0];
I=imread('');
J = imnoise(I,'salt & pepper',;
subplot(1,2,1)
imshow(J);
title(' Original Image ');
K1= ordfilt2(J,5, domain);
subplot(1,2,2)
imshow(K1);
title(' 5*5 Smoothing Fitered Image');
图椒盐噪声污染图像及5*5平滑滤波器掩模
掩模值为w=1/25*[1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;1 1 1 1 1]
图椒盐噪声污染图像及5*5平滑滤波器掩模
掩模值为w= [0 0 8 0 0;0 0 8 0 0;8 8 8 8 8; 0 0 8 0 0;0 0 8 0 0]。

相关文档
最新文档