相似三角形专题复习(教案)

合集下载

《相似三角形》复习课教案

《相似三角形》复习课教案

相似三角形复习课【教学目标】知识与技能:1、梳理相似三角形的定义、判定、性质,理解知识间的内在联系;2、使用相似三角形的相关知识解决问题。

过程与方法:1、经历使用相似三角形的基础知识解决问题的过程,提升综合使用知识的水平;2、在解决问题的过程中,引导学生准确找出判定三角形相似的条件,掌握用相似三角形知识解决问题的基本方法.情感态度与价值观:学会与同学交流合作,在交流中培养学生的语言表述水平,体验学习几何过程中成功的快乐,增强学习几何的信心与热情.【教学重点】相似三角形判定和性质的综合应用.【教学难点】相似三角形判定和性质的灵活应用以及解决相似问题时的转化思想。

【教学过程】一、复习巩固:定义:1、假如△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()A.∠A:∠A′ B.A′B′:ABC.∠B:∠B′ D.BC:B′C′2、△ABC∽△A′B′C′,假如BC=3, B′C′=2,那么△A′B′C′与△ABC 的相似比为 ________ .性质:1、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30 B.50° C.40° D.70°2、等腰△ABC∽△DEF,其相似比为3 :4,则它们底边上对应高线的比为()A、3 :4B、4 :3C、1 :2D、2 :13、两个相似三角形对应边的比为1:2,则周长比为,面积比为,相似比为:;对应角平分线比为:,对应中线比为:,对应高线比为:。

4、已知,△ABC∽△DEF,相似比为3,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.545、如图,已知△ADE ∽△ABC,AD=3cm,DB=3cm,BC=10cm,∠A=70°、∠B=50°. A求:(1)∠ADE的度数;(2)∠AED的度数; D E(3)DE的长.B C判定:1、(1)如图1,当时,△ABC∽△ADE.(2)如图2,当时,△ABC∽△AED. (3)如图3,当 ___时,△ABC∽△ACD.CCC(4)如图4,当AB∥CD时,则△∽△ __(5)如图5,当时,则△∽△。

(完整版)相似三角形专题复习教案

(完整版)相似三角形专题复习教案

龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。

考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。

教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。

对应边的比叫做相似比。

三条平行线截两条直线所得的对应线段的比相等。

2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。

相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。

3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。

4.相似三角形的应用:求物体的长或宽或高;求有关面积等。

(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。

相似三角形复习的教学设计

相似三角形复习的教学设计

篇一:相似三角形复习课教案相似三角形复习课一、教学目标:1.进一步巩固相似三角形判定的知识,利用三角形相似,证明角相等,线段成比例,表示2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度 3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养 4.学会与同学交流合作,培养团队精神,变他有为己有,培养把自己的想法与观点陈述给5.体验学习几何过程中成功的快乐,增强学习几何的信心与热情二重难点三、教学过程:(一).知识梳理1、相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形 2、相似三角形的判定(1)两角对应相等,两三角形相似(2)两边对应成比例且夹角相等,两三角形相似(3)三边对应成比例,两三角形相似 3、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例(2)相似三角形的周长比等于相似比(3)相似三角形的对应边上的高、中线、角平分线的比等于相似比(4)相似三角形的面积比等于相似比的平方(二)牛刀小试1.(1) △ abc中,d、e分别是ab、ac上的点,且∠aed= ∠ b,那么△ aed ∽△ abc,从而(2) △ abc中,ab的中点为e,ac的中点为d,连结ed,则△ aed与△ abc的相似比为______. ade2.如图,de∥bc, ad:db=2:3,bc则△ aed和△ abc的相似比为___.3. 已知三角形甲各边的比为3:4:6,和它相似的三角形乙的最大边为10cm,则三角形乙的最短边为______cm.4.等腰三角形abc的腰长为18cm,底边bc长为6cm2a3ecb6. 如图,d是△abc一边bc上一点,连接ad,使△abc ∽△dba的条件是().a.ac:bc=ad:bdb.ac:bc=ab:adc.ab2=cd·bcd.ab2=bd·bc7. d、e分别为△abc 的ab、ac上的点,且de∥bc,∠dcb= ∠ a,adebc(三)你来试一试已知:△abc为锐角三角形,bd、ce为高 . 求证:△ ade∽△ abcb变式训练已知:△abc为锐角三角形,bd、ce为高若∠a = 60°,de =3, 求bc的值?b(四)合作学习若ab=6 cm,ac=5cm,bc=8cm,ap=2cm,点q从a出发,沿折线acb以1cm/s的速度移动,问经过几秒钟,pq 截△abc所得的新三角形与原三角形相似(点p在ab上固定不动).cqcqcbc(五)拓展提高(六)课堂小结(七)随堂小测2.如图:已知∠abc=∠cdb=90°,ac=5cm,bc=3cm,当bd取多少cm时△abc和△bdc 相似?db篇二:相似三角形复习教案《相似复习》导学案复习目标:比例线段定义:比例的基本性质: 1.相似三角形的定义: 2.相似比:?abc∽?abc,如果bc?3,bc?1.5,那么?abc与?abc的相似比为二)三角形的识别、性质和应用 1、aabcbc①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似.几何语言:②如果一个三角形的两条边分别与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.几何语言:③如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.几何语言:2、直角三角形相似:3、射影定理:4、性质:两个三角形相似,则:①②;③三)位似:位似定义及性质:三、典型举例例1 判断①所有的等腰三角形都相似.②所有的直角三角形都相似.③所有的等边三角形都相似④所有的等腰直角三角形都相似.例2、(1)如图1,当时,?abc∽?ade (2)如图2,当时,?abc∽ ?aed。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

相似三角形专题复习教案

相似三角形专题复习教案

相似三角形专题复习教案重点:相似三角形的性质与判定难点:相似三角形的性质与判定的综合应用教学过程:一:知识回顾:1,相似三角形的判定方法(1)三边对应成比例的两个三角形相似(2)两边对应成比例且夹角相等的两个三角形相似(3)两角相等的两个三角形相似2,相似三角形的性质(1)对应边的比相等,对应角相等(2)相似三角形的周长比等于相似比(3)相似三角形的面积比等于相似比的平方(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比2,相似三角形的应用(1)、利用三角形相似,可证明角相等;线段成比例(或等积式);(2)、利用三角形相似,求线段的长等(3)、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

3,热身练习:1、根据下列条件能否判定△ABC与△A′B′C′相似?为什么?(1) ∠A=120°,AB=7 ,AC=14 ,∠A′=120°,A′B′=3 ,A′C′=6(2) AB=4 ,BC=6 ,AC=8 A′B′=12 ,B′C′=18 ,A′C′=21(3) ∠A=70°,∠B=48°, ∠A′=70°, ∠C′=62°2、在△ABC中,在△ABC中,DE∥BC,若AD:DB=1:3,DE=2,则BC的长为()3、在△ABC中,DE∥BC,若DE=2 BC=8 ,△ADE的周长为20,则△ABC 的周长为()4,例题精讲:例题:在平行四边形ABCD中,E是BC上的一点,AE交BD于点F,BF=6cm,(1)求证△BEF~△DAF;(2)求DF的长5, 课堂抢答:1、D是△ABC的边AB上的点, 请你添加一个条件,使△ACD与△ABC 相似, 这个条件是()2、如果一个三角形三边长分别为5、12、13,与其相似的三角形最大边是39,则该三角形最短的边长为()3、在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F,BE:AB=2:3,则△BEF与△CDF的周长比为();若△BEF的面积为8平方厘米,则△CDF的面积为()4,已知,△ABC∽△A`B`C`,它们的周长分别为60cm和72cm,且AB=15cm,B`C`=24cm,求BC、AC、A`B` 、A`C`的长。

《相似三角形》复习教案 2

《相似三角形》复习教案 2

《相似三角形》复习教案(一)教学目标:知识与技能:1.能说出相似三角形与全等三角形的区别和联系2.能说出相似三角形的性质与判定方法3.能运用相似三角形的性质与判定解决实际问题过程与方法:通过运用相似三角形的性质与判定,解决测高、测宽等问题学会构造相似三角形的方法,利用相似三角形的性质解决问题情感态度与价值观:经历相似三角形的运用过程,体验解决问题的方法的灵活性。

教学重点:运用相似三角形的性质与判定,解决测高、测宽等问题教学难点:构造相似三角形解决问题教学过程一、引导学生填写下列表格:1.相似三角形与全等三角形的区别和联系2.相似三角形的判定方法3.一个基本图形四、例题示范例1、平行四边形ABCD 中,M 为对角线AC 上一点,BM 交AD 于N ,交CD 延长线于E 。

试问图中有多少对不同的相似三角形? 例2、如图, Rt △ABC, 斜边AC 上有一点D(不与点A 、C 重合), 过D 点作直线截△ABC, 使截得的三角形与△ABC 相似, 则满足这样条件的直线共有________条。

例3、如图,已知⊙O 中,弦AB ,CD 相交于点P ,AP=6,BP=2,CP=4,则PD 的长是_________。

五、课内小练习:1.如图,已知⊙O 的两条弦AB 、CD 相交与AB 的中点E ,且AB=4,DE=CE+3,求CD 的长。

2.如图,A 、B 、D 、E 四点在⊙O 上,AE 、BD 的延长线相交于点C ,直径AE 为8,OC=12,∠EDC=∠BAO 。

(1)求证:CD CEAC CB=; (2)计算CD •CB 的值,并指出CB 的取值范围。

3.如图,正方形ABCD 中,E 、F 分别在AB 、BC 边上,且AE=CF 、BG ⊥CE 于G 。

试证明DG ⊥FG 。

4.在Rt △ABC 中,∠C=90O ,AC=6,BC=12,在AC上有一动点D(不与A、C 重合),作DE ∥BC 交AB 于点E ,作EF ∥AC 交BC 于点F ,问当点D 在什么位置时,四边形CDEF 的面积最大? 六、课堂小结: 略《相似三角形》复习教案(二)教学目标:综合运用相似三角形的性质,判定定理探究一些以相似为背景的综合性考题。

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

初中数学_相似三角形复习教学设计学情分析教材分析课后反思

九年级下学期中考复习《相似三角形复习》教学设计相似三角形复习课教学设计一、课标解读课标要求:1.了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.了解相似三角形判定定理的证明.2.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.3.会利用图形的相似解决一些简单实际问题.数学学习是经历数学活动的过程,学生的数学学习活动是生动活泼的、主动的、富有个性的,动手实践、自主探索、合作交流是主要的学习方式.教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人.二、教材分析(一)地位与作用《相似三角形》是继图形的全等之后对图形形状内容的研究,是对图形全等知识的进一步拓广,是从特殊到一般的发展.《相似三角形》又是学习锐角三角函数、投影与视图,圆的知识的基础,例如锐角三角函数的定义、圆的有些性质的证明,都与相似三角形有密切联系.另外,在物理学、工程设计、测量、绘图等许多方面,都要用到相似三角形的知识.相似三角形有关知识的考查在中考中占有重要地位.因此学好相似三角形既是进一步学习的需要,也是工作实践的需要.本节课是九年级下学期中考复习课,学生已经在初三时学过相似三角形的有关知识,回顾相似三角形的定义、判定和性质,不仅可以帮助学生系统地构建知识体系,而且也可以进一步明确它们之间的联系与区别. 更重要的是为后面综合运用相似三角形,全等三角形等知识解决问题做好铺垫.学生在综合运用所学知识解决问题的过程中感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验,提高应用数学的意识和合作交流的能力.(二)教学目标1.回顾相似三角形的定义、判定和性质,进一步明确它们之间的联系与区别.2.在综合运用相似三角形的判定定理及性质定理解决问题的过程中,感悟分类,特殊到一般等数学思想方法,归纳总结解题的基本构图,基本方法,积累活动经验.(三)教学重点、难点教学重点:熟悉相似三角形的基本构图.综合运用相似三角形的判定定理及性质定理解决问题.教学难点:灵活运用相似三角形、全等三角形、圆等知识解决问题.三、学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法.学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大胆创新的精神.四、评价设计通过基础演练,即时检测达成目标1,通过综合运用达成目标2.五、学习过程:(一)基础演练【教师活动】出示问题1.如图,(1)已知∠A =∠D ,要使△ABC∽△DEF ,还需添加一个条件,你添加的条件是(2)已知AB BC k DE EF ==,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是2.如图,已知△ABC ∽△DEF ,(1)你能得到哪些结论?(2)若AM ,DN 分别是BC ,EF 边上的中线,AB =6,AM =4,DE =5, DN =3.已知两个相似三角形的面积比等于4:9,则它们的周长比是【学生活动】独立思考并完成问题.【设计意图】以有代表性的习题为载体,引导学生在问题解决中查缺补漏,形成知识链,建构知识体系,使学生对所学知识进行整体把握.并且从理性上明晰:数学图形的研究通常是从定义、性质、判定、应用几个大方面着手,不但弄清了知识脉络,而且积累了数学研究的方法和经验,真正提高了学生的数学能力和数学素养.【问题应对】学生已经在初三时学过相似三角形的定义,性质,判定,但对于它们的联系和区别有些模糊,通过追问:还可以怎样做?你的依据是什么? 帮助学生形成完整的知识链.(二)即时检测【教师活动一】出示问题1. 如图,在△ABC 中,AB =9,AC =6,点D 在AB上,且AD =4,点E 在AC 上,连接DE ,使△ADE 与△ABC 相似,则AE = .2.如图,在△ABC 中,点D 在AB 上,下列条件能使△ACD 和△ABC 相似的有①∠ACD =∠B ②∠ADC =∠ACB③AC 2=AD •AB ④ 3. △ABC 中,若∠ACB =90°,于D ,(1)写出图中与∆ABC 相似的三角形 .(2)若AD =9,BD =4,则CD = .【学生活动】独立思考并完成问题.【设计意图】通过设置问题,既检测学生运用相似三角形的性质定理和判定定理解决问题,又帮助学生把有关相似的基本图形、基本策略、基本经验进行了简明扼要的整理,有效提高了课堂效率,促进了目标达成.【问题应对】第1题学生可能只想到平行相似一种情况,可以追问学生:还有不同的答案吗?若还有学生存在困难,可让学生分析“△ADE 与△ABC 相似”和“△ABC ∽△DEF ”两种表示三角形相似的方法有何不同?帮助学生得出正确答案.问题2中的④学生可能选错,通过问题让学生明确要证两三角形相似,已经具备了公共角相等,如AC CD AB BC =CD AB ⊥果添加两组边成比例的条件,要注意公共角必须成为夹角.第3题在学生回答准确的情况下再提出:图中还有哪些比例中项的数学式子?帮助学生熟悉常用的几种式子,公共边的平方等于共线边的乘积.【教师活动二】相似中的基本构图有哪些联系?插入微视频.【设计意图】微视频的加入,不但提高了学生的听课效果,而且更完整清晰地再现了各个基本图形及之间的联系.三、综合运用【教师活动一】出示问题1.已知点B ,E ,C 在同一条直线上,∠B =∠AED =∠C =90°,AE =ED ,AB =6,BC =8,求CD .变式训练一上题中,若AE 与ED 不相等,BE =3,其它条件不变,求CD .变式训练二等边∆ABC 的边长为3,点P 为AB 上一点,AP =1,点E 为CB 上一点,∠CPE =60°,求BE 长.【学生活动】独立思考,完成问题.【教师活动一】反思:通过上面的问题,有什么想法?一条直线上只要有三个等角,就能得到两个三角形相似.如何验证你的发现?我们把这种基本构图称为一线三等角,由一线三等角可以得到两三角形相似,从而求出线段的长度.变式训练三Array在∆ABC中,AB=6,AC=BC=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPE=∠A,设点P的运动时间为t秒,当以点C为圆心,CE为半径的圆与AB相切时,求t的值.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】设计习题组,让学生亲身经历发现问题、分析问题、解决问题的过程,提炼解决这类问题常用的基本思路,基本构图.通过变式训练,使学生多角度、多层次,灵活的运用所学知识解决问题,让学生体会变化中的不变,弄清条件改变,但解题的思路不变.这也是解决一题多变问题常用的方法.这一环节的题目设计由易到难,循序渐进,最终是为了促进目标2的达成.【问题应对】题目设计由易到难,学生可能没有意识到题目之间的联系,解决后面的问题有困难,可以适时追问,例如:全等和相似有什么联系?这道题和上一道题有什么联系?通过问题引导学生在变式训练中体会变与不变,“优化”解题策略,挖掘知识背后的思想、方法、规律.【教师活动二】出示问题2.链接中考(2015威海中考)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.【学生活动】独立思考,小组合作,展示交流,完成问题.【设计意图】链接中考题目,拉近了教学与中考的距离,让学生明确相似三角形的有关知识在中考中的常见命题思路,该题第一步考查全等,第二步考查相似.学生在综合运用所学知识解决问题的过程中,进一步体会两道题的条件改变,但解题思路不变.【问题应对】解决这样的综合题学生可能有困难,可以在学生独立思考的基础上进行小组合作,展示交流.四、盘点收获【教师活动】回顾本节课的学习,你有哪些新的收获?说说你的体会.【学生活动】小组内畅谈收获【设计意图】通过这个环节的设计让学生及时盘点所学知识,所积累的经验和方法,便于今后更好的学习.【问题应对】学生在总结时如果有遗漏,要及时补充.五、达标检测【教师活动】1. 如图,已知AB∥EF∥CD,AC、BD相交于点E,AB=6cm,CD=12cm,求EF.F F EDCBA2. (选作)如图,路灯距地面8m ,身高1.6m 的小明从距离路灯的底部O 点20m 的点A 处,沿AO 所在直线行走14m 到达B 点时,影长如何变化?【学生活动】独立完成检测 【设计意图】通过这个环节的设计及时反馈本节课学生的学习情况,便于今后更好的改进教学.第二题供学有余力的学生选作,体现了分层教学.《相似三角形复习》学情分析本节课是一节中考复习课,学生已经在初三时学过相似三角形的有关知识,虽然初步具有用几何语言对命题进行推理证明的能力,但是对于综合运用相似三角形,全等三角形等知识解决问题的能力有待提高.因此本节课通过关注相似图形的变式,帮助学生自主构建知识网络,将相似三角形的定义,判定,性质,应用等知识形成知识网络,还应与全等形等知识联网.另外,注重相似三角形与全等三角形,圆等知识的综合运用,渗透分类,特殊到一般等数学思想方法,引导学生归纳总结解题的基本方法,积累活动经验.教法设计:兴趣引导、启发思考、小组合作探究的教学方法. 学法指导:突出学生的“探索发现”和“合作探究”,在教学过程中立足于让学生自己去观察、去发现、去创造.学生通过观察、猜想、验证、归纳等数学活动,丰富数学活动经验,培养勇于探索、大MN O B A胆创新的精神.《相似三角形复习》效果分析知识体系,使学生对所学知识进行整体把握。

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的空间观念和创新意识,激发学生对数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形与其他几何图形的综合应用。

三、教学方法讲授法、练习法、讨论法四、教学过程1、知识回顾(1)相似三角形的概念:对应角相等,对应边成比例的三角形叫做相似三角形。

相似三角形对应边的比叫做相似比。

(2)相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

(3)相似三角形的性质定理①相似三角形对应角相等,对应边成比例。

②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

③相似三角形周长的比等于相似比,面积的比等于相似比的平方。

2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠C = 90°,D 是 AC 上一点,DE⊥AB 于 E,若 AC = 8,BC = 6,DE = 3,求 AD 的长。

解:在 Rt△ABC 中,AB =\(\sqrt{AC^2 + BC^2} =\sqrt{8^2 + 6^2} = 10\)因为∠A =∠A,∠AED =∠C = 90°所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{DE}{BC}\)即\(\frac{AD}{10} =\frac{3}{6}\)解得 AD = 53、课堂练习(1)如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2,DB = 1,AE = 15,求 EC 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:相似三角形复习课授课人: 雁栖学校杜凌云 考试说明:一、 【中考知识点梳理】1. 相似三角形的定义:生:对应角相等、对应边成比例的两个三角形叫做相似三角形。

2. 相似比生:相似三角形对应边的比叫做相似比。

△ABC ∽△DEF ,如果BC=3,EF =1.5,那么△DEF与△ABC 的相似比为________. 注意:求相似比要注意顺序。

3.下面4组图形中都有角或线段相等或平行的标记,试根据这些标记的条件判断有没有没有相似三角形?若有,请找出,并说明相似的理由. 【, ∴△ABC ∽△ADE(平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似)【生2】图2:△ABC ∽△ADE , 理由:∵∠ADE=∠C,∠A=∠A∴△ABC ∽△AED (两角相等,两三角形相似)【生3】图3:△ABO ∽△DCO ,∵OA=1, OD=3,∴OD OA =31同理OC OB =31B2 13 6 AC D E DcA B O 图(1) 图(2) 图(3)CBEADC EDA CDEACD∴OD OA =OCOB又∵∠AOB=∠COD∴△ABO ∽△DCO (两边对应成比例且夹角相等,两三角形相似)【生4】图4:△ABC ∽△DEF , 理由:∵AB=2,BC=4,AC=6; DE=1,EF=2,DF=3,∴DE AB =EF BC =DFAC=2 ∴△ABC ∽△DEF(三边对应成比例,两三角形相似)相似三角形的判定方法:(1)平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似 (2)判定1.两个角分别相等,两三角形相似。

(3)判定2.两边对应成比例且夹角相等,两三角形相似. (4)判定3.三边对应成比例,两三角形相似.4、已知,如图,△ABC ∽△ADE ,图中有没有成比例线段和相等的角?为什么?相似三角形的性质:(1)相似三角形的对应边成比例,对应角相等.(2)相似三角形的对应高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.5.题型方法、规律总结我们来回顾一下相似三角形常见的基本图形并找出对应边 AED ABC △AED ∽△△ABC ∽△ACDBC ED AC AD AB AE ==BC ED AC AD AB AE ==BCCDAC AD AB AC == 小结:以上三类归为基本图形:A 型△ABC ∽△DEC △ABC ∽△DECDE AB EC BC DC AC ==DEABEC BC DC AC == 小结:此两类归为基本图形:X 型请你根据图中所给的条件证明图中的相似三角形。

ED ABC∵∠C=90O∴∠1+∠A=90O∵∠ABE=90O∴∠1+∠2=90O∴∠A=∠2又∵∠C=∠D=90O∴△ACB ∽△DBE小结:此图行为“一线三等角”型特殊图形(双垂直模型)写出图中相似的三角形(要求对应字母写在对 应位置上________________【设计意图】以知识图解的形式让学生填空,可以帮助学生梳理本节课的主要知识点,为下一步激活运用这些知识打好基础.二、 追踪中考、案例解析例1:“正A 型”如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论不正确的是【】 A .BC=2DEB .△ADE ∽△ABC C .AD AB=AE ACD .S △ABC =3S △ADE 思路点拨:此图属于“A 型图”中的特殊情形:DE 恰好是△ABC 的中位线.据三角形的中位线定理得出DE 是△ABC 的中位线,再由中位线的性质得出△ADE ∽△ABC ,进而可得出结论.【生】∵在△ABC 中,点D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,DE=BC , ∴BC=2DE 。

故A 正确。

∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确。

∵△ADE ∽△ABC ,∴AD AB=AE AC,故C 正确。

∵DE 是△ABC 的中位线,∴AD :BC=1:2,∴S △ABC =4S △ADE ,故D 错误。

故选D 。

.例2:“斜A 型”如图所示,点D 在△ABC 的边AB 上,满足,△ACD 与△ABC 相似?思路点拨:此图属于“斜A 型”变式后的“共边共角型”, △ACD 与△ABC 已有公共角∠A ,要使此两个三角形相似,EDCB A DCBAO第3题图O E DCBA可根据相似三角形的识别方法寻找一个条件即可.【生1】∠1=∠B.【生2】 2=∠ACB.【生3】【生4】AC 2=AD ·AB 例3:“旋转型”如图,∠DAB=∠CAE ,请补充一个条件:,使△ABC ∽△ADE .思路点拨:此题图形属于旋转型,由∠DAB=∠CAE 可得∠DAE=∠BAC 【生1】∠D=∠B 【生2】∠AED=∠C【设计意图】通过剖析相似三角形中考真题,使学生发现前面总结的解题规律在解决中考题的威力,培养学生解决中考题的能力和信心.三、 考题呈现1.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE BC ∥,若AD =1,BD =2,则DEBC的值为,则△ADE 与△ABC 的面积比为__________。

2.△ABC 的三边之比为 3∶4∶5,若 △ABC∽△A'B'C' ,且△A'B'C' 的最短边长为6,则△A'B'C'的周长为3.如图,D 是BC 上的点,∠AD B =∠BAC,则下列结论正确的是( ) A .△ABC∽△DACB.△ABC∽△DBAC.△ABD∽△ACD D.以上都不对4.在综合实践课上,小明同学设计了如图测河塘宽AB 的方案:在河塘外选一点O ,连结AO ,BO ,测得18AO =m ,21BO =m ,延长AO ,BO 分别到D ,C 两点,使6OC =m ,7OD =m ,又测得5CD =m ,则河塘宽AB =m .5.已知:如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . (1)求证:△ABC ∽△DAE ;(2)若AB =8,AD =6,AE =4,求BC 的长.6.如图,点D 是△ABC 的边AC 上的一点,AB 2=AC ·AD .求证:△ADB ∽△ABC .7.如图,在⊙O 中,弦AC 与BD 交于点E ,AB =8,AE =6,ED =4,求CD 的长.四、小结【设计意图】通过剖析相似三角形中考真题,使学生发现前面总结的解题规律在解决中考题的威力,培养学生解决中考题的能力和信心.五、自主限时、冲刺中考(A 组题)1.已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为().第1题图第4题图EACDDCABEC D A FB6题图A . 1:2B . 1:4C . 2:1D . 4:12. 如图,CD AB //,AC 与BD 相交于点O ,3=AB , 若3:1:=BD BO ,则CD 等于_____.3.如图,在△ABC 中,D 是AB 边上一点,连接CD ,要使△ADC 与△ABC 相似,应添加的条件是。

4.如图,∠1=∠2,添加一个条件使得△ADE ∽△ACB . 5.如图,D E ,两点分别在ABC △的边AB AC ,上,DE 与BC 不平行,当满足条件(写出一个即可)时,ADE ACB △∽△. (B 组题)6.如图5,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BF FD =.7.在Rt △ABC 中,∠ACB 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角形是和;并写出它的面积比.(课后作业)8.如图所示,已知中,E 为AB 延长线上的一点,AB=3BE ,DE 与BC 相交于F ,请找出图中各对相似三角形,并求出相应的相似比.9.如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值. 10.如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 21=。

⑴求证:△ABF ∽△CEB;⑵若△DEF 的面积为2,求□ABCD 的面积。

11.思考题:阅读下面材料:小腾遇到这样一个问题:如图1,在ABC △中,点D 在线段BC 上,75BAD ∠=︒,30CAD ∠=︒,2AD =,2BD DC =,求AC 的长.第10题图 FADEB C第4题图 第3题图 A B C D A ECDD CAB7题图图3ABCDE小腾发现,过点C 作CE AB ∥,交AD 的延长线于点E ,通过构造ACE △,经过推理和计算能够使问题得到解决(如图2). 请回答:ACE ∠的度数为,AC 的长为. 参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,90BAC ∠=︒,30CAD ∠=︒,75ADC ∠=︒,AC 与BD 交于点E ,2AE =,2BE ED =,求BC 的长.【设计意图】A组题目为必做题,一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解答问题的能力. B组问题为学有余力的同学设计,努力使每个学生在课堂上都有所发展,也充分利用课堂时间提高了优秀生解决问题的能力,课上不能完成,可作为课后作业七、板书设计八、教后反思 优点: 结合中考大纲分成4大板块进行复习:(1)基础知识梳理、复习板块(2)经典习题、基本图形板块,侧重巩固基础知识、基本技能,总结规律(3)中考真题剖析板块(4)中考冲刺模拟板块,通过4大板块的复习,学生先复习基础知识,再到掌握基本技能,最后上升到发现解题规律,循序渐进的提升符合学生的认知规律。

有了前面的一系列铺垫,学生不但夯实了基础,掌握了解题规律,还逐渐找到了解决中考题的那份自信,使学生在下面的模拟冲刺中获得了一定的成功. 缺点:相似三角形专题复习一、知识梳理 二、经典习题 三、规律总结由于要照顾到大多数学生,复习主要集中于难度不大的习题,导致一部分优秀生在课上出现“吃不饱”的现象,只能把一些稍有难度的中考题放到课下让学生再研究.。

相关文档
最新文档