离散信道容量
合集下载
第三章离散信道及其信道容量

0
0 1
不是一一对应,无扰有信息损失
1
(2)有扰信道 例3:
a1
0.9
X
0.1
a2
0.2 0.8
b1
Y
b2
0.9 0.1 [P] 0.2 0.8 有扰有信息损失,干扰严重
例4:
a1
X
a2
1/2 1/2 1/2 1/2
b1
Y
b2
1/ 2 1 / 2 [P] 1/ 2 1 / 2
P yi xi P xi yi
即E{log x} ≤log{E(X)}
即E{log x} ≤log{E(X)}
I(X
;Y
)
X
Y
P(x,
y)
log
P( x)P( y) P(x, y)
log
XY
P(x,
y)
P( x)P( y) P(x, y)
log1
0
∴ I(X;Y) ≥ 0
∵ logx为∩ 型凸函数,只有当且仅当 p(x.y)=P(x)P(y),即x和Y统计独立时I(X;Y)=0
根据输入和输出信号的特点,信道可以分为: (1)离散信道。指输入和输出的随机变量的取值都 有是离散的信道。 (2)连续信道。指输入和输出的随机变量的取值都 是连续的信道。 (3)半离散半连续信道。输入变量是离散型的但相 应的输出变量是连续的信道,或者相反。 (4)波形信道。信道的输入和输出都是一些时间上 连续的随机信号。即信道输入和输出的随机变量的 取值是连续的,并且还随时间连续变化。一般用随 机过程来描述其输入和输出。
p( x1 ) 4
a2 1 4
a3 1 4
a4
1
4
1 P 1
5-2 离散信道的信道容量

第五讲 信道容量 第二节 离散信道的信道容量
1
离散信道的信道容量
一、离散信道容量的定义 二、信道模型 三、离散信道容量的表达式
2
离散信道的信道容量
一、离散信道容量的定义
定义1: C- 每个符号能够传输的平均信息量最大值
定义2: Ct -单位时间(秒)内能够传输的平均信息量最大值
两者之间可以互换:已知信道每秒能够传输的符号数
i =1
j=1
i =1
n
∑ H ( x ) = − P ( x i ) log 2 P ( x i ) i=1
-每个发送符号xi的平均信息量,称为信源的熵
m
n
∑ ∑ H( x / y) = − P( y j ) P( xi / y j )log2 P( xi / y j )
j =1
i =1
-接收yj符号已知后,发送符号xi的平均信息量
0
P(0/0) = 127/128
0
发 送 端 P(0/1) = 1/128
接
收
P(1/0) = 1/128
端
P(1/1) = 127/128
1
1
对称道模型
离散信道的信道容量
信源的平均信息量(熵)
∑ H
(x)
=
−
n i=1
P ( x i ) log
2
P ( xi
)
=
−
⎡ ⎢⎣
1 2
log
2
1 2
离散信道的信道容量
③ 无噪声信道 信道模型
发 x1
送 端
x2
x。 3
。
P(xi) 。 xn
P(y1/x1) P(yn/xn)
1
离散信道的信道容量
一、离散信道容量的定义 二、信道模型 三、离散信道容量的表达式
2
离散信道的信道容量
一、离散信道容量的定义
定义1: C- 每个符号能够传输的平均信息量最大值
定义2: Ct -单位时间(秒)内能够传输的平均信息量最大值
两者之间可以互换:已知信道每秒能够传输的符号数
i =1
j=1
i =1
n
∑ H ( x ) = − P ( x i ) log 2 P ( x i ) i=1
-每个发送符号xi的平均信息量,称为信源的熵
m
n
∑ ∑ H( x / y) = − P( y j ) P( xi / y j )log2 P( xi / y j )
j =1
i =1
-接收yj符号已知后,发送符号xi的平均信息量
0
P(0/0) = 127/128
0
发 送 端 P(0/1) = 1/128
接
收
P(1/0) = 1/128
端
P(1/1) = 127/128
1
1
对称道模型
离散信道的信道容量
信源的平均信息量(熵)
∑ H
(x)
=
−
n i=1
P ( x i ) log
2
P ( xi
)
=
−
⎡ ⎢⎣
1 2
log
2
1 2
离散信道的信道容量
③ 无噪声信道 信道模型
发 x1
送 端
x2
x。 3
。
P(xi) 。 xn
P(y1/x1) P(yn/xn)
离散信道信道容量的计算

输能力或者说能否达到信 道 容 量,取 决 于 两 点:信 源 离
散无记忆;信 源 的 输 入 概 率 分 布 是 使I(x;y)最 大 的 分 布.下面给出离散无记忆信道容量的定义:
C = maxI(X;Y); p(ai)
∑∑ 其 中I(X;Y)=
n i=1
j=m1p(ai)p(bj/ai)logpp(b(jb/ja)i)
工程管理与技术
离散信道信道容量的计算
余秀玲
(西南石油大学,四川 成都 610500)
摘 要:信道容量的计算是信道研究的核心,据 此 对 信 道 容 量 定 义 和 特 性 进 行 了 探 讨,并 研 究 了 三 种 特 殊 离 散信道的信道容量计算方法,有对称离散信道、强对 称 离 散 信 道 和 准 对 称 离 散 信 道,并 对 三 种 信 道 容 量 计 算 方 法 进行了区分与比较.最后介绍了一般离散信道的信道容量计算方法.
[5]严 新 乔 .高 职 院 校 实 施 混 合 所 有 制 办 学 的 实 践 与 探 索 ——— 以 浙 江 高 职 院 校 为 例 [J].职 业 技 术 教 育 ,2017,(11):13G16.
1 信 道 容 量 最简单的 通 信 系 统 由 信 源、信 道 和 信 宿 组 成. 对
于信道来说,在信道固定的 前 提 下,传 输 的 信 息 量 当 然 是越多越 好,因 此 信 道 容 量 问 题 是 信 道 研 究 的 重 点. 信道容量是信 道 传 输 信 息 的 最 大 能 力,由 信 道 特 性 决 定.对于特 定 的 信 道,信 道 容 量 是 个 定 值. 根 据 平 均 互信息的凸 函 数 性,平 均 互 信 息 量I(x;y)是 输 入 信 源 概率分布 {p(ai),i=1,2,������,n}的上凸函数,在固定信 道的的前提下,平均互信息 量 有 最 大 值,即 信 道 容 量 一 定存在.但是,在传输信息时,信 道 能 否 提 供 其 最 大 传
信息论基础第3章离散信道及其信道容量

也就是说,通过信息处理后,一般只会增加信息的 损失,最多保持原来获得的信息,不可能比原来获得的 信息有所增加。一旦失掉了信息,用任何处理手段也不 可能再恢复丢失的信息,因此也称为信息不增性原理。
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
第三章离散信道及其信道容量

p(ym/x1)
p(ym/x2) … p(ym/xn)
第一节 信道的数学模型及分类 为了表述简便,可以写成 P(bj / ai ) pij
p11 p P 21 ... pr1 p12 ... p22 ... pr 2 ... p1s p2 s ... prs
i 1 r
P(aibj ) P(ai )P(bj / ai ) P(bj )P(ai / bj )
(3)后验概率
P(ai / b j )
P(aib j ) P(b j )
P(a / b ) 1
i 1 i j
r
表明输出端收到任一符号,必定是输入端某一符号 输入所致
第二节 平均互信息
第三节 平均互信息的特性
1、平均互信息的非负性 I(X;Y)>=0 该性质表明,通过一个信道总能传递一些信息,最 差的条件下,输入输出完全独立,不传递任何信息,互 信息等于0,但决不会失去已知的信息。
2、平均互信息的极值性
I(X;Y)<=H(X) 一般来说,信到疑义度总是大于0,所以互信息总是 小于信源的熵,只有当信道是无损信道时,信道疑义度 等于0,互信息等于信源的熵。
C max{I ( X , Y )} max{H ( X ) H ( X / Y )}
P( X ) P( X )
信道容量与与信源无关,它是信道的特征参数,反 应的是信道的最大的信息传输能力。 对于二元对称信道,由图可以看出信道容量等于 1-H(P)
第四节 信道容量及其一般计算方法
1、离散无噪信道的信道容量 (1)具有一一对应关系的无噪声信道 x1 x2 x3 I(X;Y)=H(X)=H(Y) y1 y2 y3
离散信道的信道容量

综合式(5-4)和(5-5),在信源和信道都离散无记忆的情况下,
有CN = NC,即定理中等号成立,这时N长序列的传输问题可 归结为单符号传输问题。
5.2.1 达到信道容量的充要条件
定理5.2 使平均互信息量I(X; Y)达到信道容量C的
充要条件是信道输入概率分布
X q( X
)
x1 q( x1
1 3 1 3 1 3 1 3
1 2 1 6 2 6 3 6
1 6
1 18
1 9
1 6
6
满足 ( y j ) 1 j 1
再计算出:
I (x1;Y )
6 j 1
p( y j
x1) log
p( y j x1 )
(yj )
1 log 1 13
log3
I (x2 ;Y )
5.1 信道容量的定义
信息传输率是衡量通信质量的一个重要指标,定理
1.1知:对于固定信道,总存在某种输入概率分布q(x),
使I(X; Y)达到最大值,定义这个最大值为信道容
量,记为C。
C max I (X ;Y ) (比特/码符号)
q(x)
(5-2)
使I(X; Y)达到信道容量的分布q (x)为最佳分布。
则信道容量
C = I (X; Y)︱a=0.5 = 1-q
3.信道转移概率矩阵为非奇异方阵
计算信道容量C按下面步骤进行: (1)先验证信道转移概率矩阵P =[p(yj︱xi)]是方阵,且矩阵P的行列 式︱[p(yj︱xi)]︱≠0;
(2)计算出逆矩阵P-1=[ p-1 (yj︱xk)];
(3)根据式(5-17),计算出;
i 1
平均互信息量 I(X; Y) = H(Y) –H (Y︱X)
第三章 信道和信道容量

I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量
信道带宽与信道容量

C
B
log2
1
S N
bit / s
(2-6-2)
例2.2 设一幅图片约有个像素,每个像素以后2个以等概率出 现的亮电平。若要求用3分钟传输这张图片,并且信噪比等于 30dB,试求所需的信道带宽。
解:由于每个像素有12个等概率出现的亮度电平,所以每个 像素的信息量为 I p log 2 12 3.585 b
每幅图像的信息量为 If 2.5106 Ip 8.963106 b 信息传输速率,即信道容量为
C If t 8.963 10 6 (3 60) 4.98 10 4
信噪比为 S N 30 dB 1000 由于信道容量 C B log2(1 S N)
所以所需信道带宽为
B
C
4.98104 5 kHz
案例分析2
地震预警信息是由电脑自动发送,该预警信息可通过多种通 信手段进行传输发送,例如:网络微博发送,计算机、手机、 专用预警接收服务器、电视等实时同步发布,如图2.37所示。 由于地震预警系统传递信息时需要保证信息的可靠性,因此 可以通过多种通信手段保证信息的发布,所涉及到的信道方 式也可能有多种形式。
地震发生时,首先出现的是上下震动的P波,震动幅度较 小,要过大约10秒到1分钟时间,水平运动的S波才会到来, 造成严重破坏。地震预警就是利用地震发生后,P波与S波之 间的时间差。原理上,在距离震源50公里内的地区,会在地
案例分析2
地震前10秒收到预警信息;90-100公里内的地区,能提前 20多秒收到预警信息。根据数据准确估计震级、震中位置以 及快速估计地震对预警目标的影响等。例如:地震波从震中 传到北川县城大概需要25秒。如果您在发震5秒后感受到了地 震波,并花了15秒钟打电话告诉北川的朋友地震波即将来临, 那么您北川的朋友将会获得5秒的应急时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实 验 内 容 与 步 骤
3
Maltab 代码:
p=0:0.001:1; C=log2(2)+p.*log2(p)+(1-p).*log2(1-p); plot(p,C); title('物联网工程') 结果图像:
实 验 结 果 及 分 析
实验日期: 评分: 指导教师签字:
年
月
日
4
p(Y 0 / X 1) p(Y 1/ X 0) p p(Y 1/ X 1) p(Y 0 / X 0) 1 p
1
这种对称的二进制输入、二进制输出信道称做二元对称信道(或二进 制对称信道,简称 BSC 信道) ,如下图所示:
信道容量公式:
郑州轻工业学院本科生实验报告
实验名称 课程名称 姓 学 名 号 1. 2. 3. 实 验 目 的 ** 54****** 指导教师 实验时间 离散信道容量 信息论与编码 *** ******* 专业、班级 实验地点 ***散信道容量的物理意义。 练习应用 matlab 软件进行二元对称离散信道容量的函数曲线的绘 制,并从曲线上理解其物理意义。
信道是传送信息的载体—信号所通过的通道。 信息是抽象的,而信道则是具体的。比如二人对话,二人间的空气就 是信道;打电话,电话线就是信道;看电视,听收音机,收、发间的空间 就是信道。 实 验 条 件 研究信道的目的:在通信系统中研究信道,主要是为了描述、度量、 分析不同类型信道,计算其容量,即极限传输能力,并分析其特性。 二元对称信道 BSC(Binary Symmetric Channel) 二进制离散信道模型有一个允许输入值的集合 X={0,1}和可能输出 值的集合 Y={0,1},以及一组表示输入和输出关系的条件概率(转移概 率)组成。如果信道噪声和其他干扰导致传输的二进序列发生统计独立的 差错,且条件概率对称,即
C max I(X,Y)
{ p ( x )}
2
BSC 信 道 是 DMC 信 道 对 称 信 道 的 特 例 , 对 于 转 移 概 率 为 P(0/1)=P(1/0)=p,P(0/0)=P(1/01)=1-p,求出其信道容量公式,并在 matlab 上绘制信道容量 C 与 p 的曲线。 根据曲线说明其物理意义。