1.2 矩形的性质与判定(第一课时)
九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版

九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版矩形的性质及判定教学目标(1)掌握矩形的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)初步运用矩形的定义和性质解决相关问题,进一步培养学生的分析能力和教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边的中线等于斜边的一半”的推导及性质定理应用的教学过程:一、创设情境,引入新课老师:展示教具(平行四边形)并演示将平行四边形转化为菱形的过程当我们给平行四边形其他特殊条件时,我们会得到其他形状吗?例如,如果平行四边形的内角变成90度,你会发现什么特殊形状?学生:长方形师:原来是大家非常熟悉的图形,他还有个高大上的名字――矩形.板书课题老师:根据前面学习的菱形和平行四边形的过程,你想了解矩形的哪些方面?学生:矩形的定义:矩形的本质生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究老师:根据以下自学指导,自学课本第11至12页讨论前的内容。
1.定义:有些被称为矩形12.矩形是平行四边形吗?3、如图,四边形abcd是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)侧面:角度:对角线:对称性:4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方法:学生将自学与小组合作相结合,通过自学、猜想和推理三个步骤掌握矩形的性质,在小组学习过程中提问,其他学生讨论并回答【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.定义:直角平行四边形是一个矩形。
矩形的四个角是直角。
1.2矩形的性质与判定——性质课时训练含答案

第一章特殊平行四边形1.2 矩形的性质与判定——性质1.我们把__________叫做矩形.2.矩形是特殊的____________,所以它不但具有一般________的性质,而且还具有特殊的性质:(1)_________;(2)___________.3.矩形既是______图形,又是________图形,它有_______条对称轴.4.如图1所示,矩形ABCD的两条对角线相交于点O,图中有_______个直角三角形,•有____个等腰三角形.5.矩形的两条邻边分别是、2,则它的一条对角线的长是______.6.如图所示,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=•4,•则DC=________.7.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分8.若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A.8cm2B.4cm2C.2c m2D.8cm29.如图2所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE的度数是()A.29° B.32° C.22° D.61°10.矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BC O的周长差为4,•则AB的长是()A.12 B.22 C.16 D.2611.如图3所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是() A. B.4 C. 2 D.12.如图所示,在矩形ABCD中,点E在DC上,AE=2BC,且A E=AB,求∠CBE的度数.13.如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A•孤延长线于点E,求证:AC=CE.14.如图所示,在矩形ABCD中,AB=8,AD=10,将矩形沿直线AE折叠,顶点D恰好落在BC 边上的点F处,求CE的长.15.如图所示,在矩形ABCD中,AB=5cm,BC=4cm,动点P以1cm/s的速度从A点出发,•经点D,C到点B,设△ABP的面积为s(cm2),点P运动的时间为t(s).(1)求当点P在线段AD上时,s与t之间的函数关系式;(2)求当点P在线段BC上时,s与t之间的函数关系式;(3)在同一坐标系中画出点P在整个运动过程中s与t之间函数关系的图像.答案:1.有一个角是直角的平行四边形2.平行四边形,平行四边形(1)矩形的四个角都是直角(2)矩形的对角线相等3.中心对称,轴对称,2 4.4,4 5.3 6.47.A 8.B 9.B 10.C 11.D 12.15°13.证四边形BDCE是平行四边形,得CE=•BD=AC 14. 3 15.(1)s=t (2)s=-t+35 (3)略。
d1.2矩形的性质与判定(第一课时)

OD B C A O D B C A O CB A 九年级数学上册第一章特殊的平行四边形1.2矩形的性质与判定(第一课时)一、导学二、学习目标1、理解矩形的概念,了解它与平行四边形之间的关系2、理解并掌握矩形的性质定理,并能够运用它们进行证明和计算三、探究学习知识点(一)探究矩形的定义思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
矩形的定义:__________________________________________________是矩形 知识点(二) 探究矩形的性质定理想一想:⑴矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,你能列举一些这样的性质吗?⑵矩形是轴对称图形?如果是,它有几条对称轴?⑶你认为矩形还具有哪些特殊的性质?已知:如图,四边形ABCD 是矩形,︒=∠90ABC ,对角线AC 与DB 相交于点O求证:⑴︒=∠=∠=∠=∠90DAB CDA BCD ABC⑵DB AC =结论:矩形的性质定理1:矩形的四个角都是________________矩形的性质定理2:矩形的对角线______________知识点(三)探究直角三角形性质:如图,设矩形的对角线AC 与BD 的交点为O ,那么BO 是ABC Rt ∆中一条怎样的特殊线段?它与AC 有什么大小关系? 已知:在ABC Rt ∆中,BO 是斜边上的中线求证:AC BO 21=定理:直角三角形斜边上的中线等于 。
例1:如图,在矩形ABCD中,两条对角线相交于点O,︒=∠120AOD,5.2=AB 求这个矩形对角线的长四、训练提升1.矩形具有而平行四边形不具有的性质是( )A.对角线互相平分 B.邻角互补C.对角相等 D.对角线相等2.如图1,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为( )A.30° B.60° C.90° D3.如图3,A,B,C40 km,D恰好为AB的中点,则点D与点C之间的距离是________km.4.如图4,O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )A.5 B.4 C.342D.345.如图5,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,交BD于点O,则△BOF的面积为________.6.如图6,矩形ABCD的对角线AC,BD交于点O,DE平分∠ADC,交BC于点E,∠BDE=15°,求∠COD与∠COE的度数.7.如图7,在矩形ABCD中,AB=3,BC=2,E为AD的中点,F为BC边上任一点,过点F 分别作EB,EC的垂线,垂足分别为G,H,则FG+FH的值为( )A.52B.5210 C.31010 D.35108.在矩形ABCD中,∠A的平分线AE分BC成两部分的比为1∶3,若矩形则其周长为________.9. 如图10,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B.4 C.4.5 D.5ODB CA。
1.2矩形的性质与判定(第一课时)(无答案)

(3)由上述关系你能得到什么结论?
【新知归纳3】
定理:直角三角形斜边上的中线等于斜边的一半.
【合作交流3】
你能写出“直角三角形斜边上的中线等于斜边的一半”的逆命题吗?
※典型范例※
例1.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长.
【巩固练习】
1. 矩形两条对角线夹角为60°,较短一边长_________,较长一边长为__________, 则此矩形对角线长为________
第1题 第4题 第5题 第7题
2.矩形具有一般平行四边形不具有的性质是( )
A.对边相互平行 B.对角线相等
C.对角线相互平分 D.对角相等
3.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )
【能力提升题】
1.如图,矩形 中, 为 中点,过点 的直线分别与 、 交于点 、 ,连结 交 于点 ,连结 、 ,若 , ,则下列结论;① 垂直平分 ;② ③ ;④ ,其中正确结论的个数是( ).
A. 个 B. 个 C. 个D. 个
2.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点 上.若AB=6,BC=9,则BF的长为( )
2.已知△ABC是直角三角形,∠ABC=90°,BD是斜边AC上的中线.若BD=3 cm,则AC=________cm.
【新知探究1】
【新知归纳1】
矩形的定义:
有一个内角是________的平行四边形叫矩形。
【合作交流1】
矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,你能列举一些这样的性质吗?
6.直角三角形斜边上的中线等于斜边的________.
1.2矩形的性质及判定(1)

C
由此可得推论:直角三角形斜边上 的中线等于斜边的一半.
驶向胜 利的彼 岸
例题欣赏
4
矩形性质的应用
已知:如图,AC,BD是矩形ABCD的两条对角线,AC,BD 相交于点O,∠AOD=1200,AB=2.5cm. 求矩形对角线的长. A D 解: ∵四边形ABCD是矩形, 1 O ∴AC=BD,且OA OC AC.
7、已知:如图,矩形ABCD中,E是BC上一点, DF⊥AE于F,若AE=BC. 求证:CE=EF.
五、拓展延伸:
1已知:如图,O是矩形ABCD对角线的交点, AE平分∠BAD,∠AOD=120°,求∠EAO的度数. 2、如果矩形的一个内角平分线将它的一边分成3cm 和5cm两部分,则它的面积是多少?
矩形的性质
A D
定理:矩形的四个角都是直角. 已知:如图,四边形ABCD是矩形. 求证:∠A=∠B=∠C=∠D=900. 分析:由矩形的定义,利用对角 相等,邻角互补可使问题得证.
B
C
证明: ∵ 四边形ABCD是矩形,
想一想:正方形的四 个角都是直角吗?
∴∠A=900,四边形ABCD是平行四边形. ∴∠C=∠A=900, ∠B=1800-∠A=900, ∠D=1800-∠A=900. ∴四边形ABCD是矩形.
C
D
推论(直角三角形性质):直角三角形 斜边上的中线等于斜边的一半. 在△ABC中,∠ACB=900, ∵AD=BD,
CD 1 AB. 2
C
驶向胜利 的彼岸
B
独立 作业
知识的升华
P3习题1.4 1,2,3题.
祝你成功!
下课了!
结束寄语
严格性之于数学家,犹如道德之 于人. • 条理清晰,因果相应,言必有据 .是初学证明者谨记和遵循的原 则.
1.2 矩形的性质与判定1

第七环节:反思交流,反馈提高
1.本节课你学到了什么?
(1)矩形定义 (2)矩形的性质 (3)直角三角形的性质 (4)矩形的一条对角线把矩形分成两个全等 的直角三角形;两条对角线把矩形分成两对全 等的等腰三角形。因此,矩形的问题可化为直 角三角形或等腰三角形的问题来解决。
自我检测。
(1)下列说法错误的是( ).
矩形的定义:有一个内角是直角的平行 四边形是矩形
第二环节:分组讨论,探究新知
问题1: 既然矩形是平行四边形,那么它具有 平行四边形的哪些性质?
性质
边
角
对角线
对称 性
中心 对边平行 对角线互 矩形 对角相等 对称 且相等 相平分 图形
问题2 (1)请同学们以小组为单位,测量身边的矩 形(如书本,课桌,铅笔盒等)的四条边长 度、四个角度数和对角线的长度及夹角度数, 并记录测量结果; (2)根据测量的结果,猜想结论。当矩形的 大小不断变化时,发现的结论是否仍然成立? (3)通过测量、观察和讨论,你能得到矩形 的特殊性质吗?
定理:直角三角形斜边的中线等于斜边的一半.
练一练 已知△ABC中,∠ABC=90°,BD是斜 边AC上的中线. (1)若BD=3㎝,则AC=_____㎝; (2)若∠C=30°,AB=5㎝,则 AC=_____㎝,BD=_____㎝.
第六环节:合作交流,解决问题
例1:如图,在矩形ABCD中,两条对角线相交 于点O,∠AOD=120°,AB=2.5cm,求矩形 对角线的长。
第一章
特殊平行四边形
第2节 矩形的性质与判定(一)
青岛市第39中学 荣秀梅
第一环节:创设情景,导入新课
问题1:平行四边形具有哪些性质?
问题2:利用一个活动的平行四边形教具 演示,使平行四边形的一个内角变化, 请同学们注意观察:
1.2矩形的性质与判定 第1课时(教案)

北师大版九年级上第一章《特殊平行四边形》《矩形的性质与判定》(第1课时)教案课题矩形的性质单元第一章学科数学年级九年级学习目标1.知识与技能了解矩形的有关概念,理解并掌握矩形的有关性质.2.过程与方法经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.3.情感态度和价值观培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重点掌握矩形的性质,并学会应用.难点理解矩形的特殊性.教学过程教学环节教师活动学生活动设计意图导入新课教师说:“同学们,下面几幅图片中都含有一些平行四边形。
观察这些平行四边形,你能发现它们有什么样的共同特征?”引导学生发现:是平行四边形,且它们的四个角都相等,且都等于90度. 学生看黑板,观察图片,思考老师提出的问题观察图片,思考相关问题,能够给学生清晰的思考路径讲授新课矩形的定义:有一个角是直角的平行四边形叫做矩形。
矩形是特殊的平行四边形教师:同学们,开动脑筋,想一想,矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?点名学生回答教师问:你认为矩形还具有哪些特殊的性质?与同伴交流。
学生讨论,点名学生回答。
教师:同学们,拿出一张矩形纸片出来,我们来动学生听讲,并思考老师问的问题小组讨论矩形的性质,并举手回答老师问题学生动手跟着老师指导的思增强学生观察,总结能力,小组讨论能力学生自己观察得出结论,能够让学生更好地掌握新知识增强同学间的互动,交流,动手手试试看。
用矩形纸片折一折,回答下列问题:1)矩形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?教师点名学生回答问题。
得出结论:矩形是轴对称图形,有两条对称轴,分别是两条对边垂直平分线,两条对称轴互相垂直. 也是中心对称图形,对称中心是对角线的交点。
教师:同学们完成任务的能力很好哦,接下来,老师要提高问题难度了,谁来帮老师和同学们从边、角、对角线方面,观察或度量猜想矩形的特殊性质. ①边:对边平行且相等(与平行四边形相同),邻边互相垂直; ②角:四个角是直角; ③对角线:相等且互相平分.教师带领学生验证猜想结论 验证结论:已知:如图,在矩形ABCD 中,∠A=90°. 求证:(1)∠A=∠B=∠C=∠D=90°路,完成任务。
1.2矩形的性质与判定1

∠ABC=∠BCD=∠CDA=∠DAB=90°
对角线的性质:
AO=CO,BO=DO AC=BD
矩形性质的延伸
矩形ABCD的对角线AC、BD相交于点O,图中
有多少个直角三角形?有多少个等腰三角形?
有多少对全等三角形?
A
D
O
B
转化 矩形问题
C
直角三角形和等腰三角形问题
矩形性质的应用
1.如图,在矩形ABCD中,对角线相交于点 O,∠AOD=120°,AB=2,求这个矩形的对 角线长和面积。
矩形的四个角都是
直角, 对角线相等,
是轴对称图形
合作交流,解决问题
已知:如图,矩形ABCD中,∠ABC=90°, 对角线AC与BD交于点O.
求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90° (2)AC=BD
矩形的性质定理:
1 矩形的四个角都是直角. 2 矩形的对角线相等.
矩形的性质
边的性质: AB//CD,AB=CD AD//BC,AD=BC
形是什么图形?
A
D
A
D
一个角是直角
B
C
B
C
2.矩形的定义: 有一个角是直角的平行四边形叫做矩形。
3. 矩形是特殊的平行四边形,具有一般平行四 边形的性质 (1)矩形的边: 对边平行且相等 ( 2)矩形的角: 对角相等,邻角互补 (3)矩形的对角线:对角线互相平分 (4)矩形是中__心__对_称__ 图形
学习目标: (1) 掌握矩形的定义,理解矩形 与平行四边形的关系。 (2) 掌握矩形的性质定理;会用矩 形的性质进行计算和证明。
学习重点难点: 掌握矩形的性质定理,会用性质 定理进行有关的计算与证明