什么是C++ 数据封装
面向对象程序设计-封装性

DD( int i1, int i2, int i3, int i4) :Derived1 (i1, i2), Derived2 (i3, i4)
{}
void display ( )
{ cout <<a <<'\n'; }
};
'DD::a' is ambiguous
改进
cout<< Derived1::a <<'\n'; cout<< Derived2::a <<'\n';
父类的私有成员虽然子类不能直接访问,但是确实存 在在子类中。
访问权修饰符只能更严格的限制访问权限,而不能将 父类的访问级别降低
protected的谨慎使用 直接派生类和间接派生类
3 基类成员的访问属性
同名成员
• 派生类和基类的成员名相同 • 类似于全局变量和局部变量的覆盖关系 • 子类成员直接访问,父类成员要使用 类名::成员名 访问 • 如果和全局变量重名,要使用 ::成员 访问全局变量
造函数 – 省略某个父类,表示调用该父类的缺省构造函数
二义性-同名
多重继承的不同父类含有同名成员,名字冲突 为了避免二义性,在访问时需要说明其基类名,由基
类名加作用域分辨符来限定 例子程序
#include <iostream.h>
class X
{
protected:
int a;
public:
class struct union(固定公有)
说明和使用对象
缺省构造函数 带参构造函数 指针
错误检查 系统升级 功能扩展
封装的好处
C语言实现面向对象设计

C语言实现面向对象设计C语言是一种过程式编程语言,它并不直接支持面向对象的设计。
但是,通过一些技巧和约定可以在C语言中实现面向对象的编程模式。
面向对象的设计主要包含了封装、继承和多态三个概念,下面我们将分别介绍如何在C语言中实现这三个概念。
1.封装:封装是面向对象设计的一个重要概念,它将数据与操作数据的函数组合在一起,形成一个独立的单元即对象。
在C语言中,我们可以使用结构体来实现封装的效果。
结构体可以将不同类型的数据组合在一起,并通过函数来操作这些数据,模拟对象的概念。
```c//定义一个结构体来表示一个人的信息typedef structchar name[20];int age;} Person;//定义一个函数来创建一个人的实例Person* createPerson(char* name, int age)Person* person = (Person*)malloc(sizeof(Person));strcpy(person->name, name);person->age = age;return person;//定义一个函数来输出一个人的信息void printPerson(Person* person)printf("Name: %s, Age: %d\n", person->name, person->age);int maiPerson* person = createPerson("Alice", 25);printPerson(person);free(person);return 0;```在上面的代码中,我们通过创建一个结构体`Person`来封装一个人的信息,然后使用`createPerson`函数来创建一个`Person`对象,并使用`printPerson`函数来输出对象的信息。
2.继承:继承是面向对象设计中一个很有用的特性,它允许一个对象继承另一个对象的属性和方法。
C++中的封装、继承、多态理解

C++中的封装、继承、多态理解封装(encapsulation):就是将抽象得到的数据和⾏为(或功能)相结合,形成⼀个有机的整体,也就是将数据与操作数据的源代码进⾏有机的结合,形成”类”,其中数据和函数都是类的成员。
封装的⽬的是增强安全性和简化编程,使⽤者不必了解具体的实现细节,⽽只是要通过外部接⼝,特定的访问权限来使⽤类的成员。
封装可以隐藏实现细节,使得代码模块化。
继承(inheritance):C++通过类派⽣机制来⽀持继承。
被继承的类型称为基类或超类,新产⽣的类为派⽣类或⼦类。
保持已有类的特性⽽构造新类的过程称为继承。
在已有类的基础上新增⾃⼰的特性⽽产⽣新类的过程称为派⽣。
继承和派⽣的⽬的是保持已有类的特性并构造新类。
继承的⽬的:实现代码重⽤。
派⽣的⽬的:实现代码扩充。
三种继承⽅式:public、protected、private。
继承时的构造函数:(1)、基类的构造函数不能被继承,派⽣类中需要声明⾃⼰的构造函数;(2)、声明构造函数时,只需要对本类中新增成员进⾏初始化,对继承来的基类成员的初始化,⾃动调⽤基类构造函数完成;(3)、派⽣类的构造函数需要给基类的构造函数传递参数;(4)、单⼀继承时的构造函数:派⽣类名::派⽣类名(基类所需的形参,本类成员所需的形参):基类名(参数表) {本类成员初始化赋值语句;};(5)、当基类中声明有默认形式的构造函数或未声明构造函数时,派⽣类构造函数可以不向基类构造函数传递参数;(6)、若基类中未声明构造函数,派⽣类中也可以不声明,全采⽤缺省形式构造函数;(7)、当基类声明有带形参的构造函数时,派⽣类也应声明带形参的构造函数,并将参数传递给基类构造函数;(8)、构造函数的调⽤次序:A、调⽤基类构造函数,调⽤顺序按照它们被继承时声明的顺序(从左向右);B、调⽤成员对象的构造函数,调⽤顺序按照它们在类中的声明的顺序;C、派⽣类的构造函数体中的内容。
继承时的析构函数:(1)、析构函数也不被继承,派⽣类⾃⾏声明;(2)、声明⽅法与⼀般(⽆继承关系时)类的析构函数相同;(3)、不需要显⽰地调⽤基类的析构函数,系统会⾃动隐式调⽤;(4)、析构函数的调⽤次序与构造函数相反。
biss-c编码器原理 -回复

biss-c编码器原理-回复【Bissc编码器原理】Bissc(Bidirectional Synchronous Serial Communication)编码器是一种常见的用于数字信号传输的编码器。
它主要用于工业控制系统中,对传感器的测量信号进行编码和解码,以实现信号的可靠传输和处理。
本文将从Bissc编码器的基本原理、工作流程和应用等方面进行介绍。
一、Bissc编码器的基本原理Bissc编码器基于同步串行通信原理,用于将模拟量或数字量信号转换为数字信号,并通过数据帧的方式进行传输。
其基本原理可以分为以下几个方面:1. 信号采样:Bissc编码器首先对输入信号进行采样,通常采用的是模拟信号转换为数字信号的方式,即模数转换。
这样可以将连续的模拟信号转换为离散的数字信号,以便后续的编码和传输。
2. 数据编码:Bissc编码器将采样得到的数字信号进行编码,常见的编码方式有二进制编码、格雷码等。
编码后的数字信号可以通过较少的位数来表示原始信号,从而减小数据传输的开销。
3. 数据封装:Bissc编码器将编码后的数字信号按照一定的格式进行封装,在传输中添加一些额外的控制信息,如起始位、终止位、校验位等。
这些控制信息可以帮助接收端正确解析数据,并提高信号的可靠性。
4. 传输方式:Bissc编码器通常采用同步串行传输方式,即发送端和接收端通过共享时钟信号来同步数据的传输。
这种传输方式可以减少时钟信号的传输,提高数据传输的效率。
二、Bissc编码器的工作流程Bissc编码器的工作流程可以分为以下几个步骤:1. 信号采样:Bissc编码器首先对输入信号进行采样,将模拟信号转换为数字信号。
通常采用的是模数转换器(ADC)来完成这一步骤。
2. 数据编码:采样得到的数字信号经过编码器进行编码,将模拟量或数字量信号转换为特定的数字编码。
常见的编码方式有二进制编码、格雷码等。
3. 数据封装:编码后的数字信号按照一定的格式进行封装,添加控制信息,如起始位、终止位、校验位等。
数据封装详解

序列号(Sequence Number)--字段长度为32位,序列号确定了发送方发送的数据流中被封装的数据所在位置。
确认号(Acknowledgment Number)--字段长度为32,确认号确定了源点下一次希望从目标接收的序列号。
报头长度(Header Length)--字段长度为4位,又称数据偏移量,报头长度指定了以32位为单位的报头长度。
保留(Reserved)--字段长度为6位,通常设置为0。
标记(Flag)--包括8个1位的标记,用于流和连接控制。
它们从左到右分别是:拥塞窗口减少(Congestion Window Reduced, CWR)、ECN-Echo(ECE)、紧急(URG)、确认(ACK)、弹出(PSH)、复位(RST)、同步(SYN)和结束(FIN)。
窗口大小(Window Size)--字段长度为16位,主要用于流控制。
校验和(Checksum)--字段长度为16位,它包括报头和被封装的数据,校验和允许错误检测。
紧急指针(Urgent Pointer)--字段长度16位,仅当URG标记位置时才被使用,这个16位数被添加到序列号上用于指明紧急数据的结束。
可选项(Options)--字段用于指明TCP的发送进程要求的选项。
最常用的可选项是最大段长度,最大段长度通知接收者发送者愿意接收的最大段长度。
为了保证报头的长度是32位的倍数,所以使用0填充该字段的剩余部分。
*扩展知识TCP提供了一个类似于点到点的连拉,点到点的特点:1、仅存在一条到达目的地的路径。
进入连接的数据包不会丢失,因为数据包唯一可去的地方就是连接的另一端。
2、数据包到达的顺序与发送顺序相同。
但实际链路并不能保证以上点到点的特点,除电话连接这类面向连接外,对于无连接服务,TCP提供以下三种基础机制实现面向连接服务:1、使用序列号对数据包进行标记,以便TCP接收方在向目的应用传递数据之前修正错序。
2、TCP便用确认和校验以及定时器系统提供可靠性。
C语言设计模式

C++有三个最重要的特点,即继承、封装、多态。
我发现其实C语言也是可以面向对象的,也是可以应用设计模式的,关键就在于如何实现面向对象语言的三个重要属性。
(1)继承性[cpp]view plaincopy1.typedef struct _parent2.{3.int data_parent;4.5.}Parent;6.7.typedef struct _Child8.{9.struct _parent parent;10.int data_child;11.12.}Child;在设计C语言继承性的时候,我们需要做的就是把基础数据放在继承的结构的首位置即可。
这样,不管是数据的访问、数据的强转、数据的访问都不会有什么问题。
(2)封装性[cpp]view plaincopy1.struct _Data;2.3.typedef void (*process)(struct _Data* pData);4.5.typedef struct _Data6.{7.int value;8. process pProcess;9.10.}Data;封装性的意义在于,函数和数据是绑在一起的,数据和数据是绑在一起的。
这样,我们就可以通过简单的一个结构指针访问到所有的数据,遍历所有的函数。
封装性,这是类拥有的属性,当然也是数据结构体拥有的属性。
(3)多态[cpp]view plaincopy1.typedef struct _Play2.{3.void* pData;4.void (*start_play)(struct _Play* pPlay);5.}Play;多态,就是说用同一的接口代码处理不同的数据。
比如说,这里的Play结构就是一个通用的数据结构,我们也不清楚pData是什么数据,start_play是什么处理函数?但是,我们处理的时候只要调用pPlay->start_play(pPlay)就可以了。
剩下来的事情我们不需要管,因为不同的接口会有不同的函数去处理,我们只要学会调用就可以了。
c++三大特征的理解

c++三大特征的理解
C++语言的三大特征是封装、继承和多态。
封装是指将数据和操作数据的方法捆绑在一起,以防止外部访
问和不合法修改,从而保证数据的安全性和一致性。
通过封装,可
以隐藏实现细节,使得对象更容易被使用,并且减少了对外部的依赖。
继承是指一个类可以派生出新的类,新的类可以继承原有类的
属性和方法,并且可以添加新的属性和方法。
继承可以提高代码的
复用性,减少重复编码,同时也能够实现多态性。
多态性是指同一个消息被不同的对象接收时,可以产生不同的
行为。
在C++中,多态性可以通过虚函数和纯虚函数来实现。
多态
性使得程序更加灵活,能够根据不同对象的类型来执行不同的操作,从而提高了代码的可扩展性和可维护性。
总的来说,封装、继承和多态是C++语言的三大特征,它们为
面向对象编程提供了强大的支持,使得程序更加模块化、灵活和易
于扩展。
面向对象程序设计完整版

Object- Oriented ProgrammingC++主讲成长生东华大学计算机科学与技术学院第一章概述§1.1 面向对象程序设计的基本思想C++是基于C语言发展的, 又冲破C语言局限的面向对象的程序设计语言。
它与Java语言都作为当前计算机科学的主流语言, 越来越受到用户的欢迎。
要弄清楚什么是面向对象的程序设计, 首先了解和回顾传统的( Pascal( 或C) ) 结构化程序设计方法及其设计思想、程序结构及特点。
SP(Structure Programming)是60年代诞生的针对当时爆发的所谓”软件危机”, 为此发展形成了现代软件工程学的基础。
SP的总的设计思想是:.自顶向下、层次化.逐步求精、精细化程序结构是按功能划分基本模块的树型结构, 使模块间的关系尽可能简单独立。
因此SP的程序的基本特点是:.按层次组织模块( 战略上划分战役).每一模块只有一个入口, 一个出口.代码和数据分离( 程序=数据结构+算法)归纳得到: SP把数据和过程( 代码、函数) 分离为相互独立的实体, 用数据代表问题空间中的客体借以表示实际问题中的信息; 程序代码则用来处理加工这些数据。
程序员在编程时, 必须时刻考虑所要处理的数据结构和类型。
对不同的数据格式即使要作同样的处理计算, 或者要对相同的数据格式作不同的处理都必须编写不同的程序( 如两个整型数和两个浮点数相加) 。
这样的编程方法, 即传统的SP方法设计出来的程序或系统其可重用的成分很少。
其次把数据和代码作为不同的分离实体时, 总存在着用错误的数据调用正确的程序模块, 或用正确的数据调用错误的程序模块的危险, 从而使数据与程序始终保持兼容, 已成为程序员的一个沉重的负担。
在开发一个大型软件课题中, 当工程进入到后期若用户改变了方案要求, 很容易使技术人员的前期工作受到摧毁性的打击, 使其前功尽弃。
为克服以上的弊端或者该SP方法难以控制处理的矛盾而产生了面向对象程序设计方法, 即Object -Oriented Programming――OOP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是C++ 数据封装
所有的C++ 程序都有以下两个基本要素:
•程序语句(代码):这是程序中执行动作的部分,它们被称为函数。
•程序数据:数据是程序的信息,会受到程序函数的影响。
封装是面向对象编程中的把数据和操作数据的函数绑定在一起的一个概念,这样能避免受到外界的干扰和误用,从而确保了安全。
数据封装引申出了另一个重要的OOP 概念,即数据隐藏。
数据封装是一种把数据和操作数据的函数捆绑在一起的机制,数据抽象是一种仅向用户暴露接口而把具体的实现细节隐藏起来的机制。
C++ 通过创建类来支持封装和数据隐藏(public、protected、private)。
我们已经知道,类包含私有成员(private)、保护成员(protected)和公有成员(public)成员。
默认情况下,在类中定义的所有项目都是私有的。
例如:
class Box { public: double getVolume(void) { return length * breadth * height; } private: double length; // 长度 double breadth; // 宽度 double height; // 高度 };
变量length、breadth 和height 都是私有的(private)。
这意味着它们只能被Box 类中的其他成员访问,而不能被程序中其他部分访问。
这是实现封装的一种方式。
为了使类中的成员变成公有的(即,程序中的其他部分也能访问),必须在这些成员前使用public关键字进行声明。
所有定义在public 标识符后边的变量或函数可以被程序中所有其他的函数访问。
把一个类定义为另一个类的友元类,会暴露实现细节,从而降低了封装性。
理想的做法是尽可能地对外隐藏每个类的实现细节。
数据封装的实例
C++ 程序中,任何带有公有和私有成员的类都可以作为数据封装和数据抽象的实例。
请看下面的实例:
实例
#include <iostream> using namespace std; class Adder{ public: // 构造函数 Adder(int i = 0) { total = i; } // 对外的接口 void addNum(int number) { total += number; } // 对外的接口 int getTotal() { return total; }; private: // 对外隐藏的数据 int total; }; int main( ) { Adder a;
a.addNum(10); a.addNum(20); a.addNum(30); cout << "Total " << a.getTotal() <<endl; return 0; }
当上面的代码被编译和执行时,它会产生下列结果:
Total 60
上面的类把数字相加,并返回总和。
公有成员addNum和getTotal是对外的接口,用户需要知道它们以便使用类。
私有成员total是对外隐藏的,用户不需要了解它,但它又是类能正常工作所必需的。
设计策略
通常情况下,我们都会设置类成员状态为私有(private),除非我们真的需要将其暴露,这样才能保证良好的封装性。
这通常应用于数据成员,但它同样适用于所有成员,包括虚函数。
C++中, 虚函数可以为private, 并且可以被子类覆盖(因为虚函数表的传递),
但子类不能调用父类的private虚函数。
虚函数的重载性和它声明的权限无关。
一个成员函数被定义为private属性,标志着其只能被当前类的其他成员函数(或友元函数)所访问。
而virtual修饰符则强调父类的成员函数可以在子类中被重写,因为重写之时并没有与父类发生任何的调用关系,故而重写是被允许的。
编译器不检查虚函数的各类属性。
被virtual修饰的成员函数,不论他们是private、protect或是public的,都会被统一的放置到虚函数表中。
对父类进行派生时,
子类会继承到拥有相同偏移地址的虚函数表(相同偏移地址指,各虚函数相对于VPTR指针的偏移),则子类就会被允许对这些虚函数进行重载。
且重载时可以
给重载函数定义新的属性,例如public,其只标志着该重载函数在该子类中的访问属性为public,和父类的private属性没有任何关系!
纯虚函数可以设计成私有的,不过这样不允许在本类之外的非友元函数中直接调用它,子类中只有覆盖这种纯虚函数的义务,却没有调用它的权利。