配方法(1)—人教版九年级数学上册
人教版数学九年级上册《配方法》教学设计1

人教版数学九年级上册《配方法》教学设计1一. 教材分析人教版数学九年级上册《配方法》是本学期的重点内容,主要让学生掌握配方法的基本概念、方法和应用。
通过配方法的学习,使学生能解决一些实际问题,提高他们的数学解决问题的能力。
本节课的教学内容主要包括配方法的基本概念、配方法的步骤和配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一些基本的代数运算和数学概念有一定的了解。
但学生在学习过程中,对于较为复杂的数学问题,仍存在一定的困难。
因此,在教学过程中,需要教师引导学生逐步理解配方法的概念和步骤,并通过大量的例子让学生掌握配方法在解决实际问题中的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的基本概念、方法和应用。
2.过程与方法:通过学生的自主探究和合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生体验到数学在生活中的重要性。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.引导法:教师引导学生自主探究,发现配方法的基本概念和步骤。
2.讲解法:教师通过讲解配方法的原理和例子,使学生理解和掌握配方法。
3.练习法:学生通过大量的练习,巩固所学的配方法知识。
4.合作交流法:学生分组讨论,共同解决问题,培养学生的合作精神。
六. 教学准备1.准备相关的教学PPT,包括配方法的基本概念、步骤和应用。
2.准备一些实际问题,让学生在课堂上进行配方法的实践操作。
3.准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何解决这个问题。
例如,一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
让学生尝试使用已学的知识解决这个问题,从而引出配方法的概念。
2.呈现(15分钟)教师通过PPT呈现配方法的基本概念和步骤,配方法的定义、目的和应用。
人教版数学九年级上册 配方法直接开方法(14张)

2.用直接开平方法解一元二次方程的一般步骤是什么?
首先将一元二次方程化为左边是含有未知数的一个 完全平方式,右边是非负数的形式,然后用平方根的 概念求解 .
3.任意一个一元二次方程都能用直接开平方法求解吗? 请举例说明.
人教版数学九年级上册 21.2.2 配方法直接开方法(共14张PPT)
人教版数学九年级上册 21.2.2 配方法直接开方法(共14张PPT)
分析:只要将(x+1)看成是一个整体, 就可以运用直接开平方法求解;
解:(1)∵x+1是2的平方根
∴x+1= 2 ∴x+1= 2 或x+1= - 2
即x1=-1+ 2 ,x2=-1- 2
⑵ (x-1)2-4 = 0
解:移项,得(x-1)2=4 ∵x-1是4的平方根 ∴x-1=±2
即x-1=+2 或x-1=-2 ∴ x1=3,x2=-1
人教版数学九年级上册 21.2.2 配方法直接开方法(共14张PPT)
人教版数学九年级上册 21.2.2 配方法直接开方法(共14张PPT)
归纳
1.能用直接开平方法解的一元二次方程有什么特点?
如果一个一元二次方程具有x2=a(a≥0)或 (ax+h)2= k(k≥0)的形式,那么就可以用直 接开平方法求解.
解:(1)∵x是4的平方根 ∴x=±2
即原方程的根为: x1=2,x2 =-2
(2)移项,得x2=2
∵ x是2的平方根
∴x= 2 即原方程的根为: x1 = 2 ,x2= - 2
这时,我们常用χ1、χ2来表示未知数为χ的一元 二次方程的两个根.
什么叫直接开平方法?
像解x2=4,x2-2=0这样,利用平方根的定 义直接开平方求一元二次方程的解的方法 叫直接开平方法.
人教版数学九年级上册21.2.1配方法第一课时 初中九年级数学教案教学设计课后反思 人教版

教师姓名孙洋单位名称霍尔果斯市国门初级中学填写时间2020年8月21日学科数学年级/册九年级上册教材版本人教版课题名称21.2.1配方法(1)难点名称运用直接开平方法,把一个一元二次方程“降次”转化为两个一元一次方程。
难点分析从知识角度分析为什么难解一元二次方程不同于解一元一次方程,计算的难度变大了,需要学生有一定的数学基础和较强的计算能力。
难点教学方法1.通过复习回顾平方根的相关知识引入本节课内容,为后面探索解法作铺垫。
2.通过创设情境,激发学生探究新知的兴趣,通过四个问题,探索总结用直接开平方法解一元二次方程。
教学环节教学过程导入(一)复习回顾,引出课题问题1 试述平方根的意义和性质.平方根的意义:平方根的性质:问题2 写出下各数的平方根: 9,16,8,24,0,-25.回答:前面我们学习了一元二次方程的有关概念,今天我们开始研究一元二次方程的解法.21.2.1 配方法(一)知识讲解(难点突破)(二)创设情境,探索解法问题3 一桶某种油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 未知数?等量关系?代数式?思考2 怎样解这个方程?思考3 所求方程的解是实际问题的解吗?解:问题4 根据平方根的意义我们可以求得方程x2=25的解,那么你能求出下列方程的解吗?(1)x2-9=0; (2)2x2=4; (3)3x2-81=0; (4)x2=a(a≥0).问题5 对照上述方程的求解过程,你知道如何解下列方程吗?(1)(x+1)2=2; (2)(x-1)2-4=0.问题6 前面我们依据平方根的意义求得一元二次方程的解,这种解一元二次方程的方法叫做直接开平方法.(1)当方程具有什么形式时,可以用直接开平方法求解?如何求解?回答:(2)用直接开平方法解一元二次方程的实质是什么?用直接开平方法解一元二次方程的实质是:问题7 你能用直接开平方法解方程x2+6x+9=2吗?分析:如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,就可以用直接开平方法求解.解:课堂练习(难点巩固)三、应用提高(一)巩固应用例1 解下列方程:(1)2x2-8=0; (2)9x2-5=3; (3)(x+6)2-9=0;(4)3(x-1)2-6=0; (5)x2-4x +4=5; (6)9x2+6x +1=4.解:解题心得:四、落实训练(一)当堂训练1.选择题(4道)2.填空题(2道)3.问答题(2道)小结(二)回顾提升思考:通过这节课的学习你有哪些收获?回顾交流,概括总结:。
人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件

B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;
人教版数学九年级上册22.2.1《配方法》教学设计1

人教版数学九年级上册22.2.1《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,主要介绍了配方法的概念、意义和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,使问题更易于解决。
这一节内容是学生学习二次方程解决实际问题的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对于解决一些简单的数学问题已经有了一定的方法。
但是在解决复杂的二次方程问题时,还需要进一步引导和培养。
在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行有针对性的教学,帮助学生理解和掌握配方法。
三. 教学目标1.理解配方法的概念和意义,掌握配方法的基本步骤。
2.能够运用配方法解决一些简单的二次方程问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的基本步骤的掌握。
3.运用配方法解决实际问题的能力的培养。
五. 教学方法1.讲解法:教师通过讲解配方法的概念、意义和步骤,帮助学生理解和掌握。
2.案例教学法:教师通过举例讲解,引导学生运用配方法解决实际问题。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教学课件:教师准备相关的教学课件,帮助学生直观地理解和掌握配方法。
2.练习题:教师准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入配方法的概念,激发学生的兴趣和好奇心。
2.呈现(10分钟)教师讲解配方法的概念、意义和步骤,通过举例讲解,让学生理解和掌握。
3.操练(10分钟)学生分组讨论,共同解决问题,教师巡回指导,帮助学生巩固学习效果。
4.巩固(10分钟)教师出示一些相关的练习题,学生独立完成,教师点评和讲解。
5.拓展(10分钟)教师引导学生运用配方法解决一些实际问题,培养学生的解决问题的能力。
新人教版九年级数学上册:《配方法》教案

§2.2 配方法课时安排3课时从容说课配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.本节的重点、难点是配方法.根据课程的特点,以及学生的认知结构特点,本节内容分三课时.在教学时,首先从前面两节课的实例引入求精确解.因为我们已经能解形如(x+a)2=b(b ≥0)的方程,所以想到要求一个一元二次方程的精确解时,是否可把方程转化为已经能解的方程,这时引入了一元二次方程的解法——配方法.配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征.教学方法主要是学生自主探索、发现的方法.第三课时课题§2.2.1 配方法(一)教学目标(一)教学知识点1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.(二)能力训练要求1.会用开平方法解形如(x+m)2=n(n≥0)的方程;理解配方法.2.体会转化的数学思想方法.3.能根据具体问题的实际意义检验结果的合理性.(三)情感与价值观要求通过师生的共同活动,学生的进一步操作来增强其数学应用意识和能力.教学重点利用配方法解一元二次方程教学难点把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.教学方法讲练结合法教具准备投影片六张:第一张:问题(记作投影片§2.2.1 A)第二张:议一议(记作投影片§ 2.2.1 B)—第三张:议一议(记作投影片§ 2.2.1 C)第四张:想一想(记作投影片§2.2.1 D)第五张:做一做(记作投影片§2.2.1 E)第六张:例题(记作投影片§2.2.1 F)教学过程Ⅰ.创设现实情景,引入新课[师]前面我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质?[生甲]如果一个数的平方等于a,那么这个数就叫做a的平方根。
配方法的典型应用(课件)数学九年级上册(人教版)
二次项系数化为1,得 x +x ,
2
2
2
即
由此可得
(x-1)2=4
x-1=±2
x1 3, x2 1.
配方,得
1 1 1
x +x ,
2 2 2
2
2
即
2
1 3
x+ ,
2 4
1
3
由此可得 x+ ,
2
2
-1+ 3
-1- 3
2
2
x 6 8 x 6 8
x 2 x 14
a 2 6a 9 b 2 8b 16 0
2
2
a 3 0, b 4 0
a 3, b 4
①若3为该等腰三角形的腰长,且符合三
x1
, x2
.
2
2
类型一:把二次多项式化为m(x+n)2+p的形式
例1.把下列二次多项式化为m(x+n)2+p的形式:
(1)k2-4k+5;
(2)-x2-x-1.
解:(1)k2-4k+5=k2-4k+4-4+5 =(k-2)2+1
1 2 3
2
2
2
=
(
x+
) ,
(2)-x -x-1=-(x +x+1)=-(x +x+ - +1)
元一次方程求解.
3.方程配方的方法?
在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提
下进行的.
4.用配方法解一元二次方程的一般步骤?
初中数学人教版九年级上册:配方法 教案
21.2.1配方法教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.平方根的意义:如果x 2=a ,那么x=±a.完全平方式:式子a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a±b)2用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.探究:一桶油漆可刷的面积为1500dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设一个盒子的棱长为xdm ,则它的外表面面积为____,10个这种盒子的外表面面积的和为____,由此你可得到方程为____,你能求出它的解吗?解:26x ,2106x ,21061500x ,整理得225x ,根据平方根的意义,得5x ,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm ,故5x dm .【归纳结论】一般地,对于方程2x p ,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根1x,2x 师:(2)当p=0时,方程(Ⅰ)有两个相等的实数根120x x ;(3)当p<0时,因为对任意实数x ,都有20x ,所以方程(Ⅰ)无实数根。
人教版九年级数学上册教案:21.2.1配方法
在今天的教学中,我发现学生们对配方法的概念和应用有着不错的接受程度。通过引入日常生活中的问题,他们能够较快地理解配方的基本思想,并在小组讨论和实验操作中表现出积极的参与态度。然而,我也注意到在具体的运算过程中,部分学生对于如何进行变形和配方仍存在一些困惑。
首先,我发现直接配方的步骤对学生来说相对容易掌握,但当涉及到间接配方,特别是需要先进行移项和除以系数的步骤时,一些学生就显得不那么自信。这提示我在未来的教学中,需要更加注重对这类问题的解释和练习。
人教版九年级数学上册教案:21.2.1配方法
一、教学内容
本节课为人教版九年级数学上册第21章第2节第1部分:配方法。教学内容主要包括以下两个方面:
1.配方的概念与原理:通过实例引入配方,使学生理解配方的基本思想,掌握配方的方法及其在解一元二次方程中的应用。
2.配方解一元二次方程:利用配方解一元二次方程,包括直接配方和间接配方两种情况。具体内容包括:
-直接配方与间接配方的步骤与方法:讲解如何通过直接配方解形如(x+a)²=b的方程,以及如何通过变形和间接配方解形如ax²+bx+c=0(a≠1)的方程。
-配方解一元二次方程的运算技巧:强调在配方过程中需要注意的运算细节,如移项、合并同类项、开平方等。
举例:对于方程x²+4x+3=0,引导学生通过移项(x²+4x=-3),配方((x+2)²=1),解出x的值。
2.培养学生的数学抽象素养:让学生从具体实例中抽象出配方的一般方法,培养学生从特殊到一般的数学思维能力。
3.培养学生的数学运算能力:使学生熟练运用配方法解一元二次方程,提高数学运算的准确性和速度,增强解决实际问题的能力。
三、教学难点与重点程中的应用:使学生理解配方的基本思想,明确配方是将一元二次方程转化为完全平方的形式,以便更容易求解。
人教版初中九年级上册数学《配方法》精品课件
如:已知x2-2mx+16是一个完全平方式,所以
一次项系数一半的平方等于16,即m2=16,
m对=于±含4.有多个未知数的二次式的等式,求未知数
的值,解题突破口往往是配方成多个完全平方式
构成非负数 和的形式
得其和为0,再根据非负数的和为0,各项均为0,
从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,
(1) x2+6x+9 =5; (2)x2+6x+4=0.
把两题转化成 (x+n)2=p(p≥0)的 形式,再利用开平方
一、配方的方法
探究交流
问题1.你还记得吗?填一填下列完全平方公式. (1) a2+2ab+b2=( a+b )2; (2) a2-2ab+b2=( a-b )2.
探究交流
问题2.填上适当的数或式,使下列各等式成立. (1)x2+4x+ 22 = ( x + 2 )2
(x 3)2 21. 4 16
(4) 3x2+6x-9=0. 解:x2+2x-3=0, (x+1)2=4.
x1 3 4 21 ,
x2
3 4
21 ;
x1=-3,x2=1.
2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽 的两条互相垂直的道路,剩余部分栽种花草,要使剩余部 分的面积为850m2,道路的宽应为多少?
所以k2-4k+5的值必定大于零.
归纳总结
配方法的应用
类别
1.求最值或 证明代数式 的值为恒正 (或负)
解题策略 对于一个关于x的二次多项式通过配方成a(x+m)2 +n的形式后,(x+m)2≥0,n为常数,当a>0时, 可知其最小值;当a<0时,可知其最大值.