MapReduce框架下的朴素贝叶斯算法并行化研究

合集下载

贝叶斯应用

贝叶斯应用

阶段的后验概率,以实现检测僵尸网络。通过实验表明,该方法检测僵
尸网络是有效的,检测正确率在 90%以上,并且该方法较单机检测僵尸 网络的贝叶斯算法效率有了很大的提高。
[1]邵秀丽 ,刘一伟 ,耿梅洁 ,韩健斌.检测僵尸网络的贝叶斯算法的MapReduce 并行化实
现[J].只能系统学报,2014,9( 1) : 1- 7
练样本的类标签构成的向量;测试样本T的属性构成的向量
A=[a1,a2,„,aM]。 输出 测试样本的类标签。
步骤如下 1. 对训练样本属性矩阵D按列进行归一化; 2. 得到最优向量x; 3. 计算测试样本类标签。
12
实验环境及结果
采用加州大学欧文分校提供的机器学习公开数据集中的德国信用数据
集和澳大利亚信用数据集对本文方法进行验证。为了评估算法的性能,
16
判别函数的结果及检验
采用自身检验法及交叉验证法来检验判别函数模型的诊断能力,结果见表2
再将检验组42例(20%)患者共307枚淋巴结的数据代入诊断模型以验证 模型的诊断能力,结果见表3
17
判别函数的结果及检验
对上述检验模型进行验证,结果显示全部1217枚淋巴结,对 1003枚 非转移淋巴结共判对898枚,正确率为89.5%(即特异度);214枚转移淋 巴结中,判对169枚,正确率为79.0%(即敏感度),诊断模型的诊断符 合率为87.7%,共误判150枚,误判率为12.3%。交叉检验法与自身检验法 所得结果相近。 由于自身检验法及交叉验证法常常低估误判率,从而夸大判别效果, 因此我们采用验证样本对诊断模型作前瞻性误判概率的估计,这种方法所 得的误判概率比较客观。非转移淋巴结组共251枚淋巴结,判对223枚,正 确率为 88.8%(即特异度);转移淋巴结组共56枚,判对37枚,正确率为

朴素贝叶斯分类课件

朴素贝叶斯分类课件

缺点:对异常值和离散特征处理不佳。
01
02
03
04
01
多项式分布假设:朴素贝叶斯分类器假设特征符合多项式分布。
02
数学模型:基于多项式分布的朴素贝叶斯分类器使用以下数学模型进行分类
03
特征概率密度函数为多项式分布。
通过贝叶斯定理计算样本属于每个类别的概率。
缺点:对连续数值特征处理不佳,参数估计困难。
特征编码
03
对特征进行标准化、归一化等预处理,以提高分类器的性能。
特征预处理
根据任务需求和数据特性,调整朴素贝叶斯分类器的超参数,如平滑参数、先验概率等。
通过交叉验证来评估不同超参数组合下的分类器性能,以选择最佳参数组合。
调整分类器参数
使用交叉验证
利用多核CPU或GPU进行并行计算,以提高分类器的训练速度。
对噪声数据敏感
如果数据集中存在噪声或者异常值,朴素贝叶斯分类器的性能可能会受到影响。
对连续特征的处理
朴素贝叶斯分类器通常只能处理离散特征,对于连续特征需要进行离散化或者采用其他方法进行处理。
05
CHAPTER
朴素贝叶斯分类器的应用场景与实例
朴素贝叶斯分类器在文本分类任务中表现出色,例如垃圾邮件、情感分析、新闻分类等。
01
02
高斯朴素贝叶斯假定特征符合高斯分布(正态分布),而多项式朴素贝叶斯则假定特征服从多项式分布。
朴素贝叶斯算法可以分为两类:高斯朴素贝叶斯和多项式朴素贝叶斯。
它是一种基于概率的分类方法,对于缺失数据和异常值具有较好的鲁棒性。
朴素贝叶斯算法在文本分类、情感分析、图像分类等自然语言处理和计算机视觉领域都有广泛的应用。
定义
03
CHAPTER

基于MapReduce的海量数据挖掘技术研究

基于MapReduce的海量数据挖掘技术研究
文献 标志 码 : A 中图 分类号 : T P 3 1 6 . 4 d o i : l 0 . 3 7 7 8 / j . i s s n . 1 0 0 2 . 8 3 3 1 . 1 2 0 1 . 0 2 9 8
行 运 算 。将 Ma p R e d u c e )  ̄用在 数据 挖掘 的三 个算 法 中 : 朴 素 贝叶斯 分 类算 法 、 K - mo d e s 聚类 算 法和 E C L A T频繁 项 集挖掘 算法 。 实验 结 果表 明 , 在 保证 算 法准确 率 的前提 下 , Ma p R e d u c e 可 以有 效提 高海量 数据 挖掘 工作 的效率 。 关键 词 : 云计 算 ; 数据 挖掘 ; , H a d o o p ; Ma p R e d u c e
C o m p u t e r E n g i n e e r i n g a n d A p p l i c a t i o n s 计算 机 工程 与应 用
基于 Ma p Re d u c e 的海 量 数 据 挖 掘 技术 研 究
李伟 卫 , 赵 航 , 张 阳 , 王 勇 。
LI We i we i , ZHAO Ha ng , ZHANG Ya ng ,e t a 1 . Re s e a r c h o n ma s s i v e d a t a mi n i n g b a s e d o n Ma p Re d u c e .Co mp u t e r En g i -
3 . 西北 工业 大学 计 算机 学院 , 西安 7 1 0 0 7 2
1 . Co l l e g e o f I n f o r ma t i o n En g i n e e r i n g , No r t h we s t A&F Un i v e r s i t y , Ya n g l i n g , S h a a n xi 7 1 2 1 0 0 , Ch i n a 2 . S c h o o l o fM e c h a n o — El e c t r o n i c En g i n e e r i n g , Xi d i a nUn i v e r s i t y , Xi ’ a n 7 1 0 0 7 2 , Ch i n a 3 . S c h o o l o fCo mp u t e r , No th r we s t e n r P o l y t e c h n i c a l Un i v e r s i t y , Xi ’ a n 7 1 0 0 7 2 . Ch i n a

大数据开发工程师招聘笔试题与参考答案2025年

大数据开发工程师招聘笔试题与参考答案2025年

2025年招聘大数据开发工程师笔试题与参考答案(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在大数据处理中,以下哪个技术或框架主要用于实时数据流处理?A. HadoopB. SparkC. KafkaD. Flink2、在大数据存储中,HDFS(Hadoop Distributed File System)的设计目标是?A. 提供低延迟的数据访问B. 支持随机读写操作C. 提供高吞吐量的数据访问D. 适用于小型数据集3、题干:以下哪种数据结构最适合存储大规模数据集,并支持快速的数据检索?A. 数组B. 链表C. 树D. 哈希表4、题干:在分布式系统中,以下哪个组件负责处理数据分片和分布式事务?A. 数据库B. 应用服务器C. 分布式文件系统D. 分布式数据库中间件5、大数据开发工程师在处理大规模数据集时,通常使用的分布式文件系统是:A. HDFS(Hadoop Distributed File System)B. NFS(Network File System)C. SMB(Server Message Block)D. APFS(Apple File System)6、在数据仓库中,用于存储元数据的表通常被称为:A. fact table(事实表)B. dimension table(维度表)C. lookup table(查找表)D. metadata table(元数据表)7、大数据开发工程师在处理海量数据时,以下哪种技术通常用于数据存储和管理?A. 关系型数据库B. NoSQL数据库C. 文件系统D. 数据库管理系统8、在大数据技术中,以下哪个组件通常用于实现数据流处理?A. Hadoop MapReduceB. Apache KafkaC. Apache SparkD. Apache HBase9、在Hadoop生态系统中,用于进行分布式存储的是哪一个组件?A. HDFSB. YARNC. MapReduceD. Hive 10、以下哪个算法不是机器学习中的监督学习算法?A. 支持向量机(SVM)B. 决策树C. 深度学习D. K-均值聚类二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些技术或工具通常用于大数据开发?()A、Hadoop HDFSB、Spark SQLC、MongoDBD、ElasticsearchE、MySQL2、以下哪些算法或模型在机器学习的大数据处理中应用广泛?()A、K-Means聚类B、决策树C、神经网络D、朴素贝叶斯E、线性回归3、关于大数据开发工程师所需掌握的技术栈,以下哪些技术是必要的?()A. Hadoop生态系统(包括HDFS、MapReduce、Hive等)B. Spark大数据处理框架C. NoSQL数据库(如MongoDB、Cassandra)D. 关系型数据库(如MySQL、Oracle)E. 容器技术(如Docker)4、以下关于大数据处理流程的描述,哪些是正确的?()A. 数据采集是大数据处理的第一步,需要从各种数据源获取原始数据。

Chapter7-厦门大学-林子雨-大数据技术原理与应用-第七章-MapReduce

Chapter7-厦门大学-林子雨-大数据技术原理与应用-第七章-MapReduce

图7-1 MapReduce工作流程
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
Hale Waihona Puke ziyulin@7.2.2MapReduce各个执行阶段
节点1
从分布式文件系统中加载文件
节点2
从分布式文件系统中加载文件
InputFormat 文件 文件 Split Split Split Split
7.3.1WordCount程序任务
表7-2 WordCount程序任务 WordCount
一个包含大量单词的文本文件 文件中每个单词及其出现次数(频数),并按照单词 字母顺序排序,每个单词和其频数占一行,单词和频 数之间有间隔
程序 输入 输出
表7-3 一个WordCount的输入和输出实例 输入 Hello World Hello Hadoop Hello MapReduce 输出 Hadoop 1 Hello 3 MapReduce 1 World 1
输入的中间结果<k2,List(v2)>中的 List(v2)表示是一批属于同一个k2的 value
Reduce
<k2,List(v2)>
<k3,v3>
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
7.2 MapReduce工作流程
• 7.2.1 • 7.2.2 • 7.2.3 工作流程概述 MapReduce各个执行阶段 Shuffle过程详解
1.“Hello World Bye World”
Map
2.“Hello Hadoop Bye Hadoop”
Map
3.“Bye Hadoop Hello Hadoop”

贝叶斯分类多实例分析总结

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集加速度信号时频域特征以聚类中心为基向量的线性方程组基向量的系数方差贡献率」融合权重基于特征组合的步态行为识别方法本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将岀现次数最多的类另脈予待识别的步态加速度信号。

实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。

传感器—>加速度信息m峰值、频率、步态周期、四分位、相关系数-聚合法特征向量-样本及和步态加速度信号的特征向量作为训练集分类器具有分类步态行为的能力基于贝叶斯网络的核心网故障诊断方法及系统本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。

基于mapreduce的并行贝叶斯分类算法的设计与实现

基于mapreduce的并行贝叶斯分类算法的设计与实现随着大数据时代的到来,海量数据的处理和分析成为数据科学领域的一个重要问题。

在这个过程中,机器学习是一个非常重要的工具。

贝叶斯分类是机器学习中的一种重要技术,其核心思想是基于样本的先验概率和条件概率来进行分类。

为了处理大规模数据集,许多研究人员利用并行计算技术来进行优化。

本文提供了一种基于MapReduce 的并行贝叶斯分类算法的设计与实现。

一、贝叶斯分类算法的原理贝叶斯分类算法是一种基于概率的分类方法,可以根据一些已知的训练样本来计算出一个新样本属于不同类别的概率,并将其分到概率最大的类别中。

该算法的关键在于假设一个先验概率和条件概率模型,其中先验概率是每个类别在数据集中出现的频率,条件概率是指已知某个特征在某个类别下的频率。

假设对于一个新的数据样本,其特征向量为x = [x1, x2, ..., xn],针对每个类别y,可以计算出其对应的条件概率,即P(x | y) ,由于每个数据点只属于一个类别,所以可以应用贝叶斯定理来计算在给定数据下,某个类别y的条件概率P(y | x)。

贝叶斯公式如下:P(y | x) = P(x | y) * P(y) / P(x)其中,P(y)是每个类别在数据集中的概率,P(x | y) 是在类别y下样本特征向量为x的条件概率,P(x) 为样本的边缘概率,即P(y | x) 对应的概率和。

二、并行贝叶斯分类算法的设计当数据集非常大时,贝叶斯分类算法的计算复杂度会很高,所以为了节约时间和资源,我们可以采用并行计算模型来提高算法的效率。

这里,我们采用了MapReduce模型进行并行计算。

MapReduce模型是一种分布式计算模型,可以将大规模的数据集分为若干个小数据集,然后在不同的计算节点上并行处理,最后将处理结果聚合在一起,得到最终的结果。

通过MapReduce模型,我们可以将贝叶斯分类算法分为两个部分:Map阶段:针对每个类别,计算出其对应的条件概率P(x | y)和先验概率P(y),然后将计算结果输出到Reducer阶段; Reducer阶段:将Map阶段输出的同类别的计算结果进行合并,并计算出每个类别y的P(y | x) 的值,并找出概率最高的类别,作为预测值。

基于Hadoop的互联网舆情监测处理平台设计和实现

基于Hadoop的互联网舆情监测处理平台设计和实现基于Hadoop的互联网舆情监测处理平台设计和实现引言随着互联网的快速发展和普及,社交媒体、论坛、新闻等平台成为人们了解时事、表达观点的重要渠道。

互联网上的舆情信息呈现爆发式增长的趋势,这给政府、企业和个人带来了巨大的挑战。

为了及时了解公众对某一事件或话题的舆情动态,需要建立基于大数据的互联网舆情监测处理平台。

本文将详细介绍一种基于Hadoop的互联网舆情监测处理平台的设计和实现。

一、平台架构1. 数据采集模块数据采集模块负责从互联网上收集舆情数据,包括社交媒体平台、新闻网站、论坛等的信息。

通过API接口、网络爬虫等方式,实现对各个平台数据的抓取,并通过数据清洗和预处理,将数据转换成可供后续处理的格式。

2. 数据存储模块数据存储模块采用Hadoop分布式文件系统(HDFS)来存储大量的舆情数据。

HDFS的分布式特性能够支持海量数据的存储和访问,同时具备高可靠性和容错性。

通过将数据分为多个数据块存储在不同的物理节点上,保证了数据的可靠性和高效性。

3. 数据处理模块数据处理模块采用Hadoop的MapReduce框架进行并行化的数据处理。

首先,根据需求设计不同的Map函数和Reduce函数,Map函数负责数据的切分和筛选,Reduce函数负责数据的分析和计算。

通过将任务分配给不同的节点并行处理,大大提高了数据处理的效率和速度。

4. 数据可视化模块数据可视化模块将处理后的数据以图表、热点地图等形式呈现给用户,帮助用户直观地了解舆情动态。

通过使用开源的可视化工具,如Tableau、D3.js等,可以灵活地设计和展示不同类型的图表和图像,满足用户对舆情数据的需求。

二、功能设计1. 实时监测舆情平台能够实时监测互联网上的舆情信息,包括关键词的出现频率、舆情态势的变化等。

通过监测舆情动态,帮助用户及时了解公众对某一事件的态度和情感倾向。

2. 舆情分析和预测平台可以对舆情数据进行分析和挖掘,发现潜在的舆情趋势和规律。

大数据下的朴素贝叶斯算法研究论文素材

大数据下的朴素贝叶斯算法研究论文素材一、介绍随着大数据时代的到来,数据量庞大且复杂多样的数据对我们的处理能力提出了更高的要求。

在数据挖掘和机器学习领域,朴素贝叶斯算法作为一种经典的分类算法,在大数据分析中扮演着重要的角色。

本文将探讨大数据下的朴素贝叶斯算法的研究成果,为相关研究提供参考素材。

二、朴素贝叶斯算法概述朴素贝叶斯算法是一种基于贝叶斯理论和特征条件独立假设的分类方法。

该算法通过统计训练数据中特征的频次和类别的概率分布,利用贝叶斯公式计算特征与类别之间的条件概率,进而实现对新样本的分类。

三、朴素贝叶斯算法在大数据中的应用1. 文本分类朴素贝叶斯算法在文本分类任务中具有良好的性能。

通过对已标注的大规模文本数据进行训练,可以得到词频以及词在不同类别下的条件概率分布。

在实际应用中,可以根据新样本中的词频统计和词条件概率计算,快速判断其所属类别,从而实现高效的文本分类。

2. 垃圾邮件过滤大数据环境下,垃圾邮件的数量巨大,给用户带来了很大的困扰。

朴素贝叶斯算法可以通过建立基于训练数据的垃圾邮件模型,利用特定的特征来判断新邮件是否为垃圾邮件。

该算法凭借其高效性和准确性,在垃圾邮件过滤领域得到了广泛应用。

3. 用户兴趣模型构建在电子商务等领域,构建用户兴趣模型是一项重要任务。

朴素贝叶斯算法可以通过分析用户历史行为和商品特征,计算商品在不同用户兴趣下的条件概率,从而为用户推荐符合其兴趣的商品。

在大数据场景中,朴素贝叶斯算法可以快速适应用户的兴趣变化,提供准确有效的推荐结果。

四、大数据下朴素贝叶斯算法的优化尽管朴素贝叶斯算法在大数据分析中具有广泛的应用,但也存在一些问题。

例如,由于特征条件独立假设的限制,算法对特征之间的相关性较为敏感。

针对这一问题,研究者提出了多种改进算法,如半朴素贝叶斯算法、混合模型朴素贝叶斯算法等,以提高算法的分类性能。

此外,大数据环境下,朴素贝叶斯算法需要处理数量庞大的数据,对存储和计算资源的要求较高。

粗粒度并行遗传算法的MapReduce并行化实现


T a s k t r a c k e r i n w h i c h t h e c l a s s i c a l G e n e t i c A l g o i r t h m( G A) ,s u c h a s f i t n e s s c a l c u l a t i o n ,s e l e c t i o n ,
Ab s t r a c t :Ac c o r d i n g t o t h e p r o p e ti r e s o f Co a r s e — Gr a i ne d Pa r a l l e l Ge n e t i c Al g o it r h m ,t h e a ti r c l e p r o - v i d e s a me t h o d t o i mp l e me n t i t ba s e d o n Ma pRe d u c e p r o g r a mmi n g mo d e 1 .Fi r s t l y,t h e i n i t i a l p o p u l a —
CHENG Xi n g — g u o,XI AO Na n— f e n g
( S c h o o l o f C o m p u t e r S c i e n c e a n d E n g i n e e i r n g ,
S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y , G u a n g z h o u 5 1 0 0 0 6, C h i n a )
程 兴 国, 肖南峰
( 华 南理 工大 学 计 算 机科学 与工 程学 院 , 广州 摘 5 1 0 0 0 6 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ke y wor ds : Na i v e Ba ye s ; Ma p Re d u c e ; p a r a l l e l i at z i o n ; c l o ud c o mp u t i ng
贝叶斯 分类是一种 基于统计学 的分类方法,它主 要利用 概率统计 知识进行分类 , 一般 用于解决 “ 在给 定 训练 实例集 的情 况下,判 定新 实例 的类别” 这 类 问 题【 l 】 .贝 叶斯提供 了一种 能 自然表示 因果信 息的方法 用来 发现数据之 间的潜在关系 , 尽 管关联 规则也是一
种挖 掘数据之 间潜在关系 的方 法, 但 是关联规则不 能
得现 阶段 的计算机难 以承载,甚至不 能提供 有时 间限
制 的服务.
随着 计算机技术 的飞速发展,云计算 已成为分布 式计算未来发展 的方 向,由 Go o g l e 提 出的 Ma p R e d u c e

要: 研 究朴素贝叶斯算法 Ma p R e d u c e的并行实现方法, 针对传统单 点串行算法在 面对大 规模数据或者参与
分类 的属 性较多 时效 率低甚至无 力承载大规模运 算,以及难 以满 足人们处理海 量数据 的需求等 问题,本文在朴 素贝叶斯基本理论和 Ma p R e d u c e 框架 的基础上,提 出了一种基 于 Ma p R e d u c e的高 效、廉价 的并行化方法. 通过
he t b a s i c t h e o r y o f Na i v e B a y e s a n d he t f r a me wo r k o f Ma p Re d u c e , hi t s p a p e r p r o p o s e d a p a r a l l e l i z a t i o n me ho t d o f Na i v e Ba y e s , wh i c h i s e ic f i e n t a n d c h e a p . At he t e n d ,i t i s p r o v e d b y e x p e r i me n t s ha t t hi t s me ho t d C n a e f f e c t i v e l y i mp r o v e he t e ic f i e n c y o f t h e a l g o r i t h m S O s a t o me e t he t n e e d o f p e o o p l e t o d e a l wi t h ma ss i v e d a a. t
计 算 机 系 统 应 用
h t t p : i |
. c - S - a . o r g . c n
2 0 1 3年 第 2 2卷 第 2 期
Ma p R e d u c e 框架下的朴素贝叶斯算法并行化研究①
幸莉仙 , 黄慧连
( 华北电力大学大学 经济管理系,保定 0 7 1 0 0 3 )
XI N G Li - Xi a n , H UANG Hu i — Li a n
( S c h o o l o f B u s i n e s s a n d Ad mi n i s t r a t i o n , N o r t h C h i n a E l e c t r i c P o we r U n i v e r s i t y , B a o d i n g 0 7 1 0 0 3 , C h i n a )
Ab s t r a c t : Thi s a r t i c l e f o c us e d o n t h e r e a l i z a t i o n o f he t p a r a l l e l i at z i o n o fNa i ve Ba y e s . Wh e n i t c o me s t o l a r g e - s e a l d a t a o r mu l t i — a t t r i b u t e s ,t he t r a d i t i o n a l s i n g a l n o d e a l g o r i t h m h a s a l o w e ic f i e n c y , o r e ve n i s u n a b l e t o h o s t l rg a e - s c a l e c o mp u t i n g . Al l of t h e s e ma k e he t ra t d i t i o n a l a l g o r i t h m c a n n o t i f t he t n e e d t o d e a l wi t h ma s s i v e d a a. t Th e r e f o r e . b a s e d o n
实验表明这种方法在面对大规模数据 时能有效提高算法 的效率,满足人们 处理海量 数据 的需求. 关键词:朴素贝叶斯; Ma p R e d u c e ;并行化;云计 算
Pa r a l l e l i z a t i o n o f Na i ve Ba ye s Al g o r i t hm Un de r Ma pRe duc e Fr a mw o r k
相关文档
最新文档