15.遥感动态监测

合集下载

遥感动态监测的应用原理

遥感动态监测的应用原理

遥感动态监测的应用原理1. 什么是遥感动态监测遥感动态监测是一种利用遥感技术对地球表面进行实时或定期观测和监测的方法。

通过采集、分析和解释遥感数据,可以获取大范围空间上的地球表面信息,并监测地表的变化情况。

2. 遥感动态监测的原理遥感动态监测主要利用遥感技术和传感器获取地球表面的影像数据,并通过图像处理和分析技术来监测地物的变化。

2.1 传感器获取遥感数据遥感传感器是通过感知地球表面的辐射能量,将其转化为电磁信号的设备。

常见的遥感传感器包括光学传感器、雷达传感器和红外传感器等。

2.2 图像处理与分析图像处理与分析技术是对获取的遥感影像数据进行处理和解析,提取出地表的信息和特征。

常用的图像处理和分析方法包括影像增强、分类与识别、变化检测等。

2.3 地物变化监测遥感动态监测的关键在于对地物变化的监测和分析。

地物变化可以包括自然灾害、土地利用变化、气候变化等。

通过对遥感影像的比对和分析,可以及时发现和监测地表的变化情况。

3. 遥感动态监测的应用3.1 自然灾害监测遥感动态监测可以用于自然灾害的监测和预警。

例如,通过对洪水、地震、火灾等自然灾害区域的遥感影像进行分析,可以实时掌握灾害的发展趋势和程度,为灾害救援和紧急反应提供支持。

3.2 土地利用变化监测通过遥感动态监测,可以及时监测和分析土地利用的变化情况。

例如,城市扩张、农田变化和森林砍伐等。

这些信息对于土地规划和资源管理具有重要意义。

3.3 环境保护监测遥感动态监测可以用于环境监测和保护。

例如,监测水体的污染情况、监测空气质量、监测森林覆盖率等。

这些信息对于环境保护和资源管理具有重要意义。

3.4 气候变化研究遥感动态监测可以用于研究气候变化和环境变化趋势。

通过监测大气温度、云量、海洋表面温度等指标的变化,可以了解气候变化的趋势和对生态环境的影响。

4. 遥感动态监测的优势和挑战4.1 优势•广覆盖性:遥感动态监测可以覆盖广大地域,获取大范围的地表信息。

遥感动态监测

遥感动态监测

前时相影像分类结果
后时相影像分类结果
分类比较法结果
二、 Compute Difference Map工具 Basic Tools~Change Detection~Compute Difference Map
➢ Image Difference工具 打开ENVI Zoom~Toolbox~ Image Difference
分类后比较法工具
➢ Change Detection Statistics工具 Basic Tools~Change Detection~ Change Detection Statistics
➢ Thematic Change工具 打开ENVI Zoom~Toolbox~ Thematic Change
三、实例:农用地变化监测
采用08年和09年获得的Landsat TM数据为数据源,获 得两个时相农用地的变化信息。该数据已经过传感器 定标和大气校正,并进行了图像裁剪。
First:农用地分类 打开ENVI EX, Toolbox中的Classification工具,进行分 类。
Second:变化信息的提取 用到Toolbox中的Thematic Change工具
3.1.4 波段替换法
在RGB假彩色合成中,G和B分量用前时相的两个波段, 用后一时相的一个波段影像组成R分量,在合成的RGB 假彩色图像上能够很容易地发现红色区域即为变化区 域。
前时相影像
后时相全色影像
波段替换影像
3.2图像分类后比较法
该方法的核心是基于分类基础上发现变化信息。即首 先运用统一的分类体系对每一时相遥感影像进行单独 分类,然后通过对分类结果进行比较来直接发现土地 覆被等的变化信息。
前一时相TM影像

遥感监测技术

遥感监测技术

3、技术要求:必须采用影 像移动补偿技术,最简单的 方法是在曝光时移动胶片, 使胶片与影像同步移动。还 可以将照相摄影装置设计成 扫描系统,在系统中有一旋 转镜面指向目标物并接受其 射来的电磁辐射能,将接收 到的能量送给光电倍增管产 生相应的电脉冲,该信号再 被调制成电子束,转换成可 被摄影胶片感光的发光点, 从而得到扫描所及区域的影 像。
2、测定过程:测定过相 物程关质器吸是是收:根光据谱自某的一某特一定吸污收染带 然光源由上而下透(过如S受O2检选择大300nm左右), 气层后,使之相继预进先复入制望出的远刻有一组狭缝 镜 和 分 光 器 , 随 后的 间穿光距谱与过型真由板实,的一狭吸缝收的光宽谱度波和峰 排狭缝组成的与待和测波谷气所体在波分长模拟对应, 子吸收光谱相匹配这的物样质可相分从关子这的组器吸狭,收缝光射谱出。受检 则从相关器透射出的光之光
分类
遥感平台 的不同
1、天基、空基遥感 是以卫星、宇宙飞机、 飞机和高空气球等为 遥感平台; 2、地基遥感则是以 地面为主要遥感平台
第15页,共24页。
大气环境遥感监测技术在实际中的应用
1、区域性大气污 染物的被动式空基 遥感监测:主要包
括对臭氧层的监测,对 大气气溶胶和温室气 体 如 CO2 、 甲 烷 (CH4 ) 的监测,对大 气主要污染物、大气 热污染源等的监测。
连同无频移的雷光利束和与米气氏态散分射子信相号遇时,则可能 的 (f0)一起返回发发生射另点外,两经种接分收子望散射作用而产
远镜收集后,通生过折分返光信装号置,分一出种各是散射光频率 种频率的返回光与波入,射并光用频相率应相的同光的雷利散射, 电理检 系测统器得性检到和测各定,种量这约射再污监种光占经染测散频1电气结%射率子体果以占相及组。下绝差数分的大很据的散部小处定射分的光;拉频另曼率一散与种射入是。

遥感影像处理知识

遥感影像处理知识

1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。

2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。

3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。

常用方法是按照行政区划边界或自然区划边界进行图像裁剪。

在基础数据生产中,还经常要进行标准分幅裁剪。

按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。

4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。

5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。

6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。

7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。

8.立体像对:从两个不同位置对同一地区所摄取的一对相片。

9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。

10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。

在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。

11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。

12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。

铁路安全遥感新技术动态监测

铁路安全遥感新技术动态监测

铁路安全遥感新技术动态监测随着城市化的不断推进和交通运输的蓬勃发展,铁路交通系统承载着越来越多的人和货物。

然而,在这个庞大的系统中,铁路安全问题仍然时有发生,给人们的生命财产安全带来巨大威胁。

为了及时探测、监测和预警铁路安全隐患,铁路部门引入了遥感技术,实现铁路安全的动态监测。

一、遥感技术概述1.1 遥感技术定义和原理遥感技术是利用航空器、卫星等远距离获取地球表面信息的技术。

通过遥感技术,可以获取到铁路线路、桥梁、隧道等设施的图像、空间信息及相关数据,实现对铁路安全的全方位监测。

1.2 遥感技术在铁路安全监测中的应用遥感技术在铁路安全监测中有着广泛的应用,主要包括:- 铁路线路动态监测:通过遥感技术获取铁路线路的高分辨率图像,并分析图像中的线路状况,检测出可能存在的裂缝、塌方等隐患。

- 桥梁安全监测:利用遥感技术获取桥梁的形变信息,实时监测桥梁的结构变化,以及桥梁地基的沉降情况等。

- 隧道安全监测:通过遥感技术获取隧道内部的图像,并分析图像中的状况,及时发现可能存在的渗水、龟裂等问题。

二、铁路安全遥感新技术2.1 高分辨率遥感高分辨率遥感技术可以获取到更为细致的铁路线路、桥梁、隧道等设施信息,对于隐患的探测更加精确。

目前,高分辨率卫星影像可以提供米级或亚米级尺度的空间分辨率,大大提升了铁路安全监测的精度和效率。

2.2 激光雷达技术激光雷达技术利用激光束扫描地面,可以获取地形表面的高程信息,对铁路线路的起伏和变化进行监测。

它能够高精度、高效率地获取大范围地形数据,为铁路安全监测提供可靠的技术支持。

2.3 红外热成像技术红外热成像技术可以反映物体表面的温度分布情况,对于隐蔽的热源和热量异常进行探测具有独特优势。

通过红外热成像技术,可以有效检测到铁路线路上可能存在的短路、电器设备过热等问题,及时采取措施避免事故发生。

2.4 遥感数据处理与分析遥感数据的处理与分析是铁路安全遥感监测的关键环节。

利用计算机技术和图像处理算法,可以对获取到的遥感影像进行自动提取、分类和监测分析,实现对铁路安全隐患的预警和预测。

利用遥感监测城市绿地动态变化

利用遥感监测城市绿地动态变化

利用遥感监测城市绿地动态变化在现代城市的发展进程中,城市绿地扮演着至关重要的角色。

它不仅为居民提供了休闲娱乐的空间,还在改善城市生态环境、调节气候、减少噪音等方面发挥着不可或缺的作用。

然而,随着城市的不断扩张和人口的增长,城市绿地的状况也在不断发生变化。

为了更好地规划和管理城市绿地,及时准确地掌握其动态变化信息显得尤为重要。

而遥感技术的出现,为我们提供了一种高效、准确且全面的监测手段。

遥感,简单来说,就是不直接接触目标物,通过传感器接收来自目标物的电磁波信息,并对其进行处理和分析,以获取有关目标物的特征和状态的技术。

在监测城市绿地动态变化方面,遥感技术具有许多独特的优势。

首先,遥感技术能够实现大面积同步观测。

相比传统的实地调查方法,遥感可以在短时间内获取整个城市甚至更大范围的绿地信息,大大提高了工作效率。

而且,遥感数据具有周期性和连续性,通过对不同时期的遥感影像进行对比分析,我们能够清晰地看到城市绿地的变化趋势。

其次,遥感技术能够提供多光谱信息。

不同的地物在不同的光谱波段上会有不同的反射特性,城市绿地也不例外。

通过对这些光谱信息的分析,我们可以准确地识别出绿地的类型、分布以及生长状况等。

例如,植被在近红外波段的反射率较高,而在可见光波段的反射率较低,利用这一特性,我们可以很容易地将植被与其他地物区分开来。

再者,遥感技术具有较高的空间分辨率。

随着遥感技术的不断发展,如今的遥感影像可以清晰地分辨出城市中的小块绿地、行道树等细节,为我们进行精细化的绿地监测提供了可能。

那么,如何利用遥感技术来监测城市绿地的动态变化呢?一般来说,主要包括以下几个步骤:数据获取是第一步。

我们需要选择合适的遥感数据源,常见的有卫星遥感影像(如 Landsat 系列、Sentinel 系列等)和航空遥感影像。

卫星遥感影像覆盖范围广、周期长,但空间分辨率相对较低;航空遥感影像空间分辨率高,但成本较高且覆盖范围有限。

在实际应用中,需要根据具体的监测需求和条件来选择合适的数据源。

遥感概论习题

遥感概论习题

第一章遥感概述1.简述遥感的基本概念2.与传统对地观测手段比较,遥感有什么特点?举例说明.3.简述遥感卫星地面站,其生产运行系统的构成及各自的主要任务。

4.遥感有哪几种分类?分类依据是什么?5.试述当前遥感发展的现状及趋势。

6.举例说明“3S”集成系统中各子系统的作用GIS:在“3S”技术中具有采集、存储、管理、分析和描述整个或部分地球上与空间和地理分布有关的数据的作用。

GPS:精确的定位能力、准确定时及测速能力、提供实时定位技术RS:GIS数据库的数据源第二章遥感电磁辐射基础1.已知由太阳常数推算出太阳表面的总辐射出射度M=6.284×107 W/㎡,求太阳的有效温度和太阳光谱中辐射最强波长。

2.电磁波波谱区间主要分为哪几段?其中遥感探测利用最多的是什么波段?仔细分析原因。

3.阐述太阳辐射和地球辐射的特点,当这些电磁辐射经过大气时产生哪些物理过程?4.为什么地物光谱的测量十分重要?理解书中介绍的垂直测量和非垂直测量的方法。

5.你能说出几种主要地物的光谱特点吗?6.你能说出地面接受的辐射有哪几个来源,到达传感器时电磁波辐射又含有几部分吗?7.对照卫星传感器所涉及波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。

第三章传感器与遥感图像特点1.传感器主要由哪些部件组成?2.摄影类型传感器与扫描类型传感器的工作原理有何差异?3.简述光谱分辨率与空间分辨率的关系。

4.何谓高光谱遥感?5.成像光谱仪的特点及结构是什么?6.按摄影机主光轴与铅垂线的关系,航空摄影可分为哪几类?7.影响航空像片比例尺的因素有哪些?怎样测定像片的比例尺?8.比较航空像片光学特性的因素主要有哪些?9.比较航空摄影像片与地形图的投影性质有什么差别?10.什么是像点位移?引起像点位移的主要原因是什么?11.在垂直摄影的航空像片上像点位移有什么规律?12.目前国际上有哪些比较流行的航空成像光谱仪?13.航天遥感与航空遥感相比有什么特点?14.遥感卫星轨道参数有哪些?15.遥感卫星的轨道分类是怎样的?16.航天遥感平台主要有哪些?各有什么特点?17.扫描成像的基本原理是什么?扫描图像与摄影图像有何区别?18.AVHRR的光谱段是怎样划分的?为什么?19.地球资源卫星主要有哪些?常用的产品有哪几类?20.海洋卫星有什么用途?21.未来的航天遥感有哪些发展方向?22.ETM+与TM的区别是什么?Mss、TM影像与SPOT的HRV影像的异同?23.微波波段在电磁波谱中的什么位置?微波接其波长或频率又可分为什么波段?24.与可风光和近红外遥感相比,微波遥感有什么优缺点?近年来对其不足有什么改进?25.微波传感器主要分为哪两种?举例说明/26.为什么合成孔径雷达可以提高分辨率?27.简述雷达图像的距离分辨率和方位分辨率与什么有关?它们在图像上的变化规律是什么?28.画图解释透视收缩,叠掩和阴影的产生条件,理解这些几何变形对影像解译的影响。

生态系统动态监测的遥感技术

生态系统动态监测的遥感技术

生态系统动态监测的遥感技术在当今的科技时代,遥感技术如同一位神奇的“千里眼”,为我们洞察生态系统的动态变化提供了强大的工具。

生态系统是地球上生命存在和发展的基础,其状态和变化对于人类的生存和可持续发展具有至关重要的意义。

而遥感技术的出现,让我们能够更全面、更准确、更及时地了解生态系统的种种情况。

那么,什么是遥感技术呢?简单来说,遥感技术就是一种不直接接触目标物体,通过传感器接收来自目标物体的电磁波信息,并对这些信息进行处理和分析,从而获取有关目标物体的特征和状况的技术。

在生态系统动态监测中,遥感技术主要依靠卫星、飞机等平台搭载的各种传感器,来收集大量的生态数据。

遥感技术在生态系统动态监测中的应用范围十分广泛。

它可以用于监测森林生态系统。

通过遥感影像,我们能够清晰地看到森林的覆盖范围、树木的生长状况以及森林遭受病虫害、火灾等灾害的情况。

比如,通过对不同时期遥感影像的对比分析,可以发现森林面积的增减变化,从而为森林资源的管理和保护提供重要的依据。

在监测湿地生态系统方面,遥感技术也发挥着重要作用。

湿地是地球上重要的生态系统之一,具有蓄水、调节气候、净化水质等多种生态功能。

遥感技术可以帮助我们了解湿地的分布范围、水位变化、植被类型和覆盖度等信息。

这对于保护湿地生态系统的完整性,维护其生态功能具有重要意义。

草原生态系统的监测同样离不开遥感技术。

它能够帮助我们掌握草原的植被覆盖度、草产量、草原退化和沙化的程度等情况。

这对于合理规划草原的利用,防止草原生态恶化,保障畜牧业的可持续发展具有重要的指导作用。

除了上述生态系统,遥感技术还在农田生态系统、城市生态系统等的监测中有着广泛的应用。

遥感技术之所以能够在生态系统动态监测中大展身手,主要得益于它具有许多独特的优势。

首先,遥感技术具有大面积同步观测的能力。

一次遥感观测就可以覆盖很大的区域,这是传统地面观测方法无法比拟的。

它能够在短时间内获取大量的生态数据,为我们快速了解生态系统的整体状况提供了可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感动态监测
技术支持邮箱:ENVI-IDL@ 技术支持热线:400-819-2881-7 官方技术博客:/enviidl 官方技术qq群:148564800
遥感变化检测技术
• 遥感变化检测就是从不同时期的遥感数据中,定量地分 析和确定地表变化的特征与过程。 • 检测方法
光谱特征变异法
• 同一地物反映在一时相影像上的信息与其反映在另外时 相影像上的光谱信息是一一对应的。当将不同时相的影 像进行融合时,如同一地物在两者上的信息表现不一致 时,那么融合后的影像中此地物的光谱就表现得与正常 地物的光谱有所差别,此时称地物发生了光谱特征变异 ,我们就可以根据发生变异的光谱特征确定变化信息。
• 结果
森林开采区域
练习:流程化动态监测工具——Thematic Change
Workflow
• 数据:两个时相的土地利用图
ag_08_maxlike.img ag_09_maxlike.img
• 处理
工具:ENVI的Thematic Change Workflow工具结果
• 结果
前一时相影像
后一时相影像
假彩色合成影像
多波段主成分分析法
• 当地物属性发生变化时,必将导致其在影像某几个波段 上的值发生变化,所以只要找出两时相影像中对应波段 值的差别并确定这些差别的范围,便可发现变化信息。 在具体工作中将两时相的影像各波段组合成一个两倍于 原影像波段数的新影像,并对该影像作PC变换。由于变 换结果前几个分量上集中了两个影像的主要信息,而后 几个分量则反映出了两影像的差别信息,因此可以试着 抽取后几个分量进行波段组合来发现变化信息。
前时相影像
后时相全色影像
波段替换影像
信息提取技术
• 手工数字化法
屏幕数字化 区域生长法
• 图像自动分类
监督分类 非监督分类 手工阈值分割 自动阈值分割
• 组合法
多时相主成分分析法检测 面向对象特征提取变化信息
练习:图像直接比较法 — Change Detection Difference
前一时相TM影像
后一时相SPOT影像
特征变异影像
假彩色合成法
• 由于地表的变化,相同传感器对同一地点所获取的不同 时相的影像在灰度上有较大的区别。在进行变化信息的 发现时,将前、后两时相的数据精确配准,再利用假彩 色合成的方法,将后一时相的一个波段数据赋予红色通 道,前一时相的同一波段赋予蓝色和绿色通道。利用三 原色原理,形成假彩色影像。其中,地表未发生变化的 区域,合成后影像灰度值接近,而土地利用发生变化的 区域则呈现出红色,即判定为变化区域。
图像直接比较法
• 图像差值法、图像比值法、主成分分析法、光谱特征变异法、假彩 色合成法、波段替换法、变化矢量分析法、波段交叉相关分析以及 混合检测法等
分类后结果比较法 直接分类法
• 多时相主成分分析后分类法
图像差值法
• 图像差值法就是将两个时相的遥感图像相减。 • 原理:图像中未发生变化的地类在两个时相的遥感图像 上一般具有相等或相近的灰度值,而当地类发生变化时 ,对应位置的灰度值将有较大差别。因此在差值图像上 发生地类变化区域的灰度值会与背景值有较大差别,从 而使变化信息从背景影像中显现出来。
• 生成掩膜图像
练习:流程化动态监测工具——Image Change
Workflow
• 数据: TM数据
july_00_quac.img july_06_quac.img
• 处理过程
工具选择:Image Change Workflow工具 方法选择:采用NDVI差值 变化信息提取:设置阈值范围提取森林采伐区域
Map
• 单波段间的差异运算
减法 除法
• 数据预处理
相对大气校正 像元归一化处理 像元单位标准化处理
• 变化等级的量化
阈值划分 直接分割结果
练习:分类后比较 — Change Detection
Statistics
• 变化类型的差异分析 • 变化统计
像素 百分比 面积统计
耕地利用变化
本节收获
• 了解遥感变化检测基本原理、方法和流程 • 学习ENVI中两大类变化检测工具:直接比较法和分类后 比较法
图像分类后比较法
• 该方法的核心是基于分类基础上发现变化信息。即首先 运用统一的分类体系对每一时相遥感影像进行单独分类 ,然后通过对分类结果进行比较来直接发现土地覆被等 的变化信息。
前时相影像分类结果
后时相影像分类结果
分类比较法结果
波段替换法
• 在RGB假彩色合成中,G和B分量用前时相的两个波段, 用后一时相的一个波段影像组成R分量,在合成的RGB假 彩色图像上能够很容易地发现红色区域即为变化区域 。
相关文档
最新文档