换热器设计、需要参数
换热器设计计算范例

换热器设计计算范例换热器是一种用于传递热量的设备,常用于工业生产中的加热、冷却或蒸发等工艺过程中。
在设计换热器时,我们需要考虑的主要参数包括换热面积、传热系数、温度差以及流体性质等。
下面就以一种换热器设计计算范例进行说明。
假设我们需要设计一个管壳式热交换器,用于加热水和空气的热交换。
设计要求如下:1.加热水的进口温度:70℃2.加热水的出口温度:90℃3.空气的进口温度:25℃4.空气的出口温度:50℃5.加热水的流量:10m3/h6.空气的流量:1000m3/h首先,我们需要确定换热面积的大小。
根据传热计算的公式:Q=U×A×ΔT其中,Q为换热量,U为传热系数,A为换热面积,ΔT为温度差。
假设我们的换热器传热系数U为400W/(m2·℃),温度差ΔT为(90-70)=20℃。
根据公式,换热量可以计算为:Q=400×A×20我们将换热量Q设置为加热水的传热量,可得:Q1=400×A×20为了方便计算,我们将流体的热容量乘以流量定义为A1(加热水)和A2(空气)。
可得:Q1=A1×ΔT1代入已知数值,可得:Q1=10×4.186×(90-70)×1000接下来,我们需根据另一组流体参数计算出Q2(空气)。
Q2=A2×ΔT2代入已知数值,可得:Q2=1.005×1000×(50-25)×1000根据Q1、Q2和总换热量的平衡关系:Q1+Q2=400×A×ΔT可得:10×4.186×(90-70)×1000+1.005×1000×(50-25)×1000=400×A×20解得:A=0.523m2根据已知的流量和管道尺寸,可计算出流速。
流速=流量/A代入数值:流速=10/0.523流速=19.1m/s接下来,我们要确定换热器的结构。
换热器设计书

目录1 设计条件及主要物性参数表设计题目某制药厂在生产工艺过程中,需将乙醇液体从 75℃冷却到 45℃ ,乙醇的流量为W kg/h;冷却介质采用 21℃的河水;要求换热器的管程和壳程压降不大于30 kPa,试设计并选择管壳式换热器;操作条件1乙醇:入口温度75℃出口温度45℃2冷却介质:河水入口温度21℃出口温度27℃3允许压降:不大于30 kPa2 概述与设计方案简介]1[换热器的选择涉及因素很多,如介质的腐蚀性及其它特性、操作温度与压力、换热器的热负荷、管程与壳程的温差、检修与清理要求等;具体选择时应综合考虑各方面因素;对每种特定的传热工况,通过优化选型会得到一种最适合的设备型号;如果将这个型号的设备应用到其他工况,则传热效果可能会改变很大;因此,针对具体工况选择换热器类型,是很重要和复杂的工作;对管壳是换热器的设计,应从下方面考虑;冷却剂出口温度的确定]2[在水作为冷却剂时,为便于循环操作、提高传热推动力、冷却水的进、出口温差一般控制在5℃~10℃左右;在本次设计中将出口温度设计为27℃;流动空间的选择]2,3[确定流动空间的基本原则:1不洁净和易结垢的流体宜走管程,因为管程清洗比较方便;2腐蚀性的流体宜走管程,以免管子和壳体同时被腐蚀,且管程便于检修与更换;3压力高的流体宜走管程,以免壳体受压,可节省壳体金属消耗量;4被冷却的流体宜走壳程,可利用壳体对外的散热作用,增强冷却效果;5饱和蒸汽宜走壳程,以便于及时排除冷凝液,且蒸汽较洁净,一般不需清洗; 6有毒易污染的流体宜走管程,以减少泄漏量;7流量小或粘度大的流体宜走壳程,因流体在有折流挡板的壳程中流动,由于流速和流向的不断改变,在低ReRe>100下即可达到湍流,以提高传热系数;8若两流体温差较大,宜使对流传热系数大的流体走壳程,因壁面温度与α大的流体接近,以减小管壁与壳壁的温差,减小温差应力;根据以上原则可以确定河水走管程,乙醇走壳程;管程和壳程数的确定]3[当换热器的换热面积较大而管子又不能很长,为提高流体在管内的流速,需将管束分程;但程数过多,导致管程流动阻力和动力能耗增大,同时使平均传热温差下降,设计时应权衡考虑;管壳式换热器系列标准中管程数有1、2、4、6四种;在本次设计选用了管程为2;当温差校正系数Φt △小于时应采用多壳程;然而在本次设计中Φt △=,采用了单壳程;设备结构的选择根据本次题目的要求应当选用管壳式换热器;3 工艺设计计算]4[乙 醇: 入口温度75℃ 出口温度45℃ 冷却介质:河水 入口温度21℃ 出口温度27℃ 允许压降:不大于30 kPa计算和初选换热器的规格(1)计算热负荷和冷却水流量:Q =)(21T T C W ph h =20000××103×75-45÷3600= W)(12c t t C QW ph -==)(21-271018.436007.4596663⨯⨯⨯= Kg/h (2)计算两流体的平均温度差;暂按单壳程,多管程计算,逆流时平均温度差为:1212/t t Int t t m ∆∆∆-∆=∆=6.3427-7521-45n 27-75-21-45=I )()( ℃而:P=11.0217521271112=--=--t T t t R 5212745751221=--=--=t t T T 由图4-19查得:t ∆Φ= 则:56.336.3497.0t m =⨯=∆℃ (3)假设K=300W/2m .℃ 则:S=m t ∆K Q=2m 7.4556.333007.459666=⨯实际传热面积:S 0=dL n π=256×××=2m若选择该型号的换热器,则要求过程的总传热系数为:W S Q K 25.30956.3329.447.459666t m 0=⨯=∆=选/2m .℃核算压力降(1)管程压力降:p N F t 21i p p p )(∆+∆=∆∑ 其中25.1t ==P N F管程流通面积:m015.00226.02i ==i d m ARe i =)(1312710923.02.99781.0015.03湍流=⨯⨯⨯=-μρi i u d设管壁粗糙度mm 1.0=ε,007.0151.0d ==iε由第一章中e -R λ关系图中查得λ= 则: 所以:∑=⨯⨯+=∆Pa 1059925.19812552pi)((2)壳层压力降:S S N F p p p∑∆+∆=∆)(/2/10其中15.1=S F 1=S N取h= 913.031h =-=-=L N B 壳程流通面积为:2000418.0)019.0195.0(3.0)(m d n D h A c =⨯-⨯=-=所以:Pa p 538217.07.765)19(1964.04.02/1=⨯⨯+⨯⨯⨯=∆ 计算表明管程和壳程压力都能满住题设的要求;核算总传热系数1管程对流传热系数i α:./(8.383936.613127015.06064.0023.0Pr Re 023.024.08.04.08.0i m W d iii=⨯⨯⨯==λα℃(2)壳程对流传热系数0α: 取换热器列管之中心距mm t 25=则: 取95.0)(14.0=wu u 则:64895.024.105861023.01696.036.03155.00=⨯⨯⨯⨯=α (3)污垢热阻:参考附录管内外侧污垢热阻分别取:2si 00052.0m R =.℃/W 200017.0m R so =.℃/W(4)总传热系数0K :管壁热阻可忽略时,总传热系数为:370158.383919151900052.000017.064811110=⨯+⨯++=+++=ii o i o siso d d d d R R K ααW/m 2.℃则有:2.13093700==选K K 由此可得设计选型满足要求;4辅助设备的计算和选型管径初选初取水经济流速 s m u 5.1=由于125mm 不是标准管径,因此确定 mm d l 150= 符合经济流速范围故确定:s m u mm d l /04.1,150==压头He在水槽液面及压力表处列柏努利方程 取mm 15.0=ε,001.0/=d ε,查图得 局部阻力:流入换热器()()91.07.0/15.011222221=-=-=A A ξ流出换热器()()48.07.0/15.015.015.02212=-=-=A A ξ 故 64.2148.091.05.9375.05.8=+++⨯+=∆ξ 换热器压降根据v q 和He 以及IS 型离心泵系列特性曲线可以选择型号为IS100-80-125的离心泵;5设计结果汇总表1乙 醇: 入口温度75℃ 出口温度45℃ 2冷却介质:河水 入口温度21℃ 出口温度27℃3允许压降:不大于30 kPa6设计评述换热器是石油、化工中最重要的热工设备,对换热器进行科学计算,对换热器的结构进行合理的设计,是换热器性能的重要保证;换热器的热工计算是换热器的设计基础,也是换热器结构设计的前提,因此在换热器的设计中,只有经过对换热器结构参数的不断调整,反复计算,才能使换热器的性能更高,设计更加合理;另外,在换热器设计中要综合考虑多种因素,如介质流速,压力降、膜传热系数、以及面积余量等,并尽量选择标准换热器以减少投资;还应根据实际工程需要结合实际工作经验方可设计出经济合理的换热器;参考文献:1于风叶,史红刚,管壳式换热器的设计原则,石油化工设计,2009 26 19~212何潮洪,冯宵,化工原理M,北京,科学出版社,20013日尾花英郎着,徐中权译,热交换器手册M,北京,烃加工出版社,19874夏清,贾绍义,化工原理上册,天津大学出版社,2011。
换热器的设计方案

换热器的设计方案1. 简介换热器是工业生产过程中常用的设备之一,用于在不同介质之间进行热量的传递和交换。
本文将介绍换热器的设计方案,包括选择材料、确定换热面积和流体参数等关键步骤。
2. 材料选择在进行换热器设计时,材料的选择是非常重要的。
一般来说,常用的换热器材料包括不锈钢、碳钢、铜、铝等。
选择材料时需要考虑以下几个因素:•耐腐蚀性:根据介质的性质选择能够抵抗腐蚀的材料,以确保换热器的使用寿命。
•导热性:选择具有良好导热性的材料,以提高换热效率。
•强度和硬度:根据工作条件确定材料的强度和硬度,以保证换热器的安全和可靠性。
3. 换热面积的确定换热面积是设计换热器时的关键参数,它直接影响换热器的热效率。
换热面积的确定需要考虑以下因素:•热传导:根据介质的热传导性质和需要传热的热量确定换热面积的大小。
•流体速度:流体速度越大,传热效果越好,因此需要根据流体速度确定换热面积。
•温差:温差越大,换热器的传热效果越好,因此需要根据温差确定换热面积。
4. 流体参数的确定在设计换热器时,需要确定流体的参数,包括流体的流速、流量和温度等。
这些参数直接影响换热器的性能和效果。
•流速:流体的流速越大,传热效果越好,因此需要根据具体情况确定流速。
•流量:根据需要传热的热量和换热器的热传导能力,确定流体的流量。
•温度:根据介质的温度要求和换热器的传热效果,确定流体的进出口温度。
5. 换热器类型的选择根据不同的工艺要求和介质特性,可以选择不同类型的换热器。
常见的换热器类型包括壳管换热器、板式换热器、管束换热器等。
在选择换热器类型时,需要考虑以下几个因素:•空间限制:根据工作场所的空间限制选择合适的换热器类型。
•介质性质:根据介质的流动性质和热传导性质选择合适的换热器类型。
•温度和压力:根据工艺要求和介质的温度和压力选择适应的换热器类型。
6. 换热器的安装和维护在设计换热器方案时,还需要考虑换热器的安装和维护问题。
换热器的安装需要确保换热器与管道的连接紧密可靠,以免出现泄漏等问题。
换热器设计步骤

换热器设计步骤换热器是用于传递热量的设备,广泛应用于工业生产和供暖系统中。
对于换热器的精确设计,需要经过一系列步骤才能得到最佳的设计方案。
下面是换热器精确设计的详细步骤:第一步:确定设计目标在进行换热器设计之前,需要明确设计目标。
这包括了热负荷、温度变化、流体属性以及安装条件等要求。
设计目标的明确可以为后续的设计提供指导。
第二步:收集原始数据为了进行精确的换热器设计,需要收集与设计有关的各种原始数据。
这些数据包括冷却剂的流量、温度和压力,以及被冷却物体的热负荷、温度和压力等信息。
此外,还需要收集流体的物性参数,如导热系数、比热容等。
第三步:确定换热方式根据实际需求和应用场景,确定合适的换热方式。
常见的换热方式包括对流换热、辐射换热和传导换热。
根据不同的热负荷和流体特性,选择最适合的换热方式。
第四步:统计设计条件根据收集的原始数据和所确定的换热方式,对设计条件进行统计和归纳。
这包括了流体的质量和能量平衡方程,换热面积和换热系数、传热功率、流体速度、压降等参数的计算。
第五步:选择换热器类型根据设计条件,选择合适的换热器类型。
常见的换热器类型包括管壳式换热器、板式换热器、螺旋板式换热器等。
选择合适的换热器类型可以满足设计要求,并保证换热器的经济性和可靠性。
第六步:进行换热器的初步设计根据所选择的换热器类型,进行初步的设计计算。
根据换热器的工作原理和结构特点,计算换热面积、流体通道的尺寸、流体速度和压降等参数。
这些计算可以通过数学模型、经验公式和实验数据等方法进行。
第七步:进行换热器的详细设计在初步设计的基础上,进行详细的设计计算和优化。
对换热器的结构参数进行精确调整和优化,满足热负荷的要求,并保证换热器的性能和可靠性。
这些计算包括了换热面积的计算、流体通道的设计、板/管束的选择、传热面积的计算和流体速度和压降的计算等。
第八步:进行换热器的安装调试在设计完成后,进行换热器的安装调试。
根据设计要求,进行换热器的安装和连接,并进行初步的运行测试。
换热器设计方案

换热器设计方案摘要:换热器是一种常见的设备,用于将热量从一个介质传递到另一个介质。
本文旨在探讨换热器的设计方案,包括选择合适的换热器类型、确定换热器尺寸和性能参数等。
通过合理设计和选择合适的换热器,可以有效提高换热效率,降低能源消耗。
引言:换热器是化工、制药、电力等行业常用的设备,用于在流体之间传递热量。
换热器的设计方案会直接影响换热效率和能源消耗。
在设计换热器时,需要考虑不同的因素,如换热介质的性质、工艺要求、经济性和安全性等。
本文将重点讨论选择合适的换热器类型、确定换热器尺寸和性能参数等方面的内容。
1. 选择合适的换热器类型换热器的类型有很多种,如管壳式换热器、板式换热器、管束式换热器等。
在选择合适的换热器类型时,需要考虑以下因素:(1)换热介质的性质:包括流体的温度、压力、流量等参数,以及流体之间的热传导性能。
(2)工艺要求:根据实际工艺需求确定换热器的结构形式和材质选择。
(3)经济性:考虑换热器的成本、维护费用和能源消耗等因素。
2. 确定换热器尺寸换热器的尺寸是设计过程中的重要参数。
根据换热介质的热负荷和流体流量,可以通过热平衡计算或经验公式来确定换热器的尺寸。
(1)热平衡计算:根据换热介质的热负荷和热传导性能,使用热平衡计算方法来确定换热器的传热面积。
(2)经验公式:根据实际经验和类似工艺的数据,使用经验公式来预测换热器的尺寸。
3. 确定换热器性能参数换热器的性能参数是评价换热器效果的重要指标。
主要包括传热系数、热阻和效能等。
(1)传热系数:根据换热介质的性质和流体流量,使用热力学计算方法来确定换热器的传热系数。
(2)热阻:根据换热器的结构形式和材质,计算换热器内外壁的热阻。
(3)效能:根据传热系数和热阻的计算结果,使用效能公式来评估换热器的换热效果。
4. 优化设计方案在设计换热器时,需要考虑很多的因素和限制条件。
通过合理优化设计方案,可以进一步提高换热效率和能源利用率。
(1)流体优化:通过调整流体的流速、流量和流动方式等参数,来优化流体的传热效果。
换热器选型参数

(7)承压能力和直径的限制:承受外压情况 下刚度较差,一般情况设计压力<1.6Mpa直 径受加工设备影响,一般D<2500㎜
(8)维修难度大:螺旋体一旦发生内漏无法 维修。
2、螺旋板型号的表示方法:(标准的规定) (1)换热器型号的表示方法由字母和数字组 成,其方法如下:
可拆换热器 D-堵死型 G-贯通型
通道间距mm 公称直径mm
板宽m 公称换热面 积m2 公称压力MPa 材质代号:
C-碳钢S-不锈钢
L-螺旋板换热 器
型式代码: K-可拆B-不可拆
(2)型号表示的示例
a、不可拆换热器,材质为碳钢,设计压力 1.6MPa,公称换热面积50㎡
螺旋板板宽1.0m,公称直径1000mm,两个螺 旋通道间距分别为10mm和14mm,其型号为: BLC1.6-50-1.0/1000-10/14
3、板式换热器规格: <1>、BR系列(等截面):BR0.1、0.2、0.35、
0.5、0.8、1.0、1.6 <2>、BRB系列(不等截面):BRB0.3、0.5、0.8、
1.2. <3>、BRC系列(V系列)
BRC0.13、0.20、0.28、0.45、0.60、 1.0、1.1、1.3、1.7
4、板式换热器优点:
<1>、传热系数高:是管壳式换热器的
3~5倍.
<2>、结构紧凑,占地面积小.
<3>、对数平均温差大,可采用纯逆流形
式.温差修正系数最大.
<4>、末端温差小,可达1~2 ℃. <5>、维护、检修方便. 5、板式换热器缺点: <1> 、耐压能力较低,由结构原因决定. <2>、耐温能力受垫片材质限制. <3>、含固体纤维状物料易堵塞.
煤油换热器的设计方案

煤油换热器的设计方案一、引言二、设计要求与参数在设计煤油换热器之前,首先需要明确设计要求和相关参数。
这些参数通常包括:1、热流体(煤油)和冷流体的进出口温度、流量。
2、工作压力和允许压降。
3、换热器的使用环境和安装条件。
假设我们的设计参数如下:热流体(煤油)入口温度为 200°C,出口温度为 150°C,流量为1000 kg/h。
冷流体入口温度为 30°C,出口温度为 100°C,流量为 1500 kg/h。
工作压力为 16 MPa,允许压降为 01 MPa。
三、换热器类型选择常见的换热器类型有管壳式、板式、螺旋板式等。
考虑到煤油的性质和设计要求,管壳式换热器是较为合适的选择。
管壳式换热器具有结构坚固、适应性强、处理量大等优点,能够满足高温、高压和大流量的工况。
四、材料选择1、管材由于煤油具有一定的腐蚀性,因此选用不锈钢作为换热管的材料,如 304 不锈钢或 316L 不锈钢,以保证换热器的使用寿命和可靠性。
2、壳体材料壳体通常采用碳钢,如 Q235B 或 Q345R,以降低成本。
3、封头和管板封头和管板可选用与壳体相同的材料。
五、换热管布置1、管径和管长根据经验和传热计算,选择管径为 25mm,管长为 6m。
2、排列方式采用正三角形排列,以提高传热效率和紧凑度。
3、管间距管间距的选择应考虑清洗和传热效果,通常管间距为 32mm。
六、壳程结构设计1、壳体直径根据换热管的排列和数量,计算出壳体的直径。
2、折流板为了提高壳程流体的传热效果,设置折流板。
折流板间距根据壳程流体的流速和压降要求确定,一般为 300 500mm。
折流板的形状采用弓形,缺口高度为壳体内径的 20% 40%。
七、传热计算1、总传热系数计算根据所选的换热器类型、材料和流体的物性参数,计算总传热系数。
2、传热面积计算根据热负荷和总传热系数,计算所需的传热面积。
3、校核对计算得到的传热面积进行校核,确保满足设计要求。
换热器的选型和设计指南

换热器的选型和设计指南换热器是一种用于传递热量的设备,广泛应用于各个行业和领域,包括化工、石油、电力、食品等。
换热器的选型和设计至关重要,直接影响设备的热效率和工作效果。
本文将从选型和设计的角度,提供一些指南和建议。
一、换热器的选型指南1.确定换热器的功能:在选择换热器之前,需要明确所需的热交换功能,例如加热、冷却、蒸发、凝结等。
同时还需考虑所需的传热方式,如对流传热、辐射传热等。
2.确定换热器的工作参数:根据具体的应用需求,确定换热器的工作参数,包括流体的温度、压力、流量等。
这些参数将直接影响换热器的尺寸、型号和材料选择。
3.选择适当的换热器类型:根据应用需求和流体性质,选择合适的换热器类型,包括壳管式换热器、板式换热器、管束式换热器等。
每种类型都有其适用的特点和限制,需要根据具体场景进行选择。
4.评估换热器的热性能:除了换热器类型,还需评估不同换热器的热性能,包括传热系数、压降、能耗等。
通过对不同类型和厂家的换热器性能进行比较,选择性能最佳的产品。
5.考虑维护和清洁:换热器在使用过程中需要进行维护和清洁,因此需要选择易于维护和清洁的换热器类型和结构。
同时还需考虑清洗液的使用、清洗方法等。
二、换热器的设计指南1.确定换热面积:根据流体的热交换需求和换热器的热传递特性,计算和确定所需的换热面积。
换热面积的大小将直接影响换热器的尺寸和材料成本。
2.确定流体流动方式:根据流体的性质和热交换需求,确定流体的流动方式,包括并流、逆流等。
不同的流动方式将影响换热器的传热效果和压降。
3.选择合适的材料:根据工作环境和流体的性质,选择合适的材料,包括换热管的材料、壳体材料等。
需要考虑材料的耐腐蚀性、强度和耐高温性能。
4.考虑换热器的安全性:换热器设计时需考虑安全因素,包括避免流体泄漏、冲击和爆炸等。
需要确保换热器的结构强度和密封性能,以及安装和使用过程中的安全措施。
5.优化换热器设计:通过计算和模拟,优化换热器的设计,包括优化流体流动路径、调整管束布置、增加换热面积等,以提高换热器的热效率和运行性能。