光伏并网逆变器选型细则之欧阳家百创编

合集下载

光伏并网逆变器选型细则

光伏并网逆变器选型细则

并网逆变器选型细则并网逆变器就是将太阳能直流电转换为可接入交流市电得设备,就是太阳能光伏发电站不可缺少得重要组成部分。

以下对光伏电站设计过程中并网逆变器及其选型做比较详细得介绍与分析。

1. 并网逆变器在光伏电站中得作用光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统得基本特点就就是太阳电池组件产生得直流电经过并网逆变器转换成符合市电电网要求得交流电之后直接接入公共电网。

1、1 并网光伏电站得基本结构1、2 并网逆变器功作用与功能并网逆变器就是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合得综合体现,它就是光伏并网发电系统中不可缺少得关键部分。

并网逆变器得主要功能就是:◆最大功率跟踪◆DCAC转换◆频率、相位追踪◆相关保护2. 并网逆变器分类并网逆变器按其电路拓扑结构可以分为变压器型与无变压器型逆变器,其中变压器型又分为高频变压器型与低频变压器型。

变压器型与无变压器型逆变器得主要区别在于安全性与效率两个方面。

以下对三种类型逆变器做简单介绍:◆高频变压器型采用DCACDCAC得电路结构,设计较为复杂,采用较多得功率开关器件,因此损耗较大。

◆低频变压器型采用DCACAC得电路结构,电路简单,采用普通工频变压器,具有较好得电气安全性,但效率较低。

◆无变压器型采用DCAC得电路结构,无电气隔离,电压范围较窄,但就是损耗小、效率高。

3. 并网逆变器主要技术指标a、使用环境条件逆变器正常使用条件:包括工作温度、工作湿度以及逆变器得冷却方式等相关指标。

b、直流输入最大电流c、直流输入最大电压d、直流输入MPP电压范围逆变器对太阳能电池部分进行最大功率追踪(MPPT)得电压范围,一般小于逆变器允许得最大直流输入电压,设计电池组件得输出电压应当在MPP电压范围之内。

e、直流输入最大功率大于逆变器得额定输出功率,即通常所说得“逆变器功率”。

为了充分利用逆变器得容量,设计接入并网逆变器得电池组件得标称功率可以等于直流侧输入最大功率。

光伏发电站施工规范(GB 50794-)之欧阳理创编

光伏发电站施工规范(GB 50794-)之欧阳理创编

1总则1.0.1为保证光伏发电站工程的施工质量,促进工程施工技术水平的提高,确保光伏发电站建设的安全可靠,制定本规范。

1.0.2本规范适用于新建、改建和扩建的地面及屋顶并网型光伏发电站,不适用于建筑一体化光伏发电工程。

1.0.3光伏发电站施工前应编制施工组织设计文件,并制订专项应急预案。

1.0.4光伏发电站工程的施工,除应符合本规范外,尚应符合国家现行有关标准的规定。

2术语2.0.1光伏组件PV module指具有封装及内部联接的、能单独提供直流电的输出、最小不可分割的太阳电池组合装置。

又称为太阳电池组件。

2.0.2光伏组件串PV string在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流输出电压的电路单元。

简称组件串或组串。

2.0.3光伏支架PV supporting bracket光伏发电系统中为了摆放、安装、固定光伏组件而设计的专用支架。

简称支架。

2.0.4方阵(光伏方阵)array(PV array)由若干个太阳电池组件或太阳电池板在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元。

又称为光伏方阵。

2.0.5汇流箱combiner-box在光伏发电系统中将若干个光伏组件串并联汇流后接人的装置。

2.0.6跟踪系统tracking system通过机械、电气、电子电路及程序的联合作用,调整光伏组件平面的空间角度,实现对人射太阳光跟踪,以提高光伏组件发电量的装置。

2.0.7逆变器inverter光伏发电站内将直流电变换成交流电的设备。

2.0.8光伏发电站PV power station利用太阳电池的光生伏打效应,将太阳辐射能直接转换成电能的发电系统。

2.0.9并网光伏发电站grid-connected PV power station直接或间接接人公用电网运行的光伏发电站。

3基本规定3.0.1开工前应具备下列条件:1在工程开始施工之前,建设单位应取得相关的施工许可文件。

并网光伏逆变器的选型与应用

并网光伏逆变器的选型与应用

电力技术应用Telecom Power Technology 2023年10月25日第40卷第20期69装方便,无须专业工具和设备,不用配备专门的配电室、直流汇流箱或直流配电柜等连接直流线路。

集中式和组串式逆变器光伏发电系统的配电方式与设备不同,导致整个发电系统铺设的线缆数量也不同。

集中式逆变器要使用直流汇流箱进行一次汇流,而直流汇流箱一般都安装在光伏方阵旁边,因此这部分线缆的使用量比组串式逆变器系统要少很多。

集中式逆变器系统要从直流汇流箱到直流配电柜进行二次汇流,这部分使用的线缆相对较粗。

而组串式逆变器系统无须直流汇流箱和直流配电柜,线路成本相对较低。

对于逆变器输出的交流侧线缆,集中式逆变器系统使用的线缆比组串式逆变器系统少。

3.2.2 系统效率方面目前,集中式和组串式并网逆变器的效率都可以达到98%以上。

集中式逆变器系统的光伏方阵需要经过2次汇流才输入逆变器,其MPPT 系统无法监控到每一路光伏组串的运行情况,因此无法确保每一路光伏组串都达到MPPT 状态,只能对整个光伏方阵进行跟踪调控。

相比之下,组串式逆变器将每组或每几组光伏组串输入1台逆变器,逆变器单独对输入的光伏组串进行MPPT ,使每组或每几组串产生最多的电量。

组串之间独立工作,即使某一组串因故障断开,其他组串也不受影响继续正常发电,从而实现整个发电系统最大化的能量输出。

3.2.3 系统运行特性方面不同类型的并网逆变器会对系统运行性能产生不同的效果。

集中式逆变器系统不具备冗余能力,一旦出现问题,整个系统都将停止发电。

而组串式逆变器系统具有冗余运行能力,当个别逆变器发生故障时,整个系统不受其影响,依然可以正常发电。

此外,集中式逆变器系统可集中并网,便于运行管理;组串式逆变器系统则是分散就近并网,系统损耗小。

4 结 论逆变器作为太阳能光伏发电的核心设备,通过合理的选型,可以有效提高能源利用效率,平衡供需关系,提高电网可靠性,稳定电力系统,同时节约系统成本。

光伏电站运行常见故障及处理方法之欧阳家百创编

光伏电站运行常见故障及处理方法之欧阳家百创编

光伏电站运行维护中常见故障及解决办法欧阳家百(2021.03.07)光伏电站是指在用户所在场地或附近建设运行,以用户自发自用为主、多余电量上网且在配电网系统平衡调节为特征的光伏发电设施,实行“自发自用、余电上网、就近消纳、电网调节”的运营模式。

电网企业采用先进技术优化电网运行管理,为分布式光伏发电运行提供系统支撑,保障电力用户安全用电。

是一项国家鼓励投资的环保、低碳发电项目,那么它的后期维护也很重要,下面来介绍一下光伏电站运行维护中常见故障及解决办法:第一章影响光伏电站发电量的因素光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。

但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。

那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。

1.1、太阳能电池组件的倾斜角度从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。

最佳倾角与项目所在地的纬度有关。

大致经验值如下:A、纬度0°~25°,倾斜角等于纬度B、纬度26°~40°,倾角等于纬度加5°~10°C、纬度41°~55°,倾角等于纬度加10°~15°1.2、太阳辐射量太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。

各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如PV-SYS、RETScreen得到。

1.3、系统损失和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。

除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。

并网光伏电站逆变器选型分析

并网光伏电站逆变器选型分析

并网光伏电站逆变器选型分析摘要:逆变器作为光伏发电站的重要组成部分,逆变器的可靠性、安全性直接关系太阳能发电系统整体的平稳运行,其转换效率直接影响太阳能光伏发电系统的发电效率,其使用寿命直接关系到光伏发电系统的使用年限。

关键词:定义及分类;功能;选择要点1.概述随着能源需求的增长以及化石能源消费带来的资源枯竭和环境污染问题的日益突出,太阳能等可再生能源越来越受到全球的重视。

在各国政府的推动下,近年来太阳能开发利用规模快速扩大,技术进步和产业升级加快,成本显著降低,已成为全球能源转型的重要领域。

截至 2017 年底,全球光伏发电站装机总规模已超过 400GW。

逆变器的可靠性、转换效率和成本是逆变器产品的核心要素,未来光伏逆变器的发展方向也将围绕这三个核心要素展开,主要朝着高可靠性、高转换效率和低成本的趋势发展。

同时,也还有其他一些需考虑的因素,如因地制宜的逆变方案、智能化的逆变方案、光储一体化逆变方案等。

2.逆变器的定义及分类逆变器又称电源调整器、功率调节器。

光伏逆变器是连接太阳能光伏电池板和电网之间的电力电子设备,主要功能是将太阳能电池板产生的直流电通过功率模块转换成可以并网的交流电。

光伏逆变器按电站系统不同分为并网逆变器,离网逆变器,储能逆变器三大类。

按照逆变器输出分为单相逆变器、三相逆变器。

逆变器按照功率和用途可分为微型逆变器、组串式逆变器、集中式逆变器、集散式逆变器四大类。

目前建设的光伏电站绝大多数均为并网光伏电站,本文分析的逆变器选型均是指并网型逆变器的选型。

3.并网逆变器的功能并网逆变器是连接光伏阵列和电网的关键部件,除了把直流电能变成电网能接收的交流电外,还有以下特殊功能:最大功率跟踪功能,保证输出功率最大化。

太阳能电池板的电流和电压是随太阳辐射强度和太阳电池组件自身温度而变化的,因此输出的功率也会变化,为了保证输出电力最大化,就要尽可能的获取电池板的最大输出功率。

逆变器的MPPT跟踪功能就是针对这一特性设计的。

光伏逆变器的配置选型

光伏逆变器的配置选型

光伏逆变器的配置选型光伏逆变器是太阳能光伏发电系统的主要部件和重要组成部分,为了保证太阳能光伏发电系统的正常运行,对光伏逆变器的正确配置选型显得成为重要。

逆变器的配置除了要根据整个光伏发电系统的各项技术指标并参考生产厂家提供的产品样本手册来确定。

一般还要重点考虑下列几项技术指标。

1、额定输出功率额定输出功率表示光伏逆变器向负载供电的能力。

额定输出功率高的光伏逆变器可以带更多的用电负载。

选用光伏逆变器时应首先考虑具有足够的额定功率,以满足最大负荷下设备对电功率的要求,以及系统的扩容及一些临时负载的接入。

当用电设备以纯电阻性负载为生或功率因数大于0.9时,一般选取光伏逆变器的额定输出功率比用电设备总功率大10%` 15%。

2、输出电压的调整性能输出电压的调整性能表示光伏逆变器输出电压的稳压能力。

一般光伏逆变器产品都给出了当直流输入电压在允许波动范围变动时,该光伏逆变器输出电压的波动偏差的百分率,通常称为电压调整率。

高性能的光伏逆变器应同时给出当负载由零向100%变化时,该光伏逆变器输出电压的偏差百分率,通常称为负载调整率。

性能优良的光伏逆变器的电压调整率应小于等于±3%,负载调整率就小于等于±6%。

3、整机效率整机效率表示光伏逆变器自身功率损耗的大小。

容量较大的光伏逆变器还要给出满负荷工作和低负荷工作下的效率值。

一般KW级以下的逆变器的效率应为80%~85%;10KW级的效率应为85%~90%;更大功率的效率必须在90%~95%以上。

逆变器效率高低对光伏发电系统提高有效发电量和降低发电成本有重要影响,因此选用光伏逆变器要尽量进行比较,选择整机效率高一些的产品。

4、启动性能光伏逆变器应保证在额定负载下可靠启动。

高性能的光伏逆变器可以做到连续多次满负荷启动而不损坏功率开关器件及其他电路。

小型逆变器为了自身安全,有时采用软启动或限流启动措施或电路。

光伏产业从欧洲,澳洲,到现在的中国已经成了热门行业,短短几年内国内光伏逆变器生产厂家如春笋般的诞生,不过如何选择太阳能逆变器这个还是有一定的标准。

光伏并网逆变器选型指南

光伏并网逆变器选型指南
1.逆变部分采用开关速度快、功耗小的智能IGBT(IPM)作为功率器件。逆变变压器又是采用高效完全隔离型的,所以逆变器具有了输出波形失真小;动态特性好;逆变效率高的特性。
2.控制部分是采用高速度的微处理器为核心的控制部件,所以具有了输出过载,输出高、低电压保护动作快,抗干扰能力强,稳压精度高等特性。
E:附加功能,人性化设计
人性化界面设计
数据显示多样化
方便的窗口排列设置
避免重复运行的设计
多种时间日期显示
F:不断创新,力求完美(无线监控介绍)
系统描述:
设备只需插入一张SIM卡,就可通过GSM网络以短消息或数传(Data)的形式完成远程的双向数据传输。而远程终端可以是PC机,移动手机或其他移动设备。
4.1.1LED指示灯说明
LED 灯
含义
并网
并网工作(并网发电,灯亮)
离网
停止并网(离网,灯亮)
4.1.2按键说明
1)监控系统单元共设有五个按键,功能名称按顺序分别为:返回键(ESC)、上翻键( ),下翻键( ) 、确认键(read)、复位键(Reset)。
2)液晶显示菜单中的一级菜单包括:系统设置、实时时钟、实时监控、故障记录。
1、1MW以上光伏发电的系统:建议选择多台GSG250KC的电源进行并联运行;
2、500KW至1MW的系统:建议选择多台GSG100KC的电源进行并联运行;
3、200KW至500KW的光伏发电系统:建议选择多台GSG50KC的并联运行;
4、200KW以下的光伏发电系统:建议采用多台GSG20KC或GSG50KC的电源进行并联运行。
具体功能
A:实时数据显示与处理
采用召唤应答式规约,在线实现数据实时显示。
对于实时数据处理后,可以参照对比专家系统意见,提供最佳电源使用优化方案。

光伏发电逆变器的选择

光伏发电逆变器的选择

光伏发电逆变器的选择
在国内外大型光伏并网发电站中,一般采用100kW(含)以上的逆变器。

功率等级一般分为:100kW、150kW、250kW、500kW、630kW和1MW,一般在交流输出端带有隔离变压器。

在250kW以上的逆变器中,也有不带输出隔离变压器的机型,即将升压变压器与逆变器的隔离变压器合二为一。

本项目中,拟选用500kW无隔离变的具有较高的转换效率的并网逆变器。

考量逆变器的安装使用环境、可靠性、市场价格,初步选用500kW逆变器。

本工程光伏并网发电设计20个1MWp发电矩阵单元,每个1MWp发电单元与两台500kW相连。

总计配置40台500kW并网液冷逆变器。

根据市场调研,拟选用的逆变器技术参数如下:
电网输出
辅助电源
光伏输入
逆变器柜体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并网逆变器选型细则欧阳家百(2021.03.07)并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。

以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。

1.并网逆变器在光伏电站中的作用光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。

1.1并网光伏电站的基本结构1.2并网逆变器功作用和功能并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。

并网逆变器的主要功能是:◆最大功率跟踪◆DC-AC转换◆频率、相位追踪◆相关保护2.并网逆变器分类并网逆变器按其电路拓扑结构可以分为变压器型和无变压器型逆变器,其中变压器型又分为高频变压器型和低频变压器型。

变压器型和无变压器型逆变器的主要区别在于安全性和效率两个方面。

以下对三种类型逆变器做简单介绍:◆高频变压器型采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。

◆低频变压器型采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。

◆无变压器型采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。

3.并网逆变器主要技术指标a. 使用环境条件逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。

b. 直流输入最大电流c.直流输入最大电压d. 直流输入MPP电压范围逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。

e. 直流输入最大功率大于逆变器的额定输出功率,即通常所说的“逆变器功率”。

为了充分利用逆变器的容量,设计接入并网逆变器的电池组件的标称功率可以等于直流侧输入最大功率。

f. 最大输入路数指逆变器直流侧可接入的直流回路数目。

g. 额定输出电压在规定的输入条件下,逆变器应输出的电压值。

电压波动范围一般应:单相220V±5%,三相380±5%。

h. 额定输出功率在规定的输出频率和负载功率因数下,逆变器应输出的额定电流值。

i.额定输出频率在并网系统中,额定输出频率要对应所并入的电网频率,而且当电网的频率和相位有微小波动时,逆变器输出的交流电应自动追踪电网的频率和相位。

当检测到电网频率波动过大,逆变器将自动切离电网。

我国的市电频率为50Hz,并网逆变器频率波动范围一般在±3%以内。

j. 最大谐波含量正弦波逆变器,在阻性负载下,输出电压的最大谐波含量应≤10%。

k. 过载能力在规定的条件下,在较短时间内,逆变器输出超过额定电流值的能力。

逆变器的过载能力应在规定的负载功率因数下,满足一定的要求。

l. 效率在额定输出电压、输出,电流和规定的负载功率因数下,逆变器输出有功功率与输入有功功率(或直流功率)之比。

目前很多厂家的逆变器效率标示了“效率”和“欧洲效率”两种。

“效率”一般指一天内某时刻逆变器的最大效率,而欧洲效率是根据一天内日照强度的变化计算加权值,通过特定的公式计算一天内的“平均效率”,相对比较科学。

很多公司的无变压器型逆变器的“效率”值很高很高,其实理论上不太可能,可能他们未考虑输出功率因素的影响,将无功功率也计算在内而得出的最大效率。

m. 负载功率因数逆变器负载功率因数的允许变化范围,推荐值0.7—1.0。

n. 负载的非对称性在10%的非对称负载下,固定频率的三相逆变器输出电压的非对称性应≤10%。

o. 防护等级IP(INGRESS PROTECTION)防护等级系统是由IEC (INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草。

IP防护等级是由两个数字所组成,第1个数字表示灯具离尘、防止外物侵入的等级,第2个数字表示灯具防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高。

p. 保护功能逆变器应设置:短路保护、过电流保护、过电压保护、欠电压保护及缺相保护。

q. 干扰与抗干扰逆变器应在规定的正常工作条件下,能承受一般环境下的电磁干扰。

逆变器的抗干扰性能和电磁兼容性应符合有关标准的规定。

r. 噪声不经常操作、监视和维护的逆变器,应小于95db。

经常操作、监视和维护的逆变器,应小于80db。

s. 显示逆变器应设有交流输出电压、输出电流和输出频率等参数的数据显示,并有输入带电、通电和故障状态的信号显示。

t. 通信接口主要用于系统运行监控,一般的逆变器通讯接口模式有RS-485、RS-232以及GPRS。

u. 机械参数主要指逆变器的重量和尺寸。

4.并网逆变器选型分析4.1光伏逆变应用场合光伏发电站是通过具有各种技术结构的逆变器连接到电网上的。

由于建筑的多样性,势必导致太阳能电池板安装的多样性,为了使太阳能的转换效率最高同时又兼顾建筑的外形美观,这就要求我们的逆变器的多样化,来实现最佳方式的太阳能转换。

现在世界上比较通行的太阳能逆变为:集中逆变、组串逆变和组件逆变,现将几种逆变器的特点和运用的场合加以分析。

(1)集中逆变主要用在大型光伏发电站(大于10KW)的系统中,先是光伏组件连接成串,每串加上二极管,再是将这些组串并行连接,然后正负直接连接到同一台集中逆变器的直流输入侧。

一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP 转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流。

集中型逆变的最大特点是效率高,成本低,工作状态不稳定。

不稳定原因主要是光伏组串与逆变器匹配不当,以及部分光伏组件的阴影会导致整个发电站的发电量下降。

某一光伏单元组的工作状态不良会造成整个发电站的不良运行。

(2)组串逆变a.普通组串逆变。

组串逆变器已成为现在国际市场上最流行的逆变器,光伏组件连接成串,每个组串(1—5KW)都连接到一台指定的逆变器上,每个组串并网逆变器都有独立的最大功率跟踪单元(MPPT)。

许多大型光伏电厂使用组串逆变器。

优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。

技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。

同时,在组串间引入“主—从”的概念,使得在系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。

最新的概念为几个逆变器相互组成一个“团队”来代替“主—从”的概念,使得系统的可靠性又进了一步。

目前,无变压器式组串逆变器已占了主导地位。

总的来说组串逆变器的特点是减少了光伏组件之间的匹配错误、部分阴影带来的电量损失,以及组串连接二极管和大量直流电缆带来的电量损耗。

不仅大大降低了系统的成本,也增加了发电量和系统的可靠性。

b.多组串逆变。

多组串逆变技术在保留了组串逆变技术的优点上,通过一个共同的逆变桥将多个组串通过直流升压器连接起来,并实现最大功率跟踪,是有效且成本低的解决方案。

多组串技术可以有效连接安装不同朝向(南方、东方、西方)的组件,也可以根据不同的发电时间实现最优化的转换效率。

多组串逆变适用于安装在3至10KW的中等规模电站系统中。

(3)组件逆变器每个组件都连接一台逆变器。

组件逆变器的转换效率比组串低。

使用组件逆变器的系统中,每个组件都必须连接到230V电网上,因此会造成交流侧的电网连接比较复杂,这种技术一般只应用在50至400W的光伏发电站中。

4.2逆变器选型设计的基本方法(1)逆变器类型选择并网逆变器主要分高频变压器型、低频变压器型和无变压器型三大类。

根据所设计电站以及业主的具体要求,主要从安全性和效率两个层面来考虑变压器类型。

以下是它们之间的对照表:(2)容量匹配设计并网系统设计中要求电池阵列与所接逆变器的功率容量相匹配,一般的设计思路是:组件标称功率×组件串联数×组件并联数=电池阵列功率在容量设计中,并网逆变器的最大输入功率应近似等于电池阵列功率,已实现逆变器资源的最大化利用。

(3)MPP电压范围与电池组电压匹配根据太阳能电池的输出特性,电池组件存在功率最大输出点,并网逆变器具有在特点输入电压范围内自动追踪最大功率点的功能,因此电池阵列的输出电压应处于逆变器MPP电压范围以内。

电池组件电压×组件串联数=电池阵列电压一般的设计思路是电池阵列的标称电压近似等于并网逆变器MPP电压的中间值,这样可以达到MPPT的最佳效果。

(4) 最大输入电流与电池组电流匹配电池组阵列的最大输出电流应小于逆变器最大输入电流。

为了减少组件到逆变器过程中的直流损耗,以及防止电流过大对逆变器造成过热或电气损坏,逆变器最大输入电流值与电池阵列的电流值的差值应尽量大一些。

电池组件短路电流×组件并联数=电池阵列最大输出电流(5)转换效率并网逆变器的效率标示一般分最大效率和欧洲效率,通过加权系数修正的欧洲效率更为科学。

逆变器在其它条件满足的情况下,转换效率应越高越好。

(6)配套设备并网发电系统是完整的体系,逆变器是重要的组成部分,与之配套相关的设备主要是配电柜和监控系统。

并网电站的监控系统包括硬件和软件,根据自身特点而需要量身定做,一般大型的逆变器厂家都针对自己的逆变器而专门开发了一套监控系统,因此在逆变器选型过程中,应考虑相关的配套设备是否齐全。

(7)品牌与质量(8)价格与服务5.并网逆变器国内外生产厂家国内厂家(按首字母排序)安徽长远绿色能源有限公司北京哈博阳光新能源科技有限公司北京科诺伟业科技有限公司北京日佳电源有限公司北京索英电气技术有限公司北京自动化技术研究院飞瑞股份有限公司佛山市中商国通电子有限公司合肥赛恩电子科技有限公司合肥市科光电源有限责任公司合肥阳光电源有限公司江苏津恒能源科技有限公司杰俐企业股份有限公司科风股份有限公司雷克森技术有限公司利佳兴业股份有限公司茂迪股份有限公司南京格瑞能源科技有限公司南京冠亚电源设备有限公司宁波圣彼电气有限公司山东博奥斯电源有限公司山东精久科技有限公司上海航锐电源科技有限公司上海科境电器有限公司尚晶科技集团深圳科士达科技股份有限公司深圳市安德森电子科技有限公司深圳市光澜世纪科技有限公司深圳市天源新能源有限公司深圳中泰威太阳能有限公司索莱耐(天津)太阳能应用技术有限公司天阳新能源科技有限公司西藏华冠科技股份有限公司新疆新能源股份有限公司兴毅科技股份有限公司耀能科技股份有限公司盈正豫顺电子股份有限公司兆伏新能源有限公司中海阳(北京)能源科技有限公司中山市宇之源太阳能科技有限公司珠海赛比特电气设备有限公司国外主要厂家Fronius International 奥地利Futronics Power DesignsKACO德国LTi REEnergy 德国路斯特绿能Power-One 美国SanRex Solar 日本Sansha Electric Manufacturing 日本Sharp Corporation 日本SMA Solar 德国Sputnik Engineering 瑞士Xantrex Technology 加拿大6.常用并网逆变器型号参数附表(及时更新)。

相关文档
最新文档