分数乘法知识点和题型全面)
《分数乘法》必背概念知识点整理

第二单元《分数乘法》必背知识点一、分数乘法的意义:1。
分数与整数相乘:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2。
整数乘分数的意义:求一个数的几分之几是多少.3.分数乘分数的意义:就是求一个分数的几分之几是多少。
二、分数乘法的计算方法:1.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
2。
分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(计算结果要求是最简分数。
)3.因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。
4.带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数.一个数(0除外)乘大于1(带分数)的数,积大于这个数。
四、分数混合运算的运算顺序与整数的运算顺序相同:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc五、分数乘法的解决问题:1。
求一个数的几分之几是多少,用乘法。
(即已知整体和部分量相对应的分率,求部分量,用乘法)2.画线段图:①两个量的关系:画两条线段图;②部分和整体的关系:画一条线段图。
3。
找单位“1”:①在分率句中分率的前面;②在“占”、“是”、“比”、“相当于”“等于”的后面。
4。
写数量关系式的技巧:①“的”相当于“×”,“占”、“是”、“比"相当于“=”.②分率前是“的”:单位“1”的量×分率=分率对应量③求一个数的几倍:一个数×几倍④求一个数的几分之几是多少:一个数×几分之几(分值)⑤分率前面是“多或少”的意思:单位“1”的量×分率=分率对应量六、倒数:1。
分数乘法知识点与题型[全面]-新版.pdf
![分数乘法知识点与题型[全面]-新版.pdf](https://img.taocdn.com/s3/m/8bd69c86f8c75fbfc67db236.png)
百昇教育五年级数学下册第三单元《分数的乘法》日期:一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1、98×5表示()。
2、83+83+83=()×()=()83+83+83+83=()×()=()=()3、24个32是多少?145吨的7倍是多少吨?2、分数乘分数是求一个数的几分之几是多少。
例如: 1、98×43表示的意义是()。
2、125吨的32是多少吨?3、一根绳子长109米,3根这样的绳子共长()米;这根绳子的31长()米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、72×3 53×6214×9103×51611×122、52米=()厘米32时=()分107千克=()克算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×853914×28134532×281565×25122110×533、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×14383×1542625×15136313×391485×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○854×1 ○5443×53○5387×56○87×65(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b× a乘法结合律: ( a × b )×c = a × ( b× c )乘法分配律:( a + b)×c = a c + b c例如:1、53×61×532×41×394×5×1854×97×8575×16×5212、(924+ 83)×124 (56 - 59 )×18 47×613 +37×61356×59 + 59×163、10063×101677× 78 12×613 + 61314×137-137二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
《分数乘法》知识点整理与典型练习

《分数乘法》知识点整理与典型练习一、知识梳理1、分数和整数相乘,可以表示求几个几分之几相加的和。
2、求一个数的几分之几是多少,可以用乘法计算。
3、分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。
如果整数能与分数的分母约分,要先约分,再计算。
4、根据“实际产量比计划节约了54”,写出一个数量关系式 计划产量 × 54 = 实际产量比计划节约的产量 5、一个数和真分数相乘,所得的积小于这个数;一个数和假分数相乘,所得的积大于这个数。
6、乘积为1的两个数互为倒数,求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
7、1的倒数是1,0没有倒数,真分数的倒数都大于1,自然数的倒数都是分子为1的真分数,假分数的倒数小于或等于1。
二、典型练习【例1】下面的长方形代表1公顷,请你在图中表示出21公顷的32,结果是多少公顷?分析与解:这个题目要分层次思考,一步一步展开。
(1)21公顷是1公顷的21(1公顷的一半); (2)21公顷的32,就是将21公顷部分平均分成3份,表示出2份。
21公顷的3221公顷【例2】一袋大米重25千克,先吃去这袋大米的51,又吃去51千克,两次一共吃去多少千克? 分析与解:求两次共吃去多少千克,要用第一次吃的千克数加上第二次吃的千克数;第一次吃了这袋大米的51,是把这袋大米看作单位“1”,即吃去25千克的51;第二次吃去51千克。
先求出第一次吃去多少千克。
25 ×51 = 5(千克) 5 + 51 = 551(千克) 答:两次一共吃去551千克。
点评:这一题的关键就是正确理解题目中两个51所表示的不同含义,第一个51表示是一个数的几分之几,是分率;而第二个51表示的是51千克,是具体的量。
要先求出第一天的51所对应的量再直接加上第二天吃的51千克就可以了。
在解题过程中,一定要注意区分,并作出正确的判断,再进行解答。
【例3】填空。
( )× 94 = 7 × ( )= ( )× 165 = 0.8 × ( ) 分析与解:这是一道连等式填空。
五年级下册数学分数乘法知识点归类与练习

分数乘法知识点归类与练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:8×5表示求5个8的和是多少?992、分数乘分数是求一个数的几分之几是多少。
例如:8×3表示求8的3是多少?9494(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a c+b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几。
几4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量一、填空题:1、15个3是多少?列式是;2的3是多少,列式535是;2、25的4是();3的3是();12个4相加的和是();55493、3千米=()米;5时=()分;564、10×()=3×()=13×()=0.25×()=1575、2米的1和1米的()相等,就是()米。
(新)苏教版六年级数学上册分数乘法知识点和练习

分数乘法知识点归类与练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量分数乘除法知识点练习1、分数乘整数与整数乘法的意义相同,都是求()。
2、分数与整数相乘:()与()相乘的()做(),()不变。
3、分数与分数相乘:用()相乘的()做分子,()相乘的()做分母。
六年级数学上册分数乘法知识点和题型(全面)

《分数的乘法》一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1、 98×5表示( )。
2、83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( ) 3、24个32是多少? 145吨的7倍是多少吨? 2、分数乘分数是求一个数的几分之几是多少。
例如: 1、98×43表示的意义是( )。
2、125吨的32是多少吨? 3、一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、72×3 53×6 214×9 103×5 1611×12 2、52米=( )厘米 32时=( )分 107千克=( )克 算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×2815 65×2512 2110×53 3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 85×52(三)规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 87×56 ○87×65 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
人教版六年级数学上册 分数乘法 知识点归纳

《分数乘法》知识点归纳
知识点一、分数乘以整数
1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘以整数的运算:
①能约分的先约分。
让分母与整数约分了,再计算。
②用分子乘以整数的积作为分子,分母保持不变。
知识点二、分数乘以分数
1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。
2、分数乘以分数的运算:
①能约分的先约分。
让分子与分母约分了,再计算。
②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。
温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。
3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。
知识点三、乘法定律
1、乘法交换律:a×b=b×a
2、乘法结合律:a×b×c=a×(b×c)
3、乘法分配律(a+b)×c=a×c+b×c
知识点四、乘法规律
1、一个正数乘以一个大于1的数,积比原来大。
2、一个正数乘以一个小于1的数,积比原来小。
3、一个正数乘以一个1,积等于它本身。
4、0乘以任何数都等于0 。
知识点五、分数乘法应用题
1、要求一个数的几分之几是多少,就可以用乘法。
2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。
分数乘法知识点和题型(全面)分数乘法的知识点

分数乘法知识点和题型(全面)分数乘法的知识点《分数乘法》知识点和题型一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:1、X5表示()O2、++二()X ()二()+ + += ( ) X ()=( )=( )3、24个是多少?吨的7倍是多少吨?2、分数乘分数是求一个数的几分之几是多少。
例如:1、X表示的意义是()。
2、吨的是多少吨?3、一根绳子长米,3根这样的绳子共长()米;这根绳子的长()米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、X3X6 X9 X5 X122、米二()厘米时二()分千克二()克算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:XX Xx X 3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:XX XX X(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:X2 O 8X08 XI O X O XOX(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a Xb =b X a乘法结合律:(a X b ) Xc 二a X (b Xc )乘法分配律:(a + b ) Xc =a c +bc 例如:1、X X5X X3 X5X18 XX X16X2、(+ ) X(-)X18 X + X X+ X 3、X101 X 7812X +14X- 二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位:在分率句中分率的前面;或"占"、"是”、“比"的后面2、先用直线划出单位“1”的量,再把数量关系式补充完整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分数的乘法》一、分数乘法 (一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1、98×5表示( )。
2、83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( )3、24个32是多少? 145吨的7倍是多少吨?2、分数乘分数是求一个数的几分之几是多少。
例如: 1、98×43表示的意义是( )。
2、125吨的32是多少吨?3、一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、72×3 53×6 214×9 103×5 1611×12 2、52米=( )厘米 32时=( )分 107千克=( )克算式: 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×2815 65×25122110×533、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 85×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 87×56 ○87×65 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c 例如:1、53×61×5 32×41×3 94×5×18 54×97×85 75×16×5212、(924+ 83 )× 124 ( 56 - 59 )×18 47 ×613 +37 ×613 56 ×59 + 59 × 163、10063×101 677 × 78 12×613 + 613 14×137-137二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面2、先用直线划出单位“1”的量,再把数量关系式补充完整。
例如:(1)皮球的个数比足球多52。
(2)实际用水量比原计划节约91。
( )的个数×52=( )的个数 ( )用水量×91=( )用水量(3)一桶油用去53,正好用去12千克。
这桶油重多少千克?( )的千克数×53=( )的千克数(4)学校饲养组养黑兔12只,是白兔只数的32。
饲养组养白兔多少只?( )的只数×32=( )的只数3、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ ÷ ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量例如:1、育才小学有男生120人。
(1)男生是女生的35 ,女生有多少人? (2)女生是男生的35,女生有多少人?(3)女生比男生多35 ,女生有多少人?(4)男生比女生少35,女生有多少人?(5)男生占全校的35 ,女生有多少人?(6)女生占总数的35 ,全校有多少人?2、要一条路长100米,已经修了5037米,还有多少米没修?3、要一条路长100米,已经修了5037,修了多少米?4、一段长3米的布,第一次剪去它的31,第二次又剪去31米,两次一共剪去多少米?还剩多少米?5、周大婶收了532吨南瓜,收的冬瓜比南瓜多815。
收的冬瓜比南瓜多多少吨?6、一本书450页,第一天看了全书的15,第二天看了65页,第三天应该从第几页看起?7、一根铁丝长12米,第一次用去了全长的14,第二次用去了全长的13,两次一共用去了多少米?8、学校一月份用电800度,二月份比一月份节约了15,二月少用电多少度?三、倒数(一)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a ×b=1则a 、b 互为倒数。
(二)求倒数的方法:1、求分数的倒数:交换分子、分母的位置。
2、求整数的倒数:整数分之1。
3、求带分数的倒数:先化成假分数,再求倒数。
4、求小数的倒数:先化成分数再求倒数。
5、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
6、任意数a(a ≠0),它的倒数为 ;非零整数a 的倒数为 ;分数 的倒数是 。
7、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
例如:1、( )的两个数叫做互为倒数。
2、35 的倒数是( )94的倒数是( )3、23 的倒数是( ),7的倒数是( ),434 的倒数是( ),756 的倒数是( )4、( )没有倒数,1的倒数是( )。
5、 89 的倒数与56 的积是多少?6、 100的倒数的19倍 是多少?7、1.4加上它的倒数,再减去57 ,结果是多少?8、有两个不同的质数,它们积的倒数是110 ,求这两个质数是多少?9、 45 与它的倒数的和是多少? 10、 一个数的倒数是35 ,这个数的45是多少?分数乘法综合练习题一、 填空题: 1、15个53是多少?列式是 ;32的53是多少,列式是 ;2、25的54是( );53的43是( );12个94相加的和是( ); 3、53千米=( )米;65时=( )分;4、10×( )=53×( )=173×( )=0.25×( )=15、2米的31和1米的( ) 相等,就是( )米。
6、5的倒数与10的倒数比较,( )的倒数>( )的倒数。
7、 当a=( )时,a 的倒数与a 的值相等。
二、判断1、分数乘整数的意义与整数乘法的意义相同。
( )2、2千克的31和1千克的32同样重。
( ) 3、36×94和94×36结果相等。
( ) 4、一个数乘假分数,积一定大于这个数。
( ) 5、一根长12米的钢管,截去了31,就是短了31米。
( ) 6、 任意一个数都有倒数。
( )7、 假分数的倒数是真分数。
( ) 8、 a 是个自然数,它的倒数是。
( ) 9、 因为13 +23 =1所以13 和23 互为倒数。
( ) 10、 0.3的倒数是3( )三、列式计算: (1)120千米的457是多少千米? (2)457的120倍是多少?(3)25是125的几分之几? (4)125是25的几倍?四、计算:2518×95 275×120 3916×3213 3415×3017514 × 2125 ×75 (124 + 83)×24 710 ×101- 710 34×3435五、应用题。
1、一台碾米机每小时可以碾稻谷207吨,5小时可以碾谷多少吨?54小时呢?2、某工厂有男职180人,女职工是男职工的95。
女职工有多少人? 求女职工有多少人就是求( )的( )是多少?所以用( )方法计算。
(按要求填空,并列式解答)3、一辆汽车每小时行驶45千米,从甲地到乙地行驶了158小时,正好到达了两地的中点。
甲乙两地全程多少千米?4、(1)一杯水重83千克,32杯重多少千克?(2)一杯水重83千克,又加了32千克,此时杯中水多少千克?5、一块长方形地的面积是15公顷,用这块地的51种小麦,31种棉花,种小麦和棉花各多少公顷?6、有四个不同的的偶数,它们的倒数的和是1,已知其中的两个数是2和4,求其余的两个数。
7、把5分别与它的倒数相加、相减、相乘、相除,再把所得的和、差、积、商相加,结果是多少?8、 110 的倒数除以10,商是多少?。