计算机算法设计与分析(第三版)课后习题答案详解
《计算机算法设计和分析》习题及答案解析

《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是( A )。
A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是( C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B )A.递归函数 B.剪枝函数 C。
计算机算法设计和分析习题及答案解析

计算机算法设计和分析习题及答案解析This manuscript was revised on November 28, 2020《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是(A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是(B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是(A )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是(D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为(B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是(B )。
A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是(B)。
A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是(A )。
A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是(C )。
算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。
算法思路:本题可以使用快速选择算法来解决。
快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。
具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。
2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。
3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。
4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。
5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。
6. 递归地重复上述步骤,直到找到第k小的元素。
算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。
(陈慧南 第3版)算法设计与分析——第2章课后习题答案

因此 T (n) (n 2 ) (3) a 28, b 3, f n cn3
nlogb a nlog3 28 n3.033 ,则 f (n) c n 2 (nlogb a - ) ,其中可取 =0.04 。符合主定理
的情况 1 ,因此 T (n) (n3.033 )
21 21 当 n n0 时, f n g n ,所以 f n = g n 2 2
(2) f n n 2 logn , g n n log 2 n
2 当 n 4 时, f n n 2 logn n 2 , g n n log 2 n n 。因此可取 n0 4, c 1 ,当
g n
(1) f n 20n logn , g n n+ log 3 n
f n 20n logn 21n , g n n+ log 3 当 n 3 时, logn n log3 n 2n n 因此
因此可取 n0 3, c
f n g n ,所以 f n = g n
2-12 将下列时间函数按增长率的非递减次序排列
3 2
n
, log n , log 2 n , n log n , n ! , log(log(n)) , 2 n , n1 log n , n 2
答: n1 log n
f ( n ) ( n m )
证明:
f (n) am nm am1nm1 a1n a0 F (n) am n m am1 n m1
a1 n a0
由 F (n) 单调性易知,存在 nt 0 ,使得 F (n) 取 n 1 ,且 nt0 nt , F (nt0 ) 0 ,则 当 n nt0 时, F (n) 0 即: f (n) am n m am1 n m1
《计算机算法-设计与分析导论》课后习题答案共39页word资料

4.1:在我们所了解的早期排序算法之中有一种叫做Maxsort 的算法。
它的工作流程如下:首先在未排序序列(初始时为整个序列)中选择其中最大的元素max ,然后将该元素同未排序序列中的最后一个元素交换。
这时,max 元素就包含在由每次的最大元素组成的已排序序列之中了,也就说这时的max 已经不在未排序序列之中了。
重复上述过程直到完成整个序列的排序。
(a) 写出Maxsort 算法。
其中待排序序列为E ,含有n 个元素,脚标为范围为0,,1n -K 。
void Maxsort(Element[] E) { int maxID = 0;for (int i=E.length; i>1; i--) { for (int j=0; j<i; j++) {if (E[j] > E[maxID]) maxID = k; E[i] <--> E[maxID];(b) 说明在最坏情况下和平均情况下上述算法的比较次数。
最坏情况同平均情况是相同的都是11(1)()2n i n n C n i -=-==∑。
4.2:在以下的几个练习中我们研究一种叫做“冒泡排序”的排序算法。
该算法通过连续几遍浏览序列实现。
排序策略是顺序比较相邻元素,如果这两个元素未排序则交换这两个元素的位置。
也就说,首先比较第一个元素和第二个元素,如果第一个元素大于第二个元素,这交换这两个元素的位置;然后比较第二个元素与第三个元素,按照需要交换两个元素的位置;以此类推。
(a)起泡排序的最坏情况为逆序输入,比较次数为11(1)()2n i n n C n i -=-==∑。
(b) 最好情况为已排序,需要(n-1)次比较。
4.3: (a)归纳法:当n=1时显然成立,当n=2时经过一次起泡后,也显然最大元素位于末尾;现假设当n=k-1是,命题也成立,则当n=k 时,对前k-1个元素经过一次起泡后,根据假设显然第k-1个元素是前k-1个元素中最大的,现在根据起泡定义它要同第k 个元素进行比较,当k 元素大于k-1元素时,它为k 个元素中最大的,命题成立;当k 元素小于k-1元素时,它要同k-1交换,这时处于队列末尾的显然时队列中最大的元素。
(陈慧南 第3版)算法设计与分析——第7章课后习题答案

③ 其余元素
w[0][2] q[2] p[2] w[0][1] 15
k 1: c[0][0] c[1][2] c[0][2] min k 2 : c[0][1] c[2][2] w[0][2] 22 r[0][2] 2
17000
s[0][2]
0
m[1][3]
min
k k
1: m[1][1] m[2][3] 2 : m[1][2] m[3][3]
p1 p2 p4 p1 p3 p4
10000
s[1][3]
2
m[1][3]
min
k k
0 : m[0][0] m[1][3] 1: m[0][1] m[2][3]
第七章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术 7-1 写出对图 7-19 所示的多段图采用向后递推动态规划算法求解时的计算过程。
3
1
3
1
6
5
0
2
6
6
3
4
4 6
5
2
7
8
3
2
8
5
2
7
解析:
V 5 cost(5,8) 0 d (5,8) 8
V4
cos t(4, 6) minc(6,8) cos t(5,8) 7 cos t(4, 7) minc(7,8) cos t(5,8) 3
k 1: c[0][0] c[1][3] c[0][3] min k 2 : c[0][1] c[2][3] w[0][3] 25
计算机算法基础第三版课后习题答案
上机实验 书上 121 页 5。
2 5。
3 书上 151 6。
1 6。
3 6。
6 他说搞懂这几题和实验就没问题了4.2 在下列情况下求解递归关系式当① n=2k g(n)= O(1) 和 f(n)= O(n) ; ②n=2k g(n)= 0(1)和 f(n)= 0(1)。
kk-1kk-2k-1k解: T(n)=T(2 k )=2T(2 k-1)+f(2 k )=2(2 T(2 k-2)+f(2 k-1)) +f(2 k )=2 2T(2k-2)+21 f(2 k-1)+ f(2 k )不妨设 g(n)=a ,f(n)=bn ,a ,b 为正常数。
则T(n)=T(2 k )= 2 k a+ 2 k-1*2b+2k-2*22b+…+2°*2k b =2k a+kb2k=an+bnlog 2n= 0(nlog 2n)② 当 g(n)= 0(1)和 f(n)= 0(1)时, 不妨设 g(n)=c ,f(n)=d ,c ,d 为正常数。
则 T(n)=T(2 k )=c2k + 2 k-1d+2k-2d+…+2°d=c2k +d(2k -1) =(c+d)n-d= 0(n) 4.3 根据教材中所给出的二分检索策略,写一个二分检索的递归过程。
Procedure BINSRCH(A,low, high, x, j) integer mid if low < high the n mid J (low high)/2 if x=A(mid) then jJ mid; endifif x>A(mid) then BINSRCH(A, mid+1, high, x, j); endif if x<A(mid) thenBINSRCH(A, low, mid-1, x, j); endif else j J 0; endif end BINSRCH4.5 作一个“三分”检索算法。
第2章 算法分析基础(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)
3
Page 11
2.1.2 算法的渐近分析
常见的时间复杂度:
Ο(1)<(log2n)<(n)<(nlog2n)<(n2)<(n3)<…<(2n)<(n!)
多项式时间,易解问题
算
法
指数时间,难解问题
设 计 与
分
析
(
第
时间复杂度是在不同数量级的层面上比较算法
版 )
清
华
大
学
时间复杂度是一种估算技术(信封背面的技术)
Page 7
2.1.2 算法的渐近分析
3
每条语句执行次数之和 = 算法的执行时间 = 每条语句执行时间之和
基本语句的执行次数 for (i = 1; i <= n; i++)
单位时间
算
法
设
计
与
执行次数 × 执行一次的时间
分 析 (
第
for (j = 1; j <= n; j++)
版 )
x++;
指令系统、编译的代码质量
算法设计:面对一个问题,如何设计一个有效的算法
算
法
设
检
指
验
导
评
计 与 分 析 ( 第 版
改
估
) 清
进
华 大
学
出
版
算法分析:对已设计的算法,如何评价或判断其优劣
社
3
Page 3
2.1.1 输入规模与基本语句
如何度量算法的效率呢?
事后统计:将算法实现,测算其时间和空间开销
缺点:(1)编写程序实现算法将花费较多的时间和精力 (2)所得实验结果依赖于计算机的软硬件等环境因素
(陈慧南 第3版)算法设计与分析——第1章课后习题答案
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。
(陈慧南 第3版)算法设计与分析——第5章课后习题答案
(3) 分析算法的时间复杂度 上述算法的时间复杂度为 n 2
(2) 编写 C 程序实现这一算法;
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define N 1000 struct point { double x; double y; }p1[N],pxSmall[N],pxLarge[N]; double Distance (point a , point b); double min (double a , double b); bool Compare_Y (point a , point b); bool Compare_X (point a , point b); double minDistance (int l, int r); int main() { int n ; double D ; cin>>n;
int main() { int n, x, *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; cin >> x; if (Triple_search(a, 0, n - 1, x) == -1) cout << "NotFound!" << endl; else cout << Triple_search(a, 0, n - 1, x) << endl; delete []a; return 0; } int Triple_search(int a[], int l, int r, int x) { if (l <= r) { int m1 = l + (r-l)/3; int m2 = l + (r-l)*2/3; if (a[m2]<x) return Triple_search(a, m2 + 1, r, x); else if (a[m1] < x && a[m2] > x) return Triple_search(a, m1 + 1, m2 - 1, x); else if (a[m1] > x) return Triple_search(a, l, m1 - 1, x); else if (a[m1] == x) return m1; else if (a[m2] == x) return m2; } return -1; }