图像处理,实验报告1
数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。
二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。
2. 运行图像处理程序,并保存处理结果图像。
三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。
图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
数字图像处理实验报告完整版

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。
二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。
(2)图像的直方图处理算法。
四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。
图像处理实验报告

图像处理实验报告实验⼀基于matlab 的⼈脸识别技术⼀、实验⽬的1.熟悉⼈脸识别的⼀般流程与常见识别⽅法;2.熟悉不同的特征提取⽅法在⼈脸识别的应⽤;3.了解在实际的⼈脸识别中,学习样本数等参数对识别率的影响;4.了解⾮⼈脸学习样本库的构建在⼈脸识别的重要作⽤。
使⽤MATLAB 平台编程,采⽤K-L 变换、特征提取及图像处理技术,实现⼈脸识别⼆、实验内容与实验仪器、设备1.构建⾮⼈脸学习样本库;2.观测不同的特征提取⽅法对⼈脸识别率的影响;3.观测不同的学习样本数对⼈脸识别率的影响;1. PC 机-系统最低配置 512M 内存、P4 CPU ;2. Matlab 仿真软件- 7.0 / 7.1 / 2006a 等版本的Matlab 软件。
3. CBCL ⼈脸样本库三、实验原理1.⼈脸特征提取的算法通过判别图像中所有可能区域是否属于“⼈脸模式”的⽅法来实现⼈脸检测。
这类⽅法有:特征脸法、⼈⼯神经⽹络法、⽀持向量机法;积分图像法。
本次使⽤的是PCA(主成分分析法)其原理是:利⽤K-L 变换抽取⼈脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到⼀组投影系数,通过与各个⼈脸图像⽐较进⾏识别。
对于⼀幅M*N 的⼈脸图像,将其每列相连构成⼀个⼤⼩为D=M*N 维的列向量。
D 就是⼈脸图像的维数,即是图像空间的维数。
设n 是训练样本的数⽬;X j 表⽰第j 幅⼈脸图像形成的⼈脸向量,则所需样本的协⽅差矩阵为:1()()m Ti i i S x u x u ==--∑ (1)其中U 为训练样本的平均图像向量:11mi i u x n ==∑ (2)令A=[x 1-u,x 2-u,...x n -u],则有S r =AA T ,其维数为D ×D 。
根据K-L 变换原理,需要求得的新坐标系由矩阵AA T 的⾮零特征值所对应的特征向量组成。
直接计算的计算量⽐较⼤,所以采⽤奇异值分解(SVD)定理,通过求解A T A 的特征值和特征向量来获得AA T 的特征值和特征向量。
图像处理美工实验报告

图像处理美工实验报告1. 实验目的本次实验旨在通过图像处理技术,提升图片的美观度。
通过对图像进行调整、修复、美化等处理,使得图片在色彩、对比度、清晰度等方面表现出更好的效果。
2. 实验环境- 操作系统:Windows 10- 编程语言:Python- 开发环境:Anaconda Navigator- 相关软件:Adobe Photoshop3. 实验过程3.1 图片调整首先,我们使用Adobe Photoshop对原始图片进行调整。
通过调整图片的亮度、对比度、色调等参数,使得图片的整体效果更加明亮、鲜艳。
3.2 图像修复接着,我们使用图像处理库中的算法对图片进行修复。
通过去除噪点、消除瑕疵、修复缺失等操作,使得图片中的细节更加清晰、完整。
3.3 图像滤镜在调整和修复完成后,我们尝试使用不同的滤镜效果来美化图片。
通过施加不同的滤镜效果,例如模糊、锐化、马赛克等,我们可以给图片加入一些艺术效果,使得图片更加具有视觉冲击力。
3.4 图像细节增强为了使得图片更加饱满、立体,我们可以对图片中的细节部分进行增强处理。
通过增强细节的锐度、增加线条的清晰程度,我们可以使得图片中的物体更加鲜活、立体。
3.5 色彩调整最后,我们对图片的色彩进行调整。
通过调整图片的色相、饱和度、明度等参数,我们可以让图片的色彩更加丰富、鲜艳。
同时,我们可以对不同色彩通道进行调整,使得图片的整体色调更加协调、统一。
4. 实验结果经过一系列的图像处理操作,我们成功提升了图片的美观度。
原始图片与经过处理后的图片相比,色彩更加明亮饱满,细节更加清晰,整体效果更加出色。
同时,通过施加不同的滤镜效果和调整色彩,我们还加入了一些艺术效果,提升了图片的视觉冲击力。
5. 总结通过本次实验,我们了解了图像处理技术在美工方面的应用。
图像处理可以对图片进行调整、修复、美化等操作,提升其美观度和质量。
合理使用图像处理技术,可以使得图片更加生动、吸引人,为设计和美工工作提供了有力的支持。
数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc

实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt 为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
数字图像处理实验一图像的基本操作和基本统计指标计算实验报告

实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告单
院(系)计算机学院专业计算机科学与技术班级12计科4
姓名郝耀峰学号1250312025同组人无
实验室S4305 组号日期 2015.3.5
课程数字图像处理指导老师鲁静成绩
实验项目编号 01 试验项目名称 BMP图像的显示
一、实验目的
1、函数OnDraw( )完成了BMP图像的显示,它调用了DIB函数库中的许多函数,如获取DIB高度的DIBHeight(lpDIB)函数、获取DIB 宽度的DIBWidth(lpDIB) 函数、输出DIB的PaintDIB()函数。
2、仔细读OnDraw( )函数并了解DIB函数库源文件DIBAPI.CPP中的函数功能。
二、试验环境(仪器设备、软件等)
Windows7 VC6.0
三、实验原理(或要求)
1、BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象作都是以BMP为基础的。
2、由于数字图像可以表示为矩阵的形式,所以在计算机数字图像处理程序中,通常用二维数组来存放图像数据。
二维数组的行对应图像的高,二维数组的列对应图像的宽,二维数组的元素对应图像的像素,二维数组元素的值就是像素的灰度值。
四、实验步骤
void CCh1_1View::OnDraw(CDC* pDC)
{
// 显示等待光标
BeginWaitCursor();
// 获取文档
CCh1_1Doc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
// 获取DIB
HDIB hDIB = pDoc->GetHDIB();
// 判断DIB是否为空
if (hDIB != NULL)
{
LPSTR lpDIB = (LPSTR) ::GlobalLock((HGLOBAL) hDIB);
// 获取DIB宽度
intcxDIB = (int) ::DIBWidth(lpDIB);
// 获取DIB高度
intcyDIB = (int) ::DIBHeight(lpDIB);
::GlobalUnlock((HGLOBAL) hDIB);
CRectrcDIB;
rcDIB.top = rcDIB.left = 0;
rcDIB.right = cxDIB;
rcDIB.bottom = cyDIB;
CRectrcDest;
// 判断是否是打印
if (pDC->IsPrinting())
{
// 是打印,计算输出图像的位置和大小,以便符合页面
// 获取打印页面的水平宽度(象素)
intcxPage = pDC->GetDeviceCaps(HORZRES);
// 获取打印页面的垂直高度(象素)
intcyPage = pDC->GetDeviceCaps(VERTRES);
// 获取打印机每英寸象素数
intcxInch = pDC->GetDeviceCaps(LOGPIXELSX);
intcyInch = pDC->GetDeviceCaps(LOGPIXELSY);
// 计算打印图像大小(缩放,根据页面宽度调整图像大小)
rcDest.top = rcDest.left = 0;
rcDest.bottom = (int)(((double)cyDIB * cxPage * cyInch)
/ ((double)cxDIB * cxInch));
rcDest.right = cxPage;
// 计算打印图像位置(垂直居中)
int temp = cyPage - (rcDest.bottom - rcDest.top);
rcDest.bottom += temp/2;
rcDest.top += temp/2;
}
else
// 非打印
{
// 不必缩放图像
rcDest = rcDIB;
}
// 输出DIB
::PaintDIB(pDC->m_hDC, &rcDest, pDoc->GetHDIB(),
&rcDIB, pDoc->GetDocPalette());
}
// 恢复正常光标
EndWaitCursor();
}
BOOL WINAPI PaintDIB(HDC hDC,
LPRECT lpDCRect,
HDIB hDIB,
LPRECT lpDIBRect,
CPalette* pPal)
{
LPSTR lpDIBHdr; // BITMAPINFOHEADER指针
LPSTR lpDIBBits; // DIB象素指针
BOOLbSuccess=FALSE; // 成功标志
HPALETTE hPal=NULL; // DIB调色板
HPALETTE hOldPal=NULL; // 以前的调色板
// 判断DIB对象是否为空
if (hDIB == NULL)
{
// 返回
return FALSE;
}
// 锁定DIB
lpDIBHdr = (LPSTR) ::GlobalLock((HGLOBAL) hDIB);
// 找到DIB图像象素起始位置
lpDIBBits = ::FindDIBBits(lpDIBHdr);
// 获取DIB调色板,并选中它
if (pPal != NULL)
{
hPal = (HPALETTE) pPal->m_hObject;
// 选中调色板
hOldPal = ::SelectPalette(hDC, hPal, TRUE);
}
// 设置显示模式
::SetStretchBltMode(hDC, COLORONCOLOR);
// 判断是调用StretchDIBits()还是SetDIBitsToDevice()来绘制DIB对象
if ((RECTWIDTH(lpDCRect) == RECTWIDTH(lpDIBRect)) &&
(RECTHEIGHT(lpDCRect) == RECTHEIGHT(lpDIBRect)))
{
// 原始大小,不用拉伸。
bSuccess = ::SetDIBitsToDevice(hDC, // hDC
lpDCRect->left, // DestX
lpDCRect->top, // DestY
RECTWIDTH(lpDCRect), // nDestWidth
RECTHEIGHT(lpDCRect), // nDestHeight
lpDIBRect->left, // SrcX
(int)DIBHeight(lpDIBHdr) -
lpDIBRect->top -
RECTHEIGHT(lpDIBRect), // SrcY
0, // nStartScan
(WORD)DIBHeight(lpDIBHdr), // nNumScans
lpDIBBits, // lpBits
(LPBITMAPINFO)lpDIBHdr, // lpBitsInfo
DIB_RGB_COLORS); // wUsage }
else
{
// 非原始大小,拉伸。
bSuccess = ::StretchDIBits(hDC, // hDC
lpDCRect->left, // DestX
lpDCRect->top, // DestY
RECTWIDTH(lpDCRect), // nDestWidth
RECTHEIGHT(lpDCRect), // nDestHeight
lpDIBRect->left, // SrcX
lpDIBRect->top, // SrcY
RECTWIDTH(lpDIBRect), // wSrcWidth
RECTHEIGHT(lpDIBRect), // wSrcHeight
lpDIBBits, // lpBits
(LPBITMAPINFO)lpDIBHdr, // lpBitsInfo
DIB_RGB_COLORS, // wUsage
SRCCOPY); // dwROP }
// 解除锁定
::GlobalUnlock((HGLOBAL) hDIB);
// 恢复以前的调色板
if (hOldPal != NULL)
{
::SelectPalette(hDC, hOldPal, TRUE);
}
// 返回
returnbSuccess;
}
五、记录与处理(实验数据、误差分析、结果分析)
左图为原图,右图为平移所得(水平平移量为90,垂直平移量为80得到).
六、思考题
七、实验小结
通过本次实验,我们初步了解了图像在计算机中的存储方式,以及对函数OnDraw有了一些认识。