生活中的“一次模型”教案设计
新北师大版八年级数学下册《合与实践 ⊙ 生活中的“一次模型”》教案_6

综合实践—生活中的“一次模型”(第1课时)——教学设计科目教学Fra bibliotek象八年级
备课人
一、教材内容分析
本课题是以探索一元一次不等式与一元一次方程、一次函数的综合应用为主题的实践活动,一方面可以使学生体会一元一次不等式与一元一次方程、一次函数之间的内在联系,初步形成对数学知识系统性的认识,发展学生的概括能力、数学研究能力:另一方面通过调查活动使学生充分认识数学知识在现实生活中的广泛应用,激发学生的学习兴趣,引发学生的数学思考,发展学生的数学抽象能力,综合应用数学的能力,做到在学数学的同时自觉应的用数学。
材料(三)手机话费
随着人类电子行业的迅速发展,手机的用途越来越广,越来越被我们青睞,因此话费问题也经常会被纳入家庭经济预算。如今的话费收取种类众多,如何选取最适合自己的一套方案也被人们所重视。那么我们就对话费的选取这方面进行研究与调查。
材料(四)探索出租车如何计价
1.日间出租车价与里程数之间的函数关系
三、组建小组,确定方案。
1.在教师的指导下,学生根据自己的情况选择合适的研究内容组成研究小组。组内人员进行明确分工。(确定组长、数据收集员、方案设计员、记录员和撰写研究报告员)
2.组内讨论,形成完整的调查研究方案。
学生以12人为一小组进行组合,分工,选定级组内人员一致赞同的材料中的问题情境进行讨论,制定完整的调查研究方案。
六、布置作业
针对本组确定的调查研究对象进行实地调查,获取数据,对数据进行分析研究,形成皗查研究报告。
学生利用课余时间进行实地调查,并撰写调查研究报告。
培养学生综合实践能力。
二、学情分析
到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也发现了它们彼此之间的联系,初步感受到这三个基本数学模型的广泛应用.但是,由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。
生活中的“一次模型”教学设计

综合与实践生活中的“一次模型”一、学生起点分析到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也发现了它们彼此之间的联系,初步感受到这三个基本数学模型的广泛应用。
但是,由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。
二、教学任务分析本课题是以探索一元一次不等式与一元一次方程、一次函数的综合应用为主题的实践活动,一方面可以使学生体会一元一次不等式与一元一次方程、一次函数之间的内在联系,初步形成对数学知识系统性的认识,发展学生的概括能力、数学研究能力;另一方面通过调查活动使学生充分认识数学知识在现实生活中的广泛应用,激发学生的学习兴趣,引发学生的数学思考,发展学生的数学抽象能力,综合应用数学的能力,做到在学数学的同时自觉的用数学。
相比前面的课题学习而言,本课是自主活动类型的课题学习,以一种新的形式呈现,任务的给出比较宽泛,没有给定的背景,没有具体的安排,只是给出了一个原始的问题,规定了一个大的方向:要求将一元一次方程、一元一次不等式和一次函数集中融入一个问题情境,至于说具体研究哪些问题、如何研究等完全由学生自主选择,因而,保证了学生学习的自主性、选择性和学习结论的开放性,给学生提供了发现问题,提出问题的机会,进一步发展学生的应用意识和创新意识。
因此,本节课的教学目标定为:⒈经历用数学的眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。
⒉综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的内在联系。
⒊会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。
三、教学过程分析在教学过程中安排两课时。
北师大版数学八年级下册《⊙ 生活中的“一次模型”》教案1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》教案1一. 教材分析北师大版数学八年级下册《生活中的“一次模型”》这一节主要让学生了解一次函数在现实生活中的应用。
通过具体实例,让学生理解一次函数的定义,掌握一次函数的图像和性质,并能够运用一次函数解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,对函数有一定的理解。
但是对于一次函数在实际生活中的应用可能还比较陌生,需要通过实例来引导学生理解和掌握。
三. 教学目标1.了解一次函数的定义,掌握一次函数的图像和性质。
2.能够通过实例理解一次函数在实际生活中的应用。
3.培养学生的观察能力,提高学生解决实际问题的能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际生活中的应用。
五. 教学方法采用实例教学法,通过具体的例子让学生理解和掌握一次函数的定义和性质,以及一次函数在实际生活中的应用。
六. 教学准备1.准备相关的实例,如购物、出行等。
2.准备一次函数的图像,帮助学生理解。
七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学模型来表示购物问题。
让学生认识到数学在解决实际问题中的重要性。
2.呈现(10分钟)呈现一次函数的定义和性质,通过具体的例子让学生理解和掌握。
同时,引导学生观察一次函数的图像,加深对一次函数的理解。
3.操练(10分钟)让学生分组讨论,每组找一个实际问题,尝试用一次函数来解决。
如出行问题、购物问题等。
4.巩固(10分钟)让学生汇报自己的成果,其他学生和教师进行评价。
通过评价,让学生巩固一次函数的知识。
5.拓展(10分钟)引导学生思考一次函数在实际生活中的其他应用,如工资问题、投资问题等。
6.小结(5分钟)对本节课的内容进行小结,让学生明确一次函数的定义、性质以及在实际生活中的应用。
7.家庭作业(5分钟)布置相关的作业,让学生巩固所学知识。
如找一组实际数据,用一次函数来拟合。
8.板书(5分钟)板书一次函数的定义、性质以及实际应用,方便学生复习。
八年级数学下册《生活中的一次模型》优秀教学案例

在教学过程中,我注重引导学生进行反思与评价。在每节课结束后,我会让学生总结自己在课堂上的收获和不足,促使他们主动调整学习方法。此外,我还鼓励学生开展自评、互评,让他们在评价中相互学习、共同进步。同时,我会对学生的学习过程和结果进行全面、客观的评价,关注学生的个性差异,激发他们的潜能,提高教学效果。
(四)总结归纳
在总结归纳环节,我会邀请各小组代表汇报他们的讨论成果,分享一次模型在实际案例中的应用。在此过程中,我会对学生的表现给予肯定和鼓,并对他们的分析进行点评。
然后,我会对本节课的主要内容进行梳理和总结,强调一次模型在现实生活中的重要性。同时,指出学生在讨论过程中存在的问题,帮助他们巩固知识点,提高解决问题的能力。
(二)讲授新知
在讲授新知环节,我会以气温变化为例,详细讲解一次模型的基本概念和构建方法。首先,解释一次函数的表达式,阐述各个参数的含义。然后,通过实际数据和图像,展示一次函数如何描述气温与时间的关系。
在此基础上,我会拓展到其他生活案例,如人口增长、消费水平等,让学生了解一次模型在不同领域的应用。在讲解过程中,注重联系学生的生活经验,使抽象的数学知识变得具体、易懂。
八年级数学下册《生活中的一次模型》优秀教学案例
一、案例背景
在八年级数学下册的教学中,我们引入了《生活中的一次模型》这一章节,旨在让学生能够将数学知识与现实生活紧密联系起来,培养他们观察生活、发现问题和解决问题的能力。本案例以一次函数为载体,结合实际生活中的案例,引导学生探索一次模型在现实世界中的应用,让学生在具体的情境中感知数学的魅力。
4.通过课堂讲解、课后作业、实践拓展等多种教学手段,帮助学生巩固一次函数知识,形成系统的知识体系。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣和热情,培养他们勇于探索、追求真理的精神。
数学北师大版八年级下册综合与实践《生活中的“一次模型”》

北师大2014版数学八年下册级综合与实践生活中的“一次模型”贺兰县第四中学金朝东一、学情分析1、到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也对这三者之间的内在联系有了初步的认识,初步感受到了这三个“一次模型”的广泛运用。
2、学生对于这样的开放式课堂比较缺乏经验,可能在思考、交流、表达观点等方面不够有效,不够规范,但是积极性和参与热情是足够的。
二、教学目标1、通过回顾总结,尝试提出问题,发现并运用一元一次不等式与一元一次方程、一次函数解决的一些实际问题具有相同的生活情境,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。
2、综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的内在联系。
3、会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。
三、重点难点1、教学重点:进一步加深一元一次不等式、一元一次方程与一次函数三者之间的内在联系的认识,并运用“一次模型”解决实际问题。
2、教学难点:理解为什么能将这三者集中融入一个问题情境,并能初步感知如何将这些“一次模型”运用在一个生活背景中解决不同情况下的问题,将研究的过程和结果形成报告并展示交流。
四、教学准备1、指导学生复习一元一次方程、一元一次不等式、一次函数的相关内容。
2、指导学生如何撰写数学研究方案。
3、将学生合理分成研究小组,提前预设一些生活中的实际问题,让学生提出问题并汇总确定好主题,进行数据的收集、整理、分析,共同形成方案。
一元一次不等式kx+b>c(k≠0) 不等式一个未知数,解是范围一次函数y=kx+b(k≠0) 等式两个未知数,都是变量内在联系三者都是描述现实世界中的量与量之间的关系的模型。
例如:已知某地居民生活用水收费标准,用水量与水费之间的关系在特定条件下就可以转化为可以用以上三种模型解决的实际问题。
同学们仔细回想一下,在整个的学习过程中,生活情境基本上是相同的,比如我们从七年级到八年级,就一直在研究生活用水问题、每月缴纳电费问题、出租车费问题等等,但是同样的这些情境却会出现在不同的知识板块,我们用不同板块的知识解决了同一情境下出现的不同问题,这充分说明知识之间是有内在联系的。
初中数学综合与实践生活中的一次模型课例报告

初中数学《综合与实践---生活中的“一次模型”》课例报告一、主题研究教学设计教学过程教师活动学生活动三、探索研究,解决问题问题:如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数。
以小组为单位测量自己的指距,并填写到表格中。
利用数据,解决问题。
引导学生思考解决生活中的数学问题的一般研究思路以及解题过程中所用到的数学思想与方法。
师板书。
四、分组学习,互助交流师:周末每个小组都选取了一个数学问题进行了研究,有些小组的研究确实值得学习与研究。
老师邀请了六位小组代表为大家详细介绍他们的研究成果。
请同学们下座学习。
师选听部分小组的介绍,并指导学生听完后进行反思、质疑,并提出建议。
出示课前采访的几个小组的切身体会,并于大家一起分享。
再组织学生谈谈学习其他小组的研究报告之后的感悟。
出示学习目标三。
五、课堂小结与归纳六、课后作业与延伸一生上台板演。
板演学生介绍自己的思路。
其他学生提出质疑,展开讨论并最终解决。
小组代表投影巡视中发现的典型性问题,并通过提问的方式得以解决。
思考:1、解决这个问题用到了哪些数学模型?2、一元一次方程、一元一次不等式与一次函数之间有什么联系?思考:1、解决生活中的数学问题的一般研究思路是什么?2、解决问题的过程中遇到了哪些数学思想与方法?挂住本节课目标的达成情况,回顾本节课的数学模型、研究思路、数学方法等,课后对本组的研究报告继续完善,并张贴,以供后续评优与研究。
观察点:1、目标出示的方法;2、教师提问的效度;3、学生展示的时机、方法。
二、一次磨课、授课后反思本节课课初选择让几个小组代表上台展示他们小组周末的研究报告,让其他学生在聆听的过程中分析他们的优点,并提出修改建议。
但整个过程耗时较长,而且其他小组同学因为事先没有对其他小组的问题进行研究,所以听起来有些费力,效果不好,可以让几个研究成果比较详实、优秀的小组将研究报告张贴到墙上,然后让全班同学分组下座去聆听、学习。
八年级数学下册《生活中的一次模型》教案、教学设计

一、教学目标
(一)知识与技能
1.理解一次函数的概念,掌握一次函数的图像特征及其性质;
2.学会运用一次函数解决实际生活中的问题,如气温变化、物品价格等;
3.能够根据实际情境列出一次函数的表达式,并运用其解决相关问题;
4.掌握一次函数与不等式的关系,学会解决一次不等式问题;
(4)利用多媒体教学手段,如几何画板,辅助学生直观地认识一次函数的图像;
(5)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学策略:
(1)针对重点内容,设计递进式的教学活动,让学生逐步掌握一次函数的概念和性质;
(2)针对难点内容,采用分解法、比较法等策略,帮助学生突破难点;
(3)注重课堂反馈,及时调整教学进度和策略,满足学生的个性化需求;
(2)在实际问题中,能够准确地找出变量之间的关系,列出一次函数表达式;
(3)解决一次不等式问题,理解其在生活中的应用。
(二)教学设想
1.教学方法:
(1)采用情境教学法,引入生活实例,让学生感受一次函数在生活中的广泛应用;
(2)运用任务驱动法,设计具有挑战性的任务,激发学生的探究欲望;
(3)实施启发式教学,引导学生通过观察、分析、归纳等方法,发现一次函数的性质;
2.提出问题:生活中有哪些现象可以用数学模型来描述?这些现象有什么共同特点?
3.引导思考:通过对比、分析,引导学生发现这些现象都可以用一次函数来描述,从而引出本节课的主题——生活中的一次模型。
(二)讲授新知
1.一次函数的定义:教师给出一次函数的一般形式y=kx+b,并解释其中k、b的含义。
2.一次函数的性质:通过几何画板演示一次函数图像的生成,引导学生观察图像特点,总结一次函数的性质。
北师大版数学八年级下册《⊙生活中的“一次模型”》说课稿1

北师大版数学八年级下册《⊙ 生活中的“一次模型”》说课稿1一. 教材分析北师大版数学八年级下册《生活中的“一次模型”》,是学生在学习了函数基础知识后,进一步接触实际问题的一次函数模型的学习。
本节课通过具体的生活实例,让学生了解一次函数在实际生活中的应用,培养学生的数学应用意识。
教材内容主要包括:一次函数模型的建立、一次函数模型的应用以及一次函数模型在实际问题中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本知识,对一次函数的概念、性质有所了解。
但学生在解决实际问题时,往往不能将数学知识与实际问题有效地结合起来,缺乏解决实际问题的能力。
因此,在教学过程中,需要关注学生对一次函数模型的理解和应用,引导学生将数学知识运用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解一次函数模型的建立过程,学会用一次函数模型解决实际问题。
2.过程与方法目标:通过生活实例,培养学生从实际问题中提炼数学模型的能力,提高学生的数学应用意识。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣和自信心。
四. 说教学重难点1.教学重点:一次函数模型的建立,一次函数模型在实际问题中的应用。
2.教学难点:如何引导学生从实际问题中提炼出一次函数模型,并运用到问题解决中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示生活中的一些实际问题,引发学生对一次函数模型的思考,激发学生的学习兴趣。
2.探究新知:引导学生从实际问题中提炼出一次函数模型,并总结一次函数模型的建立过程。
3.实例分析:通过具体的生活实例,让学生了解一次函数模型在实际问题中的应用,培养学生的数学应用意识。
4.小组讨论:让学生分组讨论,分享各自在生活中发现的一次函数模型,进一步巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合与实践生活中的“一次模型”宜昌市长江中学程燕云一、学生起点分析到目前为止,学生已经学习了一元一次不等式、一元一次方程与一次函数,积累了一定的知识基础和活动经验,也发现了它们彼此之间的联系,初步感受到这三个基本数学模型的广泛应用。
但是,由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。
二、教学任务分析本课题是以探索一元一次不等式与一元一次方程、一次函数的综合应用为主题的实践活动,一方面可以使学生体会一元一次不等式与一元一次方程、一次函数之间的内在联系,初步形成对数学知识系统性的认识,发展学生的概括能力、数学研究能力;另一方面通过调查活动使学生充分认识数学知识在现实生活中的广泛应用,激发学生的学习兴趣,引发学生的数学思考,发展学生的数学抽象能力,综合应用数学的能力,做到在学数学的同时自觉的用数学。
相比前面的课题学习而言,本课是自主活动类型的课题学习,以一种新的形式呈现,任务的给出比较宽泛,没有给定的背景,没有具体的安排,只是给出了一个原始的问题,规定了一个大的方向:要求将一元一次方程、一元一次不等式和一次函数集中融入一个问题情境,至于说具体研究哪些问题、如何研究等完全由学生自主选择,因而,保证了学生学习的自主性、选择性和学习结论的开放性,给学生提供了发现问题,提出问题的机会,进一步发展学生的应用意识和创新意识。
因此,本节课的教学目标定为:⒈经历用数学的眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。
⒉综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的内在联系。
⒊会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。
三、教学过程分析在教学过程中安排两课时。
第一课时引领学生回顾总结,发现应用一元一次不等式、一元一次方程与一次函数解决的一些实际问题,在此基础上,学生依据不同的学习背景选择问题情境,小组讨论确定研究主题,拟定解决问题的方案,研究分析需要获取的有效数据。
具体教学过程如下:分为以下四个环节:第一环节:知识回顾,建立联系;第二环节:讨论交流,提出问题;第三环节:组建小组,确定方案;第四环节:交流评价,完善方案。
第二课时交流评价。
分为两个阶段:第一阶段以小组为单位进行交流展示。
重点展示研究调查过程和结果概述;第二阶段小组互评,选出优秀课题和优秀调查报告。
从交代问题情境、数据的来源、建立何等模型、求解过程、相关解释及应用几个方面对调查报告进行评价。
设计意图:考虑到这样形式的课题学生还是第一次做,所以,在正文中明确的提出两点要求,作为“扶手”:一是对学生拟定方案环节做了方向的指导;二是对汇报交流的报告做了必要的内容要求。
这样可以让学生在做课题时,目的性更明确,不至于“走偏”。
通过第二课时的小组汇报,教师、同伴的交流与评价,学生反思自己的调查过程与研究结果并进一步修正与完善,提交课题活动感想。
第一课时教学过程展示:第一环节:知识回顾,建立联系1.举例说明一元一次方程(组)、一次函数、一元一次不等式(组)之间有什么样的关系?2.举例说明生活中常见的用一元一次方程(组)或一次函数或一元一次不等式(组)相关知识解决的实际问题。
设计意图:在问题的求解过程中,教师引导学生切身体会并探究三者之间的内在联系,为后续建立数学模型并求解实际问题奠定基础。
第二环节:讨论交流,提出问题在学生提出的实际问题基础之上,汇总出几个有价值的研究材料供学生选择。
材料1探索出租车如何计价1.日间出租车价与里程数之间的函数关系;2.夜间出租车价与里程数之间的函数关系;3.当遇到红灯或堵车时的计价情况等。
材料2探索商场促销现象节假日商场经常打出打折的牌子,在各种以打折名义进行的促销活动中,如何选择最实惠的商品是大多数人常常面临的问题。
调查学校或居住小区附近某一商场的促销方式,列出相应的方程、函数或不等关系并作出分析,用你得到的结论,指导周围的人理性消费。
材料3关于集资活动的调查1.学校的社团常常需要筹措资金,如果你是某个组织中的成员,请列出一张清单,写出你所需要的资金项目。
2.在1的基础上,计划一下资金增长的方式,当你完成你的计划时,同时考虑一下为了增长资金是否还需要一些必要的开销,用方程、不等式和函数表示你的计划及盈利情况。
3.将你筹措资金的情况展示给大家,做一个报告叙述你的观点,并与同伴交流,报告中要用到2中的方程、不等式和函数。
材料4:关于教育开销的调查1.计算一下自己从现在起到参加工作,总共需要多少教育资金。
2.考虑你如何支付这些费用,帮家长写一个储蓄计划。
3.用不等式来表示你从各种渠道所能储蓄的钱的最低数量。
4.将你的调查与同学交流一下,让大家看看你的调查是否可行?如果可能请他们提供改进的建议。
材料5:伴着人类电子行业的迅速发展,手机的用途越来越广,越来越被我们青睐,因此话费问题也经常会被纳入家庭经济核算.如今的话费收取种类众多,如何选取最适合自己的一套方案也被人们所重视.我们就对话费的选取这方面进行研究与调查.首先提供一张王先生10月份话费清单:请根据所学一元一次方程、一元一次不等式或一次函数等知识,构造相应数学模型,结合实际情况帮助王先生选择一种较合适的话费方案.设计意图:由于学生习惯于解决已给定的具体问题,见到这样一个较为宽泛的课题,可能无法确定所要研究的对象,或者虽然确定了问题情境,但各个量之间的关系较为复杂,因此不能按照课题的要求理出解题方案。
这时,需要教师依据学生的学习水平,给予恰到好处的帮助,在数学模型的建立,方程、不等式、函数关系的构造等方面,可以让不同认知水平及能力层次的学生都经历“问题情境—建立模型—求解—解释与应用”的研究过程。
在深度上,不同认识层次的学生可以选择不同的问题情境,又可以不同程度地融合数学知识,让不同的学生在数学上得到不同的发展第三环节:组建小组,确定方案1.在教师的指导下,学生根据自己的情况选择合适的研究内容组成研究小组。
组内人员进行明确分工。
2.组内讨论,形成完整的调查研究方案。
第四环节:交流评价,完善方案1.分小组在班上交流调查方案,并对每个方案进行评价提出修改建议。
2.组内完善方案。
利用可与时间进行实地调查,完成调查报告。
设计意图:学生通过经历这样的数学活动,体会数学学习不仅仅是做习题,而且要学会用数学的视角分析现实问题,揭示并理解现实问题。
必要时,教师可以提供一些背景,提出研究方向,给出一些具体的问题等。
评价建议1.本课题评价的重心在于让学生真实体验数学问题研究和解决的全过程。
2.关注学生自主参与,培养合作能力和反思意识。
3.关注学生模型思想的建立,即能从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。
4.关注学生用数学的视角分析和理解现实问题。
对于问题研究的深度,可以让不同认识层次的学生选择不同的问题情境,也可以不同程度的融合数学知识,让不同的学生得到不同的发展。
5.关注学生对于一元一次方程、一元一次不等式及一次函数的综合运用能力,研究成果的逻辑性、实用性以及报告的精练、准确程度。
附:学生调查报告的参考材料与点评生活中的“一次模型”提供者:南京市第二十九中学刘黔昉评析:石家庄市教育科学研究所张惠英课题素材:家庭用电成本如何节约?案例说明:本案例以追求家庭最低用电成本为主线贯穿,从家庭峰谷用电量的实际数据、峰谷电价的差异,到家用电器功率以及用电时间的调查、整理分析,反馈课题活动小组的研究课题选题的意义、研究方向的正确性、研究方法的合理性以及研究结论的实用性。
当然,类似的,教师还可以指导学生做水表费用和煤气表费用的调查。
学生作品:一个小组的课题报告一元一次不等式与一元一次方程、一次函数问题的调查小组成员:严昕、肖晴、苏玮奕、冯艳蕾、戈绍男、路皓引言今天,我们小组正在路皓家讨论数学活动.突然,一阵敲门声打断了我们的谈论,原来是小区的物管人员来查电表. 一位同学建议:为什么不以小区内的用电方案作为我们的活动主题呢?收集数据南京现在有两种用电收费方法:路皓家所在的小区用的电表都换成了分时电表.问题:家庭使用分时电表是不是一定比普通电表合算呢?解决问题解:设某家庭某月用电总量为a千瓦·时(a为常数):谷时用电x千瓦·时,峰时用电(a-x)千瓦·时,分时计价时总价为y1元,普通计价时总价为y2元.则函数关系式为:y1=0.35x+0.55(a-x),y2=0.52a.1.当0.35x+0.55(a-x)=0.52a时,解得x=0.15a.此时,y1=y2.说明如果一个家庭把每月的用电量的15%放在谷时使用,则两种方法费用相等.2.当0.35x+0.55(a-x)>0.52a时,解不等式,得x<0.15a.此时,y1>y2.说明如果一个家庭每月在谷时的用电量小于每月总用电量的15%,则普通电表合算.3.当0.35x+0.55(a-x)<0.52a时,解不等式,得x>0.15a.此时,y1<y2.说明如果一个家庭每月在谷时的用电量大于每月总用电量的15%,则分时电表合算.路皓家最近两个月用电的收据:根据上表,我们进行了计算:x=181,a=181+239=420。
x÷a=181÷420≈0.430.43>0.15所以用分时电表是合算的.(当然,仅仅根据一个月的数据来判断是远远不够的,需收集多个月的数据来判断,这里由于时间较短,无法收集齐全.)深入探究根据分时电表的特点,除了日常必须按时进行的一些用电外,如果能将可调用电时间控制在21:00~8:00(谷时),使ax的值尽可能大,就可以最大限度地节省电费.对此,我们进行了归纳和分析:根据上表,我们小组成员们认为可以将洗衣、烧水等时间可调、功率较大的电器放在谷时工作,这样就可以充分发挥分时电表的优势,使ax的值尽可能大,就可以最大限度地节省电费,如果家家户户都能这样做的话,必定可以节省一笔不小的开支.后记其实不仅用电是这样,生活中许多方面也是这样,比如银行存款、贷款的选择等.只要你多注意生活中的细节,做个有心人,不说一定节约多少开支,至少能为你的生活增添不少乐趣吧.这一次,我们小组在实际生活问题的基础上,建立了数学模型,运用了一次函数、一元一次方程和一元一次不等式,把它们三者紧密地联系在一起,解决了日常生活中的问题.此外,我们还学到了一个理财的小技巧.真是处处留心皆“数学”呀!点评:该小组同学提交的课题报告结构合理,对活动过程的描述清晰,主题选择贴近即生活实际,又运用了“三个一次”的数学模型,由生活原型感悟“三个一次”数学模型的作用。