风电新能源的发展现状及其并网技术的发展前景研究

合集下载

风力发电技术的发展现状及未来趋势

风力发电技术的发展现状及未来趋势

风力发电技术的发展现状及未来趋势近年来,随着全球环保意识的不断提高以及化石燃料依赖的问题逐渐浮出水面,风力发电成为了备受重视的清洁能源。

风力发电作为一种可再生能源,具有非常优秀的环保性和可持续性。

因此,风力发电技术的发展已经成为国际能源领域的重要议题。

本文将探讨风力发电技术的发展现状及未来趋势。

一、风力发电技术的发展现状1. 国际风电市场趋势根据行业分析机构的数据,全球风电装机容量在过去十年间增长了15倍。

截至2019年,全球累计装机容量已经达到了651GW,其中,欧洲和中国是最大的市场。

据欧盟环保总署的数据,欧洲在2020年7月时已有220GW的风电装机量,实现了在欧盟总用电量中所占份额已经超过了20%的目标。

同时,欧洲在可再生能源领域的投资也在不断地增加。

在中国,自2014年以来,每年新增风电发电量始终保持在2000万kW以上。

同时,中国已经成为全球最大的风电市场,截至2019年,其年新增装机容量已达到了20609MW。

2. 风力发电技术的进步随着技术不断提升,风力发电的装机容量、效率和成本都有了显著的提高。

在风机的设计和制造方面,随着计算机辅助设计(CAD)和计算机辅助制造(CAM)技术的应用,风电叶片、轮毂等机械部件的制造精度不断提高,动力性能也得到了大幅优化。

同时,在风力发电控制和监控方面,智能化处理技术与人工智能技术的迅速发展也为风力发电带来了巨大的推动。

3. 风力发电技术的困局在风力发电技术的快速发展中也存在一些困局。

首先,由于风力发电的不稳定性,电网对其接纳能力有一定限制,这也制约了风电的进一步推广和应用。

其次,风能资源分布不均匀,且受地形、气候等自然因素影响,这也对风力发电的发展带来了一些难题。

二、风力发电技术的未来趋势1. 风力发电装机容量的进一步增长根据多家机构发布的报告,风力发电未来的市场前景非常乐观。

根据国际能源署(IEA)的预测,到2030年,全球风电装机容量将超过6000GW,年新增装机容量将会达到300GW。

风能技术的发展现状与未来趋势分析

风能技术的发展现状与未来趋势分析

风能技术的发展现状与未来趋势分析概述:近年来,世界各国对清洁能源的需求不断增加,风能作为一种可再生能源备受关注。

本文将分析风能技术的发展现状以及未来趋势,并探讨其在能源转型中的地位和作用。

一、风能技术的发展现状1. 增长态势迅猛:近年来,全球各国对风能技术的投资不断增加,风电装机容量不断扩大。

特别是在欧洲和中国,风能发电已经成为重要的能源来源,电网接入能力和产业规模也不断提升。

2. 技术突破与创新:风力发电技术从传统的水平轴风力机逐渐发展到现代的垂直轴风力机和深海风电。

同时,各种新型风力发电机组投入使用,如直驱风机、齿轮箱减少型风机等。

3. 风电成本下降:随着技术的发展和规模的增大,风电的成本不断下降。

尤其是在风机制造、运维和电网接入方面的成本降低,使得风能发电逐渐具备竞争力。

二、风能技术的未来趋势1. 大规模风电开发:随着对清洁能源需求的增加以及技术的进步,未来将会有更多的大规模风电场建设。

同时,风电场的规模将会更大,并且在海上风电和远海风电的开发上会有更多突破。

2. 大数据和人工智能的应用:随着大数据和人工智能技术的发展,风能行业将会更好地应用这些技术。

比如,通过大数据分析风速、风向等数据,优化风机的布局和运行;通过人工智能算法,提高风电场的发电效率。

3. 高效风能转换技术:未来,风能转换技术将会更加高效,从而提高风能的利用率和发电效益。

例如,利用新型材料和结构设计,改进风机的气动性能;发展可调控和预测性强的风机,以适应变化多样的气象条件。

4. 能源储存技术的研发:风能的不稳定性是目前面临的一个难题,因此,能源储存技术的研发将成为未来风能行业的重要方向。

例如,利用电池储能、氢能储能等技术,将风能转化为可靠的电力供应。

5. 国际合作与政策支持:风能技术的发展需要国际合作和政策支持。

各国应加强合作,共享技术和经验,共同推动风能技术的发展。

此外,政府应出台相应的政策,提供资金支持和减税优惠,以推动风能行业的健康发展。

新能源风电的发展现状与未来趋势分析

新能源风电的发展现状与未来趋势分析

新能源风电的发展现状与未来趋势分析随着全球对环境问题的关注日益增强,新能源的开发和利用变得尤为重要。

其中,风能作为一种无污染的可再生能源,受到了广泛关注。

本文将就新能源风电的发展现状和未来趋势进行分析。

新能源风电的发展现状:在全球范围内,风能已成为最具潜力的替代能源之一。

特别是近年来,随着技术的不断进步和成本的不断降低,风电的装机容量迅速增长。

根据国际能源署(IEA)的数据,截至2020年,全球风电装机容量已超过700吉瓦,占可再生能源装机容量的比例达到约18%。

其中,中国是全球最大的风电装机国家,其装机容量占到全球总量的30%以上。

风电的快速发展离不开科技进步的推动。

风力发电机组技术的突破,以及风电场建设和运维技术的不断提升,使得风电产能得以快速拓展。

同时,风电的经济效益也不断提高,这也使得更多国家和地区开始重视风电的发展。

然而,新能源风电的发展仍面临一些挑战。

首先,风电的可靠性和稳定性有待提高。

由于风力资源的不稳定性,风电的发电效率存在一定波动。

其次,风电场的环境适应性需要进一步加强。

在一些地区,由于环境原因和社会因素等,风电场的建设面临一定的阻力。

此外,风电设备的维护和运营也是个不容忽视的问题,需要高效的管理和技术支持。

新能源风电的未来趋势:未来,随着对新能源的需求不断增加,新能源风电有望继续蓬勃发展。

首先,技术创新将成为新能源风电发展的核心驱动力。

通过提升风力发电机组的性能和效率,以及优化风电场的设计和运维方式,将进一步提高风电的可靠性和经济性。

其次,风电产业的国际合作也将越来越重要。

在全球环境保护的共识下,各国将加大合作力度,共同推动风电技术的发展和应用。

尤其是在一带一路倡议的推动下,风电技术的国际传播和合作将得到进一步加强,为全球风电产业的发展注入新的动力。

此外,政策的支持也是新能源风电持续发展的关键。

各国政府应加大投资力度,出台相关政策,降低新能源风电的生产成本,推动其在能源体系中的比重进一步提升。

风电新能源的发展现状及其并网技术的发展前景研究

风电新能源的发展现状及其并网技术的发展前景研究

风电新能源的发展现状及其并网技术的发展前景研究风电新能源是近年来得到广泛关注并快速发展的清洁能源之一。

随着全球对可再生能源的重视程度不断提高,风电新能源的发展现状及其并网技术的发展前景也备受关注。

本文将从风电新能源的发展现状和并网技术的发展前景两个方面进行深入探讨,希望能够为相关研究和实践提供一定的参考。

一、风电新能源的发展现状1.发展概况风电新能源是指利用风能转换成电能的一种清洁能源。

近年来,随着全球对环境保护和可持续发展的重视,风电新能源得到了迅速发展。

截至目前,全球风电装机容量已经超过了6万兆瓦,年发电量为约6600亿千瓦时,占全球电力需求的5%左右。

中国、美国、德国等国家是风电发展的主要推动者,占据了全球大部分的风电装机容量。

2.发展优势风电新能源具有明显的发展优势。

风能资源分布广泛,且具有丰富的储备量,全球范围内可以利用的风能资源远远超过目前的利用水平。

风电新能源是一种无污染、可再生的清洁能源,不会排放温室气体和污染物,对环境友好。

风电发电成本逐年下降,已经具备了一定的经济竞争力,同时可以带动就业,并推动相关产业链的发展。

3.发展挑战尽管风电新能源发展势头迅猛,但也面临着一些挑战。

风电资源的不稳定性和不可控性使得风电的发电效率和系统稳定性受到限制。

风电并网对电网的技术要求较高,需要解决输电技术和储能技术等方面的难题。

风电建设和运维成本较高,需要持续改进技术和降低成本。

1.技术现状风电并网技术是指将风电场的发电设备与电网有机结合,实现风力发电机组按照电网要求稳定运行,履行电气能源的调度任务,并保证电网的安全、稳定运行。

目前,随着风电装机规模的不断扩大,风电并网技术也在不断创新和升级。

主要技术包括风电场的接入方式、风电场的并网保护、风电场的运行控制等方面。

2.发展前景未来风电并网技术有望迎来更加广阔的发展前景。

随着风电装机容量的增加,风电并网技术将面临更高的要求,需要不断提升智能化、自适应化和柔性化。

风力发电技术的发展现状及前景分析

风力发电技术的发展现状及前景分析

风力发电技术的发展现状及前景分析一、引言风力发电作为一种绿色、清洁、可再生的能源,近年来越来越受到全世界的重视。

作为最早被利用的可再生能源之一,风力发电技术在过去的几十年里取得了快速的发展。

本文将从技术发展的角度出发,分析风力发电技术的现状和前景,并探讨未来的发展趋势。

二、风力发电技术的现状1.技术原理风力发电是一种利用风能转动风轮带动发电机发电的技术。

当风速达到一定的速度时,风轮开始旋转,产生连续的动能,并通过转动的轴将动能转换成电能,供应给电网或存储在电池中。

风力发电技术的核心是风机和发电机,其中风机的转子叶片具有重要的作用,它可以将风能转换成机械能,进而带动发电机转动并发电。

2.技术现状自19世纪70年代以来,风力发电技术经历了几十年的发展,取得了重大的进展。

目前,风力发电已经成为全球最快速增长的可再生能源之一,其全球装机容量已经达到了757 GW。

同时,风力发电技术也在不断地完善和提高,目前的风力发电机组已经达到了5 MW以上的容量,其转子直径可以达到100米以上,生成的电能可以供应到数千户家庭或企业使用。

此外,风力发电已经成为国际上公认的最成熟的可再生能源之一,并得到了广泛的应用和推广。

在全球范围内,风力发电已经成为低碳经济和清洁能源的重要支柱。

3.发展趋势从全球范围来看,未来风力发电技术的发展前景非常广阔。

根据国际风能协会的预测,到2030年,全球风力发电的装机容量将达到2400GW以上。

在中国等新兴市场中,风力发电技术也得到了广泛的关注和应用。

根据国际能源署的预测,未来20年内,中国将成为最大的风力发电市场之一,年均新增风力发电容量将达到约160GW。

尤其是在中国的海上风电领域,未来的发展将非常迅速,海上风电在未来十年内将成为中国最大的风电市场之一。

三、风力发电技术的未来发展方向1.技术的完善未来风力发电技术的研究方向主要包括:提高风力发电机组的效率、降低成本、延长寿命、减轻负载和提高性能等。

风电新能源及其并网技术的发展现状探究

风电新能源及其并网技术的发展现状探究

风电新能源及其并网技术的发展现状探究摘要:我国风能资源丰富,但是在实际利用上存在诸多限制,风电新能源作为一种具有显著生态、经济效益的资源开发形式,近年来受到了全社会的广泛关注。

作为自然资源能源转换的重要形式,与传统热能生产电力方式相比较,其生态价值更为显著,完全符合绿色社会发展理念。

尽管风能的好处是如此明显,但在电网连接过程中仍存在一些缺点,影响电网的稳定性。

在此基础上,有必要结合风电发展趋势,加强新能源并网技术的研究和应用,使其更好地发挥生态、经济、能源作用。

关键词:风电新能源;并网技术;发展现状引言风能属于可再生清洁能源,在使用过程中基本无污染,已在各国获得了较广泛的应用。

作为一种可再生资源,风能是无污染和无害的,但风向和风速是不确定和间歇性的,这使得很难有效地利用和储存风能资源,使得各国对风能资源的利用在技术上更加有限。

凭借电网本身的连接技术的优势和功能不断优化,可以有效提高传统风力资源的利用,最大限度地实现电力系统的高质量发展。

我国海岸线较长,和其他国家相比,在风力资源上有非常大的优势。

随着我国风力发电技术的发展和社会电力需求的增加,其单机容量、并网规模等方面一直处于扩张中,风电发展势头越来越强,对并网技术也提出了越来越高的要求。

1风电新能源的特点风电新能源是指借助相关设备进行风能向电能的转化,并将这部分电能供于社会生产、生活使用,减少消耗煤炭、天然气等不可再生资源。

作为源于大自然的可再生资源,风能在利用过程中不会产生环境污染和破坏,是良好的清洁能源。

不过,风电新能源也存在着一些不利于使用和发展的特点,主要如下。

(1)稳定性差。

作为过程性能源,风电新能源受风力、风向、风速等因素影响较大,有着极大的随机性,无法被人为控制,很可能在短短几分钟内发生巨大变化,也很难受风力发电机的调节和管理,导致风电机组发电量不稳定。

(2)风能储存困难。

虽然我国有着非常丰富的风力资源,但总的来说,风能储存量并不大,这主要与风能欠稳定、难以储存及储存成本大有关。

风电新能源发展现状及技术发展前景探究

风电新能源发展现状及技术发展前景探究

风电新能源发展现状及技术发展前景探究摘要:随着社会和国家的发展,人们对新能源的开发与利用也受到了广泛的关注,并且随着可持续发展观念的推广,人们也认识到了新能源是我们强国发展的最好出路。

风电新能源是通过对风力的利用带动机械转动从而产生电力,并且通过科学的设备将产生的电力进行使用。

风力发电是非常绿色环保的新能源,通过对自然风力的利用产生我们生活所需的电力,这十分符合我们的可持续发展观念,而本文也将简述风力新能源发展现状及技术发展前景。

关键词:风电新能源;发展现状;技术发展;前景研究随着世界的工业和生活发展都得到了提高,人们也逐渐意识到了石油煤炭等能源资源的数量已经肉眼可见的减少,因此新能源的推广将是人类的发展与进步的最关键步骤。

因大量的开采和使用能源让人们的生活环境已经受到了巨大的破坏,各地已经出来了极端天气让人们十分苦恼,但是大力发展低碳生活推行风力新能源可以减少因为消耗石油等能源产生的有害物质,改善了人们的生活环境,为人类的健康生活提供了帮助。

当前我国的风电新能源虽然在大部分地区已经受到了推广,但是核心技术仍没有得到突破,这也意味着我国的风电新能源有着广阔的发展前景,并且针对核心技术进行研究可以为我国的综合国力提升作出重大帮助。

1风电新能源发展现状大约在20世纪80年代中期我国的风电新能源已经正式投入社会中进行使用,那时该行业的发展目标主要是沿海地区、华北平原以及新疆戈壁地区等风力资源较足且较为平坦的地区。

因为这些地区的地形特点风电新能源产生的能源十分充足,满足了这些地区的居民用电和生产用电,让该地区的许多居民认识到了风电新能源的益处,从此以后风电新能源也得到了广泛的传播。

再加上我国大力推展可持续发展,因此风电新能源也受到了国家的大力支持,这使得我国的风电新能源核心技术有所提高生产和储存电能的效率也得到了提高。

就是在这样的社会行情和国情下,我国的风电新能源得到了巨大的发展和推广,与此同时该行业吸纳了许多科研人才为将来风电新能源的提高和发展作出贡献。

风电场并网技术现状及发展趋势分析

 风电场并网技术现状及发展趋势分析

风电场并网技术现状及发展趋势分析
风电场并网技术是指将风力发电机的电能连接到电网中,并实现高效稳定的能量转移的整个系统。

当前,随着风力发电技术的不断发展,风电场并网技术也在不断完善和提升。

现状:
1. 并网方式多样化:目前风电场并网方式多种多样,包括串联并网、并联并网、子阵并网等等。

2. 智能控制系统:由于风力发电的功率和风速等因素的不稳定性,需要采用智能控制系统进行调节和管理。

3. 电力电子技术:采用电力电子技术可以更好地控制风力发电机的功率、频率和功率因数。

4. 并网电压稳定性:并网电压稳定性对风电场并网技术的可靠性和稳定性至关重要,需要通过技术手段确保并网电压的稳定。

发展趋势:
1. 大型化:风电场将越来越大型化,需要采用更先进的并网技术来保证风电场的稳定性和可靠性。

2. 智能化:智能化的控制系统和数据分析技术将在风电场并网技术中发挥更大的作用。

3. 低碳化:风电场并网技术将越来越注重低碳化、环保和可持续发展,发展更优化的风电场建设和运营管理模式。

4. 多能互补:未来风力发电将和其他清洁能源形成多能互补,同时需要采用更高级的并网技术来实现多种能源之间的协调合作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电新能源的发展现状及其并网技术的发展前景研究
作者:邹璐
来源:《无线互联科技》2019年第17期
摘 ; 要:风力发电以其资源丰富、成本低廉、开发方便、节能环保的优势成为可再生能源中发展最快的清洁能源,被世界各国大规模开发和应用,其发展前景十分广阔。

文章首先对我国当前风力发电技术的现状进行了简要概括;其次,阐述了风电新能源的特点以及风电并网对传统电网的影响;最后,探讨了风电并网发电技术的发展趋势,希望能够推动风力发电技术的创新发展和应用。

关键词:风电;新能源;并网技术
当今人类生存和发展急需解决的是能源和环境问题。

进入21世纪以来,世界各国为了保证各自的能源安全并应对气候变化,纷纷调整能源战略,加大可再生能源的开发和建设力度,尤其是风能的开发和利用。

风力发电作为一种可再生的绿色能源,以其无污染、储量丰富、成本低廉、使用前景广阔的优势倍受世界各国的重视。

我国由于海域面积辽阔,风能储量很大且分布较广,开发潜力很大。

近年来,在能源和环境危机日趋紧迫的情况下,我国政府实施了一系列新的能源战略,对能源结构进行了调整,风电产业及技术水平得到了飞速发展,但在风电并网技术方面还存在一些问题,总结并分析如何解决这些问题,对深入推进风电产业的健康、可持续发展意义非凡。

1 ; ;我国风力发电技术现状
我国的风力发电起步较晚,20世纪80年代中期风力发电开始进入商业化运营阶段。

虽然较之国外尚存在一定差距,但在国家利好政策的支持和推动下,风力发电事业得到了迅猛发展。

从2005—2008年的4年时间里,全国风电装机容量由126 kW增长到1 221万kW,以每年一翻的惊人速度发展着,远远领先于世界风电发展的平均速度。

2009年年底,我国以风电总装机容量2 601万kW的数据位居世界第二,其中新增装机容量为1 300万kW,占世界新增装机容量的30%以上,居于世界首位。

这一数据充分证明我国风电产业正在步入一个飞速发展的阶段,同时,在技术上,经历了从引进技术到消化吸收,再到自主创新,一系列改变之后正日益发展壮大起来。

兆瓦级机组在国内风电市场的大量普及,标志着我国对风电技术自主研发能力的提升。

此外,我国对海上风电也进行了积极的探索和实践,从2008—2015年的7年时间里,海上风电的装机容量有了大幅度的增长。

2016年,仅海上风电新增装机就有154台,容量高达59万kW,同比增长50%之多。

由此看来,我国的风电产业发展是非常迅速的,潜力十分巨大。

但是,我国的风电技术还存在很大的不足,主要体现在:并網型风机以进口为
主,风电在整个电网中的占比相对较小,一些关键零部件还是靠进口,没有制定健全的风电并网规范,不能保证风电并网的稳定运行。

未来我国风电技术发展任重而道远,必须在高层技术方面寻求创新和突破,才能继续保持高速发展。

2 ; ;风电新能源的特点
风力发电是在风力发电机及其控制系统的作用下,将风能产生的机械能在完成一系列控制操作后转化为电能的过程。

风能发电的特点在于风能是可再生的,发电过程中不会释放废气造成污染,具有节能环保且造价低的优点,但也存在一些不易控制的因素[1],具体如下。

2.1 ;风能具有不稳定性
风能是一种间断性能源,风速和风向随季节和气候的变化而发生变化,致使风能具有随机性和间歇性,这些不稳定的特点决定了风力发电机很难调控出力大小的均匀度,因此,风电机组发出的电能也是波动的、随时变化的。

2.2 ;风能的密度稀疏,风能发电不方便大量储存
风力发电机的风轮尺寸只有做到足够大,才可以取得与其他发电设备相同的发电容量。

风力发电系统储存电能的成本很高,远大于其发电的成本,因此,整个风电系统中几乎没有蓄电的能力,一般是通过调节收纳电量来完成输电,所以风能发电输出电量的大小是不均衡的,对并网的技术提出巨大挑战。

2.3 ;风电场分布位置偏远
我国风资源丰富的区域一般在沿海地区,居住人口稀少,距离用电负荷中心较远,加之当地电网架设结构薄弱,风电外送受到一定制约,急需加强电网建设,这使国家的电网建设及传输都面临考验。

此外,风能的不可控性导致风能发电的电网具有不可调度性,这些不稳定因素造成的结果就是:风电场容量在整个电力系统中的占比是引起电网稳定性的决定因素,即占比越大,电网稳定性越差。

3 ; ;风电并网主要存在的问题
为应对当前的环境问题以及改善能源紧张状况,发展风力发电成为我国能源战略的重要组成部分。

大基地大电网的风力发电开发模式正在被积极推进,我国开始规划筹建千万级的风电基地,但大规模的风电并网却给既有的电网带来了不小的压力。

3.1 ;风电并网会影响到电网的电力平衡
风力发电是一种新的发电方式,风能具有的不稳定性会导致风电出力不均衡,风力发电输出功率不稳定,特别是在高峰负荷时期,风电场可能出力很小,非高峰负荷期又可能出力很大,引起电力峰值不稳定,进而导致电网运行过程中消耗的能量增加,对整个电力系统的平衡运行造成一定影响。

3.2 ;风力发电并网对既有电网的峰值和频率的改变范围带来一定影响
风电并网增加了电网调峰和调频的难度。

首先,风电并网后电网必须提供给风力发电足够的峰值调整能力,保证电网内部的峰值和频率处在一定的范围之内,但是风能大小的不可控性导致风力发电的功率输出变化幅度很大,给电网的稳定运行带来一定的困难。

其次,在进行风力发电的过程中,风电的间歇性和随机性导致风力发电的数值不够稳定,传统的发电网络必须充分地保证能够满足风力发电的实际需要,这就给电网调频增加了负担。

3.3 ;风电并网对电网稳定性会产生影响
首先,风电的不稳定性和不规律性导致在风电并网过程中,难以有效地对风电进行管理。

其次,风电的随机性导致当其并入整个电网系统后会引起电网局部流量分布的随机变化,使得线路传输的功率随之变化,导致电网状态发生随机变化。

因此,当风力发电并网后,电网输出功率的稳定性受到影响。

再次,风速的不可控变化给电网带来了随机的扰动故障,风电并网后风电的无功功率降低了电网电压的稳定性。

最后,由于风电的不易控制性,在风电并网之后,随着风电比例的扩大,电网系统频率以及系统故障范围将会扩大,进而导致风力发电技术的应用稳定性下降[2]。

此外,风机抗干扰能力较差,也是影响电网安全运行的因素之一。

4 ; ;风电并网技术的发展趋势
4.1 ;对大容量风电系统的研发
目前,我国缺乏对大容量风电系统的研发。

随着国家对风电能源的大规模开发,风电机组单机装机容量不断增大,在此要求下,相关部件和控制子系统的设计难度也越来越大,研发大容量、高性能和可靠稳定的风力发电机成为当务之急。

如何突破这一瓶颈,研发出新的控制、设计技术是目前世界风力发电领域面临的技术难题,因此,大容量风电系统的研发是未来风电系统的重要发展方向。

4.2 ;对并网技术和最大风能捕获技术的研究
风电场受风力和风机控制系统影响很大,其出力往往不太均衡,会严重影响电网安全,因此,为了提高风电系统的可靠性和系统应对故障能力,以实现风电场联网对电网的友好支持,需要对并网技术进行深入研究。

此外,风能的密度较小,如何捕获最大的风能也是未来研究的方向。

目前,对风能进行最优捕获的方法就是通过调节桨距和发电机组功率转速。

从电网运行的经济性、可靠性和可行性等方面考虑,对风电系统的并网技术和最大风能捕获技术的创新研发是当前及未来发展风电的首要任务。

4.3 ;对海上风电场技术研究
我国海域面积辽阔,海上风力资源丰富,风向稳定,易安装单机装机容量较大的风力发电机,海上风电场发电未来有很大的发展空间。

但是,由于海上风力的不稳定性以及沿海与负荷中心的距离较远问题,对风电系统的可靠性设计、海上风电场电能输送技术以及风电场系统保护和维保技术、风电场的协调控制技术都提出了更高的要求。

因此,对海上风电场技术的研究是风电并网亟待解决的重要问题[3]。

5 ; ;结语
面对当前能源紧缺、环境污染严重的局面,风电建设步伐逐渐加快,电网中风电场容量的比例将会越来越大,这将会给电网的稳定运行带来很大的影响。

因此,研究风电并网新技术,合理控制风电并網带来的一系列不稳定因素是当前及未来面临的主要问题。

开展大容量风电系统研究,创新并网技术和最大风能捕获技术,以及发展海上风电场技术可以很好地解决风电发展瓶颈,对于推动风电产业可持续发展、适应国家能源结构调整需求具有重要意义。

[参考文献]
[1]胡冰.并网型风力发电技术的现状及发展趋势探讨[J].科技创业家,2014(3):137.
[2]张全成,张永明,林钧斌,等.风电新能源发展与并网技术分析评价[J].上海节能,2011(3):19-23.
[3]梁亮.风电并网技术发展存在的问题及发展趋势[J].科技与企业,2015(7):95.。

相关文档
最新文档