北师大版(教材)初中八上722定义与命题教案

合集下载

7.2定义与命题说课稿

7.2定义与命题说课稿

《7.2定义与命题》说课稿一、教材分析1、教材地位与作用本节课是北师大版初中数学八年级上册第七章第二节第二课时的内容,是初中数学的重要内容之一。

本节课是学生第一次接触证明,它为学生学习后面的各种几何证明奠定了基础。

因此本节课在教材中具有非常重要的作用。

通过本节课的学习让学生掌握初中阶段必备的基础证明知识,锻炼他们的观察,语言表达能力,以及进一步发展逻辑思维。

2.教学目标:(1)了解公理,定理和证明的含义;理解并牢记8个公理,并能运用它们去判断一个命题的真假。

(2)了解证明的表达格式,会按照规定格式证明简单命题。

二.教法与学法分析1、学情分析:对初中学生来说,他们的抽象思维和归纳能力已初步形成,希望老师创设他们自主学习的环境,给他们发表自己见解和表现自己才华的机会。

本节课我设置了三个探究活动,学生可以互相讨论和交流等。

2、教法:新课标要求教师应激发学生的积极性,向学生提供充分从事教学活动的机会,帮助他们自主探究和合作交流,为达到这一目标,结合教材和学生实际采用发现法,小组合作法,启发法,反馈练习等方法教学。

3、学法:新课标指出自主探究和合作交流是学生学习的主要方式,因此在课堂上要确立学生的主体地位,指导学生学会观察,动口表达,动脑思考,主动多感官参与,多智能投入,共同探索新知和解决新问题的能力。

三、教学过程分析为有序、有效地进行教学,本节课我主要安排以下教学环节:1.预习展示设计意图:这一块主要分为两部分,一部分回顾上节课有关命题的重要知识点,可以更有效的对本节课的学习起到作用。

另一部分预习本节课的重要知识点2、合作探究,交流创新设计意图:通过设置三个探究题,学生可以互相探究,互相交流,展示自我等,既可以很好的完成学习目标又可以培养学生的合作能力,交流能力和创新意识。

3、当堂训练设计意图:可以很好的对本节所学内容进行检测,及时反馈。

老师在这一块要有所侧重有所针对的进行讲解。

4.自我小结设计意图:学生自己进行小结,谈一谈自己收获了什么,还有哪些方面的疑问。

八年级数学上册 7.2 定义与命题教案 (新版)北师大版

八年级数学上册 7.2 定义与命题教案 (新版)北师大版

第七章平行线的证明7.2 定义与命题(一)总体说明在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.一、学生知识状况分析学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学任务分析在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.三、教学过程分析本节课的设计思路为:情景引入——命题含义(情景引入)——课堂练习——课堂小结——课后练习第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.第五环节课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。

北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。

教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。

二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。

但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。

因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。

三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。

2.学会如何书写和阅读命题。

3.学会从命题中提取信息。

四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。

2.难点:如何从命题中提取信息。

五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。

六. 教学准备2.PPT。

3.教学案例。

七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。

例如,定义一个三角形:由三条线段首尾相连围成的图形。

然后,给出一个命题:所有的三角形都有三个顶点。

让学生思考这个命题是否正确。

2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。

让学生理解定义与命题的关系。

3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。

教师通过提问,引导学生理解命题的构成要素。

4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。

教师通过提问,检查学生对定义与命题的理解。

5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。

例如,给出一个命题,让学生判断其是否正确,并说明理由。

6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。

7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。

北师大版八年级数学上册7.2定义与命题优秀教学案例

北师大版八年级数学上册7.2定义与命题优秀教学案例
2.通过设置分层问题,满足不同学生的学习需求,促进他们的思维发展。
3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。

八年级数学上册7.2定义与命题第1课时定义与命题说课稿 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题说课稿 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题说课稿(新版北师大版)一. 教材分析八年级数学上册7.2定义与命题是北师大版教材中的一节重要课程。

这部分内容主要介绍了定义与命题的概念、分类和判断方法。

教材通过丰富的实例和练习,使学生掌握定义与命题的基本知识,培养学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和命题有一定的认识。

但学生在学习过程中,往往对抽象的定义与命题理解不深,容易混淆。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生理解定义与命题的本质,提高学生的数学思维能力。

三. 说教学目标1.知识与技能目标:使学生理解定义与命题的概念,掌握定义与命题的分类和判断方法。

2.过程与方法目标:通过自主学习、合作交流,培养学生分析问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。

四. 说教学重难点1.教学重点:定义与命题的概念、分类和判断方法。

2.教学难点:对定义与命题的理解和运用。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,提高学生的学习兴趣。

六. 说教学过程1.导入新课:通过生活实例,引导学生思考什么是定义与命题,激发学生的学习兴趣。

2.自主学习:让学生阅读教材,了解定义与命题的概念、分类和判断方法。

3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。

4.教师讲解:针对学生不易理解的知识点,进行详细讲解,突破教学难点。

5.练习巩固:布置课后练习,让学生运用所学知识解决问题。

6.课堂小结:总结本节课所学内容,加深学生对定义与命题的理解。

七. 说板书设计板书设计如下:判断方法:……八. 说教学评价1.学生自主学习能力的评价:观察学生在自主学习过程中的表现,如学习态度、问题解决能力等。

2.学生合作交流能力的评价:评价学生在小组讨论中的参与程度、观点阐述等。

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。

1 .会在简单的情况下判别一个命题的真假。

2 .了解公理和定理的含义。

3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。

.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。

.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。

3 情感态度与价值观让学生在推理中感觉到数学的有用性。

教学重点:命题的真假的概念和判别。

教学难点判别命题的真假其实已涉及证明。

教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。

. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。

1. 两点之间线段最短。

2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。

北师大版八年级上册数学7.2第1课时定义与命题优质教案

北师大版八年级上册数学7.2第1课时定义与命题优质教案

7.2 定义与命题第 1 课时定义与命题第一:情形引入(由学生表演)活内容:小亮和小正在津津乐道地《我科学》.小亮:⋯⋯小:“是的,在因特网宽泛运用于我的生活中,我来了方便,但⋯⋯”小亮:“⋯⋯”小:“⋯⋯”小亮:“哈!,个黑客于被逮住了.”⋯⋯坐在旁的两个人一听着他的,一也在静静着:一人:“ 黑客是个小吧?”另一人:“可能是喜穿黑衣服的.”⋯⋯一人:“那因特网一定是一很大的网.”另一人:“估可能是英国造的特别的网.”⋯⋯(表演束)教提出:在个小品中,你获得什么启迪?(人与人之的沟通必在某些名称和有共同的状况下才能行 .此,我需要出它的定 .)① 对于“黑客” 的片断来引入生活中沟通必某些名称和有共同的才能行;② 定含的解;③ 例明生活中和数学学中所熟知的定(学生例,看哪个小的例又多又好);活目的:学生通一个学生比感趣的名:“黑客”、“因特网” 的不一样理解,进而使学生认识定的含.教课成效:好多学生黑客的观点是很熟习的,而小品中出的黑客的定与自己所熟知的黑客的观点完好不一样,由此生了定的趣.第二:命含(情形引入)活内容:①:假如 B 水流遇到染,那么 ____水流便遇到染 ;假如 C 水流遇到染,那么 ____水流便遇到染;假如 D 水流遇到染,那么 ____水流便遇到染;②学生自自:假如____水流遇到染,那么____水流便遇到染.([生甲]假如 B 工厂排放水,那么A、 B、C、D 便会遇到染 .[生乙]假如 B工厂排放水,那么E、F、G 也会遇到染的 .[生丙]假如 C 遇到染,那么 A、 B、C 便遇到染 .[生丁]假如 C 遇到染,那么 D 也会遇到染的 .[生戊]假如 E 遇到染,那么A、 B 便会遇到染 .[生己]假如 H 遇到染,我是 A 的那个工厂或 B 的那个工厂排放了水 .因 A 工厂的水向下游排放, B 工厂的水也向下游排放 .⋯⋯老:同学在假的前提条件下,某一遇到染作出了判断.像,事情作出判断的句子,就叫做命.即:命是判断一件事情的句子.如:熊猫没有翅膀 .角相等 .大家能出的例子?[生甲]两直平行,内角相等.2[生乙]无 n 随意的自然数,式子n -n+11 的都是数 .[生丁]随意一个三角形都有一个直角.[生戊]假如两条直都和第三条直平行,那么两条直也相互平行.[生己]全等三角形的角相等.⋯⋯[]很好 .大家出多例子,明命就是一定一个事物是什么或许不是什么,不可以同既否认又一定,如:你喜数学?作段 AB=a.平行用符号“∥”表示.些句子没有某一件事情作出任何判断,那么它就不是命.一般状况下:疑句不是命.形的作法不是命 .)活目的:通水流的染引入命的观点,使学生认识命的含,会判断某些句是否是命.教课成效:命的判断只有两种形式,要么一定,要么否认。

北师大版八年级上册《7.2定义与命题》说课稿

北师大版八年级上册《7.2定义与命题》说课稿

北师大版八年级上册《7.2 定义与命题》说课稿一. 教材分析《7.2 定义与命题》这一节的内容是八年级上册数学课程的一部分,主要介绍定义和命题的概念,以及它们在数学中的重要性。

通过这一节的学习,学生可以理解定义和命题的含义,掌握如何正确地给出定义和写出命题,并能够分辨不同类型的命题。

教材中包含了丰富的例子和练习题,帮助学生通过实际操作来理解和巩固所学知识。

此外,教材还注重培养学生的逻辑思维能力和数学语言表达能力,为今后的数学学习打下坚实的基础。

二. 学情分析学生在进入八年级之前,已经学习了一定的数学知识,对一些基本概念和运算规则有一定的了解。

但在定义和命题方面,学生可能还存在一些困惑和误解。

因此,在教学过程中,需要关注学生的认知水平,采取适当的教学方法,帮助学生理解和掌握定义和命题的概念。

同时,学生可能对数学语言的表达方式还不够熟悉,因此在教学过程中,需要注重培养学生的数学语言表达能力,使其能够准确、清晰地表达自己的思想和观点。

三. 说教学目标1.知识与技能目标:学生能够理解定义和命题的概念,掌握如何正确地给出定义和写出命题,并能够分辨不同类型的命题。

2.过程与方法目标:通过观察、分析和归纳,学生能够掌握定义和命题的给出方法,培养逻辑思维能力和数学语言表达能力。

3.情感态度与价值观目标:学生能够体验到数学的严谨性和逻辑性,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:定义和命题的概念及其在数学中的应用。

2.教学难点:如何准确地给出定义和写出命题,以及如何分辨不同类型的命题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、合作交流,培养学生的逻辑思维能力和数学语言表达能力。

2.教学手段:利用多媒体课件、实物模型和练习题,辅助教学,提高学生的学习兴趣和效果。

六. 说教学过程1.导入:通过一个具体的数学问题,引发学生对定义和命题的思考,激发学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版(2012教材)初中八上7.2.2 定义与命题教案
【教学目标】
知识与技能
1.命题的组成:条件和结论.
2.命题的真假.
过程与方法
1.能够分清命题的题设和结论.会把命题改写成“如果……,那么……”的形式;能判断命题的真假.
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.
3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.
情感态度与价值观
通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体. 行为与创新
通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.
【教学重难点】
重点
命题的概念
难点
真假命题的判断
【教学准备】
教师:课件
学生:练习本.
【教学过程】
Ⅰ.巧设现实情境,引入课题
[师]上节课我们研究了命题,那么什么叫命题呢?
[生]判断一件事情的句子,叫做命题.
[师]好.下面大家来想一想:
[师]大家观察后,分组讨论.
[生甲]这五个命题都是用“如果……,那么……”的形式叙述的.
[生乙]每个命题都是由已知得到结论.
[生丙]这五个命题的每个命题都有条件和结论.
[师]很好.这节课我们继续来研究命题.
Ⅱ.讲授新课
[师]大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.
条件是已知的事项,结论是由已知事项推断出的事项.
一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.
如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.
有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.
如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
下面我们来做一做
(5)全等三角形的面积相等.
[生甲]第一个命题的条件是:两个角相等,结论是:它们是对顶角.
[生乙]第二个命题的条件是:a>b,b>c,结论是:a=c.
[生丙]第三个命题的条件是:在两个三角形中,有两角和其中一角的对边对应相等.结论是:这两个三角形全等.
[生丁]第四个命题的条件是:菱形的四条边.结论是:都相等.
[生戊]丁同学说得不对.这个命题可改写为:如果一个四边形是菱形,那么这个四边形的四条边都相等.显然,这个命题的条件是:一个四边形是菱形.结论是:这个四边形的四条边都相等.
[生己]第五个命题可改写为:如果两个三角形全等,那么这两个三角形的面积相等.则这个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.
[师]同学们分析得很好.能够经过分析,准确地找出命题的条件和结论.接下来我们来思考
2.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?
[师]大家思考后,来分组讨论.
[生甲]第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.
图6-10
[生乙]我们讨论的结果是与甲同学的一样.如图6-10,∠1=∠2,从图形中可知∠1与∠2不是对顶角.所以第一个命题:如果两个角相等,那么它们是对顶角是错误的.
[生丙]第二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.
[师]很好.同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题(true statement),不正确的命题称为假命题(false statement).
由大家刚才分析可以知道:要说明一个命题是一个假命题,通常可以举出一个例子,使
它具备命题的条件,而不具有命题的结论.这种例子称为反例(counter example).
注意:对于假命题并不要求,在题设成立时,结论一定
..
..错误.事实上,只要你不能保证结论一定成立,这个命题就是假命题了.因此,要说明一个命题是假命题,只要举出一个“反例”就可以了.
那一个正确的命题如何证实呢?大家来想一想:
[生甲]用我们以前学过的观察、实验、验证特例等方法.
[生乙]这些方法往往并不可靠.
[生丙]能不能根据已经知道的真命题证实呢?
[生丁]那已经知道的真命题又是如何证实的?
[生戊]哦……那可怎么办呢?
……
[师]其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理(axiom).除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(proof).经过证明的真命题称为定理(theorem),而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.
《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《原本》是一部具有划时代意义的著作.
[生]老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.
[师]对,我们这套教材有如下命题作为公理:
[师]同学们来朗读一次.
[师]好.除这些以外,等式的有关性质和不等式的有关性质都可以看作公理.
在等式或不等式中,一个量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.
注意:(1)公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.
(2)公理可以作为判定其他命题真假的根据.
好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史.
Ⅲ.课堂练习
1.课本读一读
2.看课本,然后小结.
Ⅳ.课时小结
本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件和结论两部分组成.命题分为真命题和假命题.
在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.
大家要会灵活运用本节课谈到的公理来证明一些题.
Ⅴ.课后作业
(一)课本习题7.3 1、2
(二)1.预习内容
课时作业设计
1.下列命题是真命题的是( )
A.如果两个角不相等,那么这两个角不是对顶角
B.两互补的角一定是邻补角
C.如果a2=b2,那么a=b
D.如果两角是同位角,那么这两角一定相等
2.下列命题是假命题的是( )
A.如果a∥b,b∥c,那么a∥c
B.锐角三角形中最大的角一定大于或等于60°
C.两条直线被第三条直线所截,内错角相等
D.矩形的对角线相等且互相平分
3.已知下列四个命题:(1)若直角三角形的两边长分别是3与4,则第三边长是5;(2)
2a
;(3)若点P(a,b)在第三象限,则点Q(-a,-b)在第一象限;(4)两边及第三边上的中线对应相等的两个三角形全等,其中正确的选项是()
A.只有(1)错误,其他正确
B.(1)(2)错误,(3)(4)正确
C.(1)(4)错误,(2)(3)正确
D.只有(4)错误,其他正确
4.写出下列命题的条件和结论:
(1)两条直线被第三条直线所截,同旁内角互补;
(2)如果两个三角形全等,那么它们对应边上的高也相等;
(3)绝对值等于3的数是3;
(4)如果∠DOE=2∠EOF,那么OF是∠DOE平分线.
5.指出下面命题的条件和结论,并判断命题的真假,如果是假命题,•请举出反例.
(1)如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.
答案:
1.A
2.C
3.C
4.解:(1)条件:两条直线被第三条直线所截,结论:同旁内角互补; (2)条件:两个三角形全等, 结论:它们对应边上的高也相等;(3)条件:绝对值等于3的数,结论:这个数是3;(4)条件:∠DOE=2∠EOF,结论:OF是∠DOE平分线.
5.条件:等腰三角形的两条边长为5和7,结论:这个等腰三角形的周长为17.是假命题。

•还可以等于19。

相关文档
最新文档