第五章一次函数5.3一次函数的图象
一次函数的图象及性质

在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程
5.3一次函数图像(1)翟赛花

§5.3一次函数的图象(1)【指导思想与理论依据】本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。
基于这一原则,我对本节课教学设计的指导思想如下:(1)以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。
(2)以现代教育理论为依据:注重学生的心理活动过程,强调教学过程的有序性。
(3)以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。
(4)以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学有机结合,以实现教学最优化,从而提高教与学的质量。
【教材分析】一、教材分析(一)教学内容:本课是苏科版八年级上册第五章第3节本节内容知识结构如下:该课时主要内容是:一次函数的图象主要包括的知识点:一次函数图象的画法(二)本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。
本课时内容安排在一次函数的概念之后。
通过这一节课的学习使学生会用两点法画一次函数图象。
它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。
同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。
本节内容起着承上启下的作用。
更是学生进一步学习“数形结合”这一数学思想方法的很好素材。
第五章一次函数5.3一次函数的图象(2)

课题:§5.3一次函数的图象(2)教学目标1、理解一次函数及其图象的有关性质。
2、能熟练地作出一次函数的图象。
3、进一步培养学生数形结合的意识和能力。
教学重点一次函数的图象的性质。
教学过程1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=21x ,y=x ,y=3x ,y=-2x 的图象。
图:3、议一议(1)正比例函数y=kx 的图象有什么特点?(2)你作正比例函数y=kx 的图象时描了几个点?(3)直线y=21x ,y=x ,y=3x 中,哪一个与x 轴正方向所成的锐角最大?哪一与x 轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx 的图象时,除原点外,还需找一点,一般找(1,k )点。
(3)在正比例函数y=kx 图象中,当k>0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大。
(4)在正比例函数y=kx 的图象中,当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x 的图象。
一次函数y=kx+b 的图象的特点:分析:在函数y=2x+6中,k>0,y 的值随x 值的增大而增大;在函数y=-x+6中,y 的值随x 值的增大而减小。
由上可知,一次函数y=kx+b 中,y 的值随x 的变化而变化的情况跟正比例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。
一次函数图象与性质

一次函数可以用于找到最佳拟 合线,以更好地描述数据的趋 势。
线性回归
一次函数可以用于进行线性回 归分析,以预测未来的数据趋 势。
结论和要点
• 一次函数是数学中最基本的函数之一,具有稳定的线性关系。 • 斜率和截距是一次函数图象的重要特征。 • 平移和缩放操作可以改变一次函数图象的位置和形状。 • 一次函数在实际问题中有广泛的应用,可以帮助解决各种实际情况。
一次函数图象的平移和缩放
通过平移和缩放操作,可以改变一次函数的图象及其性质。
1
平移
平移操作可以改变一次函数图象的位置,例如向左或向右平移。
2
缩放
缩放操作可以改变一Байду номын сангаас函数图象的形状和大小,例如拉伸或收缩。
3
组合操作
平移和缩放操作可以组合使用,以实现更灵活的一次函数图象变换。
一次函数图象的应用
一次函数的图象和性质在实际问题中有许多应用,例如经济学、物理学和工程学等领域。
一次函数图象与性质
一次函数是数学中最基本的函数之一,它具有许多重要的性质和应用。本次 演示将介绍一次函数的定义、图象特点以及与实际问题的关系。
一次函数的定义和表达式
一次函数是指一个自变量的整数次数都是1的函数。通常以y = ax + b的形式表示,其中a和b是常 数。
1 自变量
一次函数的自变量通常表示为x,它可以是任意实数。
经济学
一次函数可以描述供需关 系、市场价格等经济现象。
物理学
一次函数可以描述速度、 位移等物理量与时间的关 系。
工程学
一次函数可以描述电路、 力学系统等工程问题。
一次函数与实际问题的关系
一次函数是解决实际问题的重要工具,它可以帮助我们理解和解决各种实际情况。
人教版八年级下册数学课本

人教版八年级下册数学课本第一章:实数1.1 实数的概念和性质1.2 实数的运算1.3 实数的应用第二章:一元一次方程2.1 一元一次方程的概念2.2 一元一次方程的解法2.3 一元一次方程的应用第三章:不等式3.1 不等式的概念3.2 一元一次不等式的解法3.3 一元一次不等式的应用第四章:二元一次方程组4.1 二元一次方程组的概念4.2 二元一次方程组的解法4.3 二元一次方程组的应用第五章:一次函数5.1 一次函数的概念5.2 一次函数的图像5.3 一次函数的应用第六章:平行线与相交线6.1 平行线的性质6.2 相交线的性质6.3 平行线与相交线的应用第七章:三角形7.1 三角形的性质7.2 三角形的全等7.3 三角形的相似7.4 三角形的应用第八章:四边形8.1 四边形的性质8.2 四边形的全等8.3 四边形的相似8.4 四边形的应用第九章:圆9.1 圆的性质9.2 圆的全等9.3 圆的相似9.4 圆的应用第十章:概率与统计10.1 概率的概念10.2 概率的计算10.3 统计的基本概念10.4 统计的应用第十一章:立体几何11.1 立体几何的基本概念11.2 立体几何的计算11.3 立体几何的应用第十二章:解析几何12.1 解析几何的基本概念12.2 解析几何的计算12.3 解析几何的应用第十三章:数列13.1 数列的概念13.2 等差数列13.3 等比数列13.4 数列的应用第十四章:函数14.1 函数的概念14.2 函数的图像14.3 函数的应用第十五章:不等式组15.1 不等式组的概念15.2 不等式组的解法15.3 不等式组的应用第十六章:反比例函数16.1 反比例函数的概念16.2 反比例函数的图像16.3 反比例函数的应用第十七章:二次函数17.1 二次函数的概念17.2 二次函数的图像17.3 二次函数的应用第十八章:勾股定理18.1 勾股定理的概念18.2 勾股定理的证明18.3 勾股定理的应用第十九章:统计与概率19.1 统计的基本概念19.2 概率的基本概念19.3 统计与概率的应用第二十章:数学建模20.1 数学建模的概念20.2 数学建模的方法20.3 数学建模的应用人教版八年级下册数学课本的内容涵盖了实数、一元一次方程、不等式、二元一次方程组、一次函数、平行线与相交线、三角形、四边形、圆、概率与统计、立体几何、解析几何、数列、函数、不等式组、反比例函数、二次函数、勾股定理、统计与概率以及数学建模等知识点。
5.3一次函数的图象(第一课时)教案 郑杜志

5.3一次函数的图象(第一课时)教案教学背景:这一节内容是学生学习函数画法的起始课,对以后学习函数起着至关重要的作用,我在教学中把握住这一点,注重学生的探索、归纳过程,在情境创设中让学生经历香点燃后香的长度随着时间的变化而变化,在连线过程中,让学生感受到香的顶端在一条直线上,并且能够把这一过程呈现在平面直角坐标系中,而且可以验证也在一条直线上。
在此基础上,让学生仿照课本例题的作图步骤画出函数y=-x+2的图象,在这一过程中让学生明确如何列表、描点?为什么要连线?这一系列问题。
进而找到画一次函数图象的简便作法——两点法,通过学生的比较会发现这两个点如果是直线与坐标轴的交点会使作图更加方便。
教材分析:在学生会画一次函数的基础上,我又安排了在同一直角坐标系中画一次函数y=-2x,y=-2x+2,y=-2x-3的图象,让学生观察它们的特殊位置关系——平行,从中找出k、b的特点,这样安排一方面学生练习了一次函数的画法,另一方面培养了他们的观察能力与归纳总结能力,在练习中也配置了相关的练习加以巩固,同时安排另一种类型——求两直线的交点坐标,这个题目利于学生对一次函数图象与一次函数表达式的对应关系的理解,学生一般只能想到利用图象法解题,这是典型的数形结合思想的体现,所以特意安排了交点坐标是整数的点,教学中除了肯定学生的这种作法外,再补充一种更为普遍的解法——把两直线的表达式组成方程组求解。
使学生的思路更加开阔,也体现了一题多解。
在练习巩固中不仅复习了待定系数法,也加深了学生对一次函数图象的理解。
教学目标:1、知识与技能:理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象。
2、过程与方法:经历一次函数的作图过程,初步了解作函数图象的一般步骤。
3、情感态度与价值观:体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂教学重点:归纳作函数图象的一般步骤,能熟练地作出一次函数的图象。
5.3 一次函数的图象 课件(苏科版八年级上册) (4)

y3 =2x-2
三条直线平行
x
-3
y
(0, 4 ) 4 3
2 1 -4 (0, 0 ) -3 -2 -1 o -1 1
y1=2x+4
y2 =2x y3
=2x-2
当b>0时,图 象与y轴的交点 在x轴的上方
2 3 4
当b=0时,图 x 象图象经过原点 当b<0时,图 象与y轴的交点 在x轴的下方
-2 (0,-2 )
当 b > 0 时,直线 y=kx+b 可以看作直线 b 上 平移_______ y=kx沿着y轴向_____ 个单位 而得到. 当b<0时,直线y=kx+b可以看作直线 |b| 下 平移_______ y=kx沿着y轴向_____ 个单 位而得到
随堂练习 直线y=2x+3可以由y=2x-1经过 怎样的平移得到?( ) B A.向右平移4个单位. B.向上平移4个单位. C.向下平移4个单位.
决定着直线与y轴交点的位置
知识总结
图象特征
从左向右上升, b>0 交点在x轴上方 从左向右上升, 交点在原点.
大致图象
y 0 y x
K>0
b=0
0
x
从左向右上升, b<0 交点在x轴下方.
y 0 x
知识总结
图象特征
从左向右下降, b>0 交点在x轴上方. 从左向右下降, 交点在原点.
大致图象
y 0 x
(4) y= -1-2x
2)、(3) 其中y随x的增大而增大的函数是( _________ ; (1)、(4) 从左向右图象是下降的函数是___________. (只填写序号)
y3 -2 已知函数 y =2x+4, =2x, y2 =2x 1
第五章一次函数5.3一次函数的图象(1)

主备人:备课组成员签名:课题:§5.3一次函数的图象(1)教学目标1、知道一次函数的图象是一条直线,会选取适当的点画一次函数的图象。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
教学重点1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
教学过程1、情境创设点燃一支香,感受它的长度随着时间的变化而变化,帮助学生理解课本图片提供的信息,探索一次函数的图象。
书P192(1)图中共有几支香?(2)图片是怎样表示时间变化的?(3)这支香点燃5分钟后缩短了多少?点燃10分钟后呢?(4)用y(cm)表示香的长度,x(min)表示香燃烧的时间,你能写出y与x之间的函数关系式吗?(5)依次连接图片中香的顶端,你有什么发现?(6)你能利用平面直角坐标系,将图片揭示的信息以及你的发现告诉大家吗?2、作一次函数的图象例1:作出一次函数y=2x+1的图象解:1、列表(写出自变量x与函数值的对应表)先确定x的若干个值,对应的y值作为点的纵坐标,便可画出一个点。
也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。
3、连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
123、连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。
图象:3、议一议一次函数的图象是什么?是否可以简化作一次函数的图象的过程?小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y-kx+b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§5.3一次函数的图象(2)
教学目标
1、理解一次函数及其图象的有关性质。
2、能熟练地作出一次函数的图象。
3、进一步培养学生数形结合的意识和能力。
教学重点
一次函数的图象的性质。
教学过程
1、新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连
线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=2
1x ,y=x ,y=3x ,y=-2x 的图象。
图:
3、议一议
(1)正比例函数y=kx 的图象有什么特点?
(2)你作正比例函数y=kx 的图象时描了几个点?
(3)直线y=2
1x ,y=x ,y=3x 中,哪一个与x 轴正方向所成的锐角最大?哪一与x 轴正方向所成的锐角最小?
4、小结:正比例函数的图象有以下特点:
(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx 的图象时,除原点外,还需找一点,一般找(1,k )点。
(3)在正比例函数y=kx 图象中,当k>0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大。
(4)在正比例函数y=kx 的图象中,当k>0时,y 的值随x 值的增大而增大;当k<0时,y 的值随x 值的增大而减小。
5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x 的图象。
一次函数y=kx+b 的图象的特点:分析:在函数y=2x+6中,k>0,y 的值随x 值的增大而增大;在函数y=-x+6中,y 的值随x 值的增大而减小。
由上可知,一次函数y=kx+b 中,y 的值随x 的变化而变化的情况跟正比
例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个
坐标轴相交。
在作一次函数的图象时,也需要描两个点。
一般选取(0,b ),
(-k
b ,0)比较简单。
6、想一想
(1)x 从0开始逐渐增大时,y=2x+6和y=5x 哪一个值先达到20?这说明了什么?
(2)直线y=-x 与y=-x+6的位置关系如何?
(3)直线y=2x+6与y=-x+6的位置关系如何?
7、在同一直角坐标系内作出一次函数y=2x,y=2x+3, y=2x-3的图象。
探
索一次函数y=kx+b 中, b 的值对一次函数图象的影响.
总结:
1、正比例函数y=kx的图象的特点。
2、一次函数y=kx+b的图象的特点。
3、一次函数y=kx+b的k、b的值对一次的影响。
①b
>
>0
,0的图象在一、二、三象限
⇔
=
y
b
k+
kx
②b
<
⇔
>0
,0的图象在一、三、四象限
b
=
y
kx
k+
③⇔
y图象在一、二、四象限
,0b
>
<0
④⇔
y图象在二、三、四象限
,0b
<
<0
补充练习:
1、下列一次函数中,y的值随x值的增大而增大的是()
A 、y=-5x+3
B 、y=-x-7
C 、y=x 3-5
D 、y=-x 7+4
2、下列一次函数中,y 的值随x 值的增大而减小的是( )
A 、y=3
2x-8 B 、y=-x+3 C 、y=2x+5 D 、y=7x-6
3、若一次函数b kx y +=的图象经过一、二、三象限,则b k ,应满足的条件是:
A.0,0>>b k
B.0,0<>b k
C.0,0><b k
D.0,0<<b k
4、如图,两个一次函数a bx y b ax y +=+=21,,它们在同一直角坐标系中大致的图象是:
A. B. C. D.。