人教版五年级数学最大公因数与最小公倍数练习题
最大公因数与最小公倍数应用题练习

1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=12 12-1=114、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人) 24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分) 12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360 360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人) 56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的个数相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘) 24÷8=3(个) 32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
人教版数学五年级下册最大公因数和最小公倍数易错题集锦

19.有三个连续奇数,若中间的奇数是m,则另外两个奇数分别是()和().20. 如果a=2×2×3×c,b=2×3×5×c,a和b的最大公因数是18,那么c是()。
a和b的最小公倍数是()。
二、判断。
1、甲数和乙数都是他们的最大公因数的倍数。
()3.互质数的两个数必须都是质数。
()4.最小的合数和最小的质数这两个数的公因数只有1. ()5.相邻的两个自然数的公因数不止一个。
()6.两个数的最大公因数一定比这两个数都小。
()7.两个合数一定不是互质数。
()三、选择。
1.有两根绳子,一根长6米,另一根长15米。
要将两根绳子剪成长度一样的短绳而且没有剩余,每根短绳最长是()米。
A、15B、3C、62. 2、3和5的最小公倍数是()A、6B、10C、153.所有自然数的公因数是()。
A、有无数个B、是0C、是1D、没有4. 数a和数b是两个连续的自然数,a和b的最大公因数是()A、1B、aC、bD、ab5. a=b+1,(a、b为非0自然数,)a和b的最小公倍数是()。
A、abB、aC、b6. 两个偶数的最小公倍数()A、一定是奇数B、一定是偶数C、可能是奇数也可能是偶数7. 在a×b=c中,a、b、c是三个不同的自然数,下面说法正确的有( )A、c一定是a的因数B、a一定是b和c的最小公倍数C、c一定是b的因数。
8. 有四个小朋友的年龄是四个连续的自然数,他们年龄的最小公倍数是120,他们中年龄最大的是()岁。
A、3B、4C、5D、69. 4.8÷0.6=8,4.8是0.6的()A. 倍数B. 因数C. 8倍10.m是大于0的自然数,n=m+1,那么m和n的最小公倍数是(),最大公因数是()A. nB. mC. 1D. mn。
五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
最大公因数和最小公倍数计算练习

最大公因数和最小公倍数练习
一、用短除法求几个数的最大公因数
12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60
42、105和56 24、36和48
二、用短除法求几个数的最小公倍数
25和30 24和30 39和78 60和84
18和20 126和60 45和75 12和24
12和14 45和60 76和80 36和60
27和72 42、105和56 24、36和48
三、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80
四、填空
15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是
9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是
30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是
最小公倍数是
7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是
1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是
10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是
26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;
30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是。
最大公因数和最小公倍数练习的的题目

一、写出下列各数的最大公因数和最小公倍数。
(1)4和6的最大公因数是________ ;最大公倍数是___________ ;⑵9和3的最大公因数是___________ ;最大公倍数是__________ ;⑶9和18的最大公因数是__________ ;最大公倍数是__________ ;(4)____________________________ 11和44的最大公因数是;最大公倍数是;(5)__________________________ 8和11的最大公因数是 ;最大公倍数是;⑹1和9的最大公因数是___________ ;最大公倍数是___________ ;(7)________________________________________________________ 已知A= 2 X2X3 X5 , B = 2 X3 X7,那么A、B的最大公因数是 __________________ ;最小公倍数是______ ;(8)__________________________________________________________ 已知A = 2 X3 X5 X5 , B = 3 X5 X5 X11,那么A、B的最大公因数是____________ ; 最小公倍数是 _______ 。
二•填空。
1•在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。
2. 在20以的质数中,()加上2还是质数。
3•如果有两个质数的和等于24,可以是()+ (),()+ ()或()+ ()。
4•把330分解质因数是()。
5•—个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。
6.在50以的自然数中,最大的质数是(),最小的合数是()。
最小公倍数与最大公因数 对比练习

总数量的分成部分数量,有三种情况:
一、恰好够分。
就求最小公倍数;
二、剩下的一样多,先求最小公倍数,然后加上剩下的;
三、差的一样多,先求最小公倍数,然后减去差的数量。
1、五(3)班同学站队,5个5个一队,7个7个一队,都没有剩余,五(3)班有多少人
2、五(3)班同学站队,5个5个一队剩3人,7个7个一队也剩3人,五(3)班有多少人
3、五(3)班同学站队,5个5个一队差3人,7个7个一队差5人,五(3)班有多少人
4、五(3)班同学站队,5个5个一队差4人,7个7个一队剩1人,五(3)班有多少人
5、五(3)班同学站队,5个5个一队差2人,7个7个一队也差2人,五(3)班有多少人
6、五(3)班同学站队,5个5个一队剩4人,7个7个一队剩6人,五(3)班有多少人
7、五(3)班同学站队,5个5个一队差2人,7个7个一队剩5人,五(3)班有多少人
8、五年级同学站队,7个一排多2人,9个一排多2人,人数在180-200之间,五年级有多
少人?
9、五年级同学站队,7个一排少2人,5个一排少2人,人数在150-180之间,五年级有多
少人?
若干个小长方形拼成大正方形:求长和宽的最小公倍数。
一种长方形木地板,长9分米,宽6分米,拼成一个最小的正方形,要()块这样的木地板。
大长方形剪成小正方形,求最大公因数
一种长方形木地板,长48分米,宽36分米,把它剪成小正方形,没有剩余,最少可以剪()块,边长()分米。
最大公因数、最小公倍数练习题

一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),最小公倍数()(2)(25,15)最大公因数(),最小公倍数()(3)(140,35)最大公因数()最小公倍数()(4)(24,36)最大公因数()最小公倍数()(5)(3,4,5)最大公因数()最小公倍数()(6)(4,8,16)最大公因数()最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b 的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
这三个数分别是()、()和()。
17、已知(A,40)=8,[A,40]=80,那么A=()。
五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数、最大公因子.指两个或多个整数共有约数中最大的一个。
a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法.常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]。
质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2、2、3.它们的积是2×2×3=12.所以.(24、60)=12。
把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30。
短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数。
短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12、15、18的最小公倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版五年级数学最大公因数与最小公倍数练习题
一、填空:
1、如果自然数A除以自然数B商是17,那么A与B的最大公约数是(),最小公倍数是()。
2、最小质数与最小合数的最大公约数是(),最小公倍数是()。
能被5、7、16整除的最小自然数是()。
3、(1)(7、8)=(),[7,8 ] =()
(2)(25,15)=(),[25、15 ]=()
(3)(140,35)=(),[140,35 ]=()
(4)(24,36)=(),[24、36 ]=()
(5)(3,4,5)=(),[3,4,5 ]=()
(6)(4,8,16)=(),[4,8,16 ]=()
4、5和12的最小公倍数减去()就等于它们的最大公约数。
91和13的最小公倍数是它们最大公约数的()倍。
5、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
6 、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公约数是(),最小公倍数是()。
7、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
8、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
9、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果,最少有()个。
10、三个连续偶数的和是42,这三个数的最大公约数是()。
11、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
12、自然数m和n,n= m+1,m和n的最大公约数是(),最小公倍数是()。
13、13、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m ,如果a与b的最小公倍数是2730,那么m = ()。
14、(273,231,117):(),[273,231,117]:()
15、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
这三个数分别是()、()和()。
16、已知(A,40)=8,[A,40]=80,那么A=()。
17、找一个与众不同的数(三个方法)并说明理由):1、2、3、5、7、9、15
1:选,因为
2:选,因为
3:选,因为
18、按要求写互质数
两个都是质数()和();
两个都是合数()和();
一个质数和一个奇数()和();
一个偶数5和一个合数()和();
一个质数和一个合数()和();
一个偶数和一个合数()和()。
二、解决下列的问题:
1、有一行数:1,1,2,3,5,8,13,21,34,55……,从第三个数开始,每个数都是前两个数的和,在前100个数中,偶数有多少个?
2、一个长方形的长和宽都是自然数,面积是36平方米,这样的形状不同的长方形共有多少种?
3 、一种长方形的地砖,长24厘米,宽16厘米,用这种砖铺一个正方形,至少需多少块砖?
4、有一个长80厘米,宽60厘米,高115厘米的长方体储冰容器,往里面装入大小相同的立方体冰块,这个容器最少能装多少数量冰块?
5、已知某小学六年级学生超过100人,而不足140人。
将他们按每组12人分组,多3人;按每组8人分,也多3人。
这个学校六年级学生多少?
6、有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄的乘积是360。
他们中年龄最大是多少岁?
7、汽车站内每隔3分钟发一辆公交车,4分钟发一辆中巴车,1小时共发了几辆汽车?其中有几辆中巴车?
8、一块长方形铁皮,长96厘米,宽80厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长是多少?被剪成几块?。