向量法求空间角(高二数学,立体几何)

合集下载

立体几何中的向量方法求空间角

立体几何中的向量方法求空间角


PQห้องสมุดไป่ตู้ 为二面角 l 的平面角 .
Q
O
n


n


n
2、利用定义,在两个半平面内找垂直棱的向量
小结论:射影面积 cos
S射 S
m
n

求二面角
5 .在长方体中, A B 2 , AA
1

2 , AD 1,
P 是棱 AB 的中点 . (1)AB
1
平面 A1 PD 1, A 1 - D 1 P - B 1的平面角正切值。
四棱锥 P ABCD 中,
AB AC , PA 平面 ABCD ,且 PA AB , E 是 PD 的中点 . 求平面 EAC 与平面 ABCD 所成的角 .
2b
2
2a b
2
4 a 2b
线面角
定义法:找直线在平面内的射影(先找线面垂直) 也可利用等体积法求点到面的距离处理 向量法:求平面的法向量和直线的方向向量 l l n a
a,n


a
a,n
a,n

2
2


α
α
a,n
n
a n sin cos a , n a n
D
.
C B A
结果
22 11
二面角
定义法:在棱上一点分别在两个半平面内作垂直于棱的垂线, 转化为异面直线所成角或其补角. 三垂线法:利用三垂线定理和逆定理确定平面角
P
PO ,作 OQ 垂直交线,连结 PQ ,

向量法: 1、求两个半平面的法向量,则二面角的平面角为两法向量 夹角或其补角 补角 本角 m m m 补角

向量法求空间角(高二数学,立体几何)

向量法求空间角(高二数学,立体几何)

A BC DP Q向量法求空间角1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 21==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小.2.(满分13分)如图所示,正四棱锥P -A BCD 中,O 为底面正方形的中心,侧棱PA 与底面AB CD所成的角的正切值为26.(1)求侧面PAD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.B3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCDABCD为正方形,GPD=分别为CBPC,,的中点.=PDF,2EAD,,AP平面EFG;(1)求证://(2)求平面GEF和平面DEF的夹角.HPGFE DCB 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为6π,求锐二面角1A A C B --的大小.6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点.(1)求证:FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小.参考答案1.(1)详见解析;(2)4π 【解析】试题分析:(1)根据题中所给图形的特征,不难想到建立空间直角坐标,由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.表示出图中各点的坐标:设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P ,则可表示出),0,0(a DC =,)0,,(a a =,)0,,(a a -=,根据数量积为零与垂直的充要条件进行证明,由0=⋅,0=⋅,故⊥,⊥,即可证明;(2)首先求出两个平面的法向量,其中由于⊥DC 平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n ;设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅QC n ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n ,转化为两个法向量的夹角,设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ.即可求出平面BCQ 与平面ADPQ 所成的锐二面角的大小.试题解析:(1)由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P , 故),0,0(a =,)0,,(a a =,)0,,(a a -=, 因为0=⋅,0=⋅,故⊥,⊥,即PQ DC ⊥,PQ DQ ⊥, 又DCDQ D = 所以,⊥PQ 平面DCQ .(2)因为⊥平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n,点B 的坐标为),0,(a a ,则),,0(a a -=,),,(a a a --=,设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅n ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n .设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ. 所以,平面BCQ 与平面ADPQ 所成的锐二面角的大小为4π 考点:1.空间向量的应用;2.二面角的计算;3.直线与平面的位置关系2.(1)60︒; (2)5102; (3)F 是A D的4等分点,靠近A点的位置. 【解析】试题分析:(1)取AD 中点M,连接M O,PM,由正四棱锥的性质知∠PMO 为所求二面角P-AD-O 的平面角,∠P AO 为侧棱P A与底面ABCD 所成的角∴tan ∠PAO =26,设AB =a ,则AO =22a,PO =23a,MO=12a , t an ∠PM O=3,∠PM O=60°; (2)依题意连结AE ,OE ,则OE ∥P D ,故∠O EA 为异面直线PD 与A E所成的角,由正四棱锥的性质易证OA ⊥平面POB,故AOE ∆为直角三角形,OE =21PD=2122DO PO +=45a ∴tan ∠AEO=EO AO =5102;(3)延长M O交BC 于N ,取PN 中点G,连BG,E G,MG,易得BC ⊥平面P MN ,故平面PMN ⊥平面PB C,而△PMN 为正三角形,易证MG ⊥平面P BC ,取MA 的中点F,连EF,则四边形M FE G为平行四边形,从而M G//FE,EF⊥平面PBC,F 是AD 的4等分点,靠近A 点的位置.试题解析:(1)取AD 中点M,连接M O,PM,依条件可知AD ⊥MO,AD ⊥PO,则∠PMO 为所求二面M DB A CO EP角P-A D-O 的平面角 (2分)∵PO ⊥面ABC D,∴∠PA O为侧棱PA 与底面A BCD 所成的角.∴t an ∠PAO =26设AB =a ,AO=22a ,∴PO=AO·tan∠P OA =23a,tan ∠PMO =MO PO =3.∴∠PMO =60°. (4分)(2)连接AE ,OE , ∵OE ∥PD,∴∠O EA 为异面直线PD 与AE 所成的角. (6分)∵AO ⊥BD ,AO ⊥P O,∴AO ⊥平面PBD.又OE ⊂平面P BD ,∴AO ⊥OE .∵OE=21PD =2122DO PO +=45a, ∴tan ∠AEO=EOAO =5102. (8分) (3)延长MO 交B C于N,取PN 中点G ,连BG,EG ,MG. M D BACOEP∵BC ⊥M N,BC ⊥PN,∴B C⊥平面PM N∴平面PMN ⊥平面PBC . (10分)又PM=PN,∠PMN=60°,∴△PMN 为正三角形.∴MG ⊥PN.又平面PM N∩平面PBC=PN,∴MG ⊥平面P BC. (12分)∴F 是AD 的4等分点,靠近A 点的位置 (13分)考点:立体几何的综合问题3.(1)见解析;(2)见解析;(3)45︒.【解析】试题分析:(1)取CE 中点P,连接FP 、BP ,根据中位线定理可知FP||D E,且且F P=.21DE ,而AB||D E,且AB =.21DE 则ABPF 为平行四边形,则AF ||BP,AF ⊄平面BCE,BP ⊂平面BCE,满足线面平行的判定定理,从而证得结论;(2)根据A B⊥平面ACD,DE||AB ,则DE ⊥平面ACD ,又A F⊂平面AC D,根据线面垂直的性质可知DE AF AF CD CD DE D ⊥⊥=.又,,满足线面垂直的判定定理,证得AF ⊥平面CDE ,又BP||AF,则BP ⊥平面CDE ,BP ⊂平面BCE,根据面面垂直的判定定理可证得结论;(3)由(2),以F 为坐标原点,FA,F D,F P所在的直线分别为x,y,z 轴建立空间直角坐标系F ﹣x yz .设AC=2,根据线面垂直求出平面BCE 的法向量n,而m=(0,0,1)为平面ACD 的法向量,设平面BCE 与平面ACD 所成锐二面角为α,根据||cos ||||m n m n α⋅=⋅可求出所求.试题解析:(1)解:取CE 中点P,连结FP 、BP,∵F 为CD 的中点,∴F P||DE ,且FP=.21DE 又AB ||DE ,且AB =.21DE ∴A B||FP,且AB=FP ,∴ABPF 为平行四边形,∴AF ||BP 又∵M D B A CO E PN GFAF ⊄平面B CE,BP ⊂平面BC E,∴AF||平面BCE(2)∵△A CD 为正三角形,∴AF CD ⊥.∵AB ⊥平面ACD,DE||A B,∴DE ⊥平面ACD ,又AF ⊂平面A CD ,∴DE ⊥AF.又AF ⊥C D,CD∩DE=D,∴AF ⊥平面CDE 又BP||A F,∴B P⊥平面CDE.又∵BP ⊂平面BCE,∴平面BCE ⊥平面CDE (3)法一、由(2),以F 为坐标原点,FA ,FD,FP 所在的直线分别为x ,y,z轴(如图),建立空间直角坐标系F —x yz.设A C=2,则C(0,—1,0),).2,1,0(,),1,0,3(E B - 设(,,)n x y z =为平面BCE 的法向量,300,0,220x y z n CB n CE y z ⎧++=⎪∴⋅=⋅=∴⎨+=⎪⎩,令n=1,则(0,1,1)n =-显然,)1,0,0(=m 为平面A CD的法向量.设面B CE 与面A CD 所成锐二面角为,α则||2cos ||||2m n m n α⋅===⋅∴ 45=α.即平面BCE 与平面A CD所成锐二面角为45︒法二、延长EB 、DA,设E B、DA 交于一点O,连结CO .则面EBC 面DAC CO =.由A B是EDO∆的中位线,则AD DO 2=.在OCD ∆中22OD AD AC ==,060=∠ODC .CD OC ⊥,又DE OC ⊥.OC ∴⊥ 面,ECD 而CE ⊂面E CD,ﻭ为所求二面角的平面角ECD CE OC ∠∴⊥∴, ﻭ在Rt EDC ∆中,ED CD =,045=∠∴ECD 即平面B CE 与平面ACD 所成锐二面角为45︒. 考点:与二面角有关的立体几何综合题;直线与平面平行的判定;平面与平面垂直的判定.4.证明见解析【解析】试题分析::(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量与平面的法向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)如图,以D 为原点,以,,DA DC DP 为方向向量建立空间直角坐标系,xyz D -则)0,0,2(),1,0,0(),1,1,0(),0,2,1(),0,2,0(),2,0,0(A F E G C P .)11,1(),0,1,0(),2,0,2(-=-=-=∴.设平面EFG 的法向量为(,,)n x y z =0,0,n EF n EG ⎧⋅=⎪∴⎨⋅=⎪⎩即⎩⎨⎧=-+=-.0,0z y x y ⎩⎨⎧==∴.0,y z x 令1=x 则(1,0,1)n =.1(2)00120,.n AP n AP ⋅=⨯-+⨯+⨯=∴⊥又⊄AP 平面//,AP EFG ∴平面.EFG(2) 底面ABCD 是正方形,,DC AD ⊥∴又⊥PD 平面ABCD.AD PD ⊥∴又D CD PD = ,AD ∴⊥平面PCD∴向量DA 是平面PCD 的一个法向量,)0,0,2(=DA 又由(1)知平面EFG 的法向量(1,0,1)n =.cos ,||||22DA n DA n DA n ⋅∴<>===⋅ ∴二面角D EF G --的平面角为045.考点:(1)证明直线与平面平行;(2)利用空间向量解决二面角问题.5.(Ⅰ)详见解析;(Ⅱ)3π. 【解析】试题分析:(Ⅰ)取1A B 的中点D,连接AD ,由已知条件推导出AD⊥平面1A BC ,从而AD BC ⊥,由线面垂直得1AA BC ⊥.由此能证明AB BC ⊥.(Ⅱ)方法一:连接CD,由已知条件得ACD ∠即为直线AC 与平面1A BC 所成的角,AED ∠即为二面角1A A C B --的一个平面角,由此能求出二面角1A A C B --的大小.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-, 1(0,0,2)AA =,求出平面1A BC 的一个法向量1(,,)n x y z =,设直线AC 与平面1A BC 所成的角为θ,则6πθ=得12121sin6242AC n AC n a π-===+,解得2a =,即(2,2,0)AC =-,求出平面1A AC 的一个法向量为2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α=<>==,且(0,)2πα∈, 即可求出锐二面角1A A C B --的大小.试题解析:解(1)证明:如图,取1A B 的中点D ,连接AD ,因1AA AB =,则1AD A B ⊥ 由平面1A BC ⊥侧面11A ABB ,且平面1A BC侧面11A ABB 1A B =,得1AD A BC ⊥平面,又BC ⊂平面1A BC , 所以AD BC ⊥.因为三棱柱111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以1AA BC ⊥. 又1=AA AD A ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥. -------6分解法一:连接CD ,由(1)可知1AD A BC ⊥平面,则CD 是AC 在1A BC 平面内的射影 ∴ACD ∠即为直线AC 与1A BC 平面所成的角,则=6ACD π∠ 在等腰直角1A AB∆中,12AA AB ==,且点D 是1A B 中点,∴1122AD A B ==,且=2ADC π∠,=6ACD π∠ ∴22AC =过点A 作1AE A C ⊥于点E ,连DE ,由(1)知1AD A BC ⊥平面,则1AD A C ⊥,且AE AD A =∴AED ∠即为二面角1A A C B --的一个平面角且直角1A AC ∆中:11A A AC AE AC ⋅===,又AD ,=2ADE π∠∴sin =3AD AED AE ∠==且二面角1A A C B --为锐二面角 ∴=3AED π∠,即二面角1A A C B --的大小为3π----12分解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-,1(0,0,2)AA = 设平面1A BC 的一个法向量1(,,)n x y z =,由1BC n ⊥, 11BA n ⊥得:220xa y z =⎧⎨+=⎩令1y = ,得 0,1x z ==-,则1(0,1,1)n =- 设直线AC 与1A BC 平面所成的角为θ,则6πθ=得111sin624AC n AC n π⋅===,解得2a =,即(2,2,0)AC =- 又设平面1A AC 的一个法向量为2n ,同理可得2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α⋅=<>==,且(0,)2πα∈,得 3πα=∴ 锐二面角1A A C B --的大小为3π. 考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系. 6.(1)证明见解析;(2)045【解析】试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备. 试题解析:(1)证明:F ,G 分别为PB ,BE 的中点,FG∴PE .又FG ⊄平面PED ,PE ⊂平面PED ,FG∴平面PED .(2)解:EA ⊥平面ABCD ,EA PD ,PD ∴⊥平面.ABCD,AD CD ⊂平面,ABCD PD AD ∴⊥,PD CD ⊥.四边形ABCD 是正方形,AD CD ∴⊥.以D 为原点,分别以直线,,DA DC DP 为x 轴, y 轴,z 轴 建立如图所示的空间直角坐标系,设 1.EA = 2AD PD EA ==,D ∴()0,0,0,P ()0,0,2,A ()2,0,0,C ()0,2,0,B ()2,2,0,(2,0,1)E , (2,2,2)PB =-,(0,2,2)PC =-.F ,G ,H 分别为PB ,EB ,PC 的中点,F ∴()1,1,1,G 1(2,1,)2,H (0,1,1),1(1,0,)2GF =-,1(2,0,).2GH =-(解法一)设1111(,,)x y z =n 为平面FGH 的一个法向量,则110GF GH ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11111021202x z x z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令11y =,得1(0,1,0)=n .设2222(,,)x y z =n 为平面PBC 的一个法向量,则220PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即222222220220x y z y z +-=⎧⎨-=⎩,令21z =,得2(0,1,1)=n .所以12cos ,n n =1212⋅⋅n n n n=2.所以平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒) (解法二)(0,1,1)(2,0,0)0DH BC ⋅=⋅-=,(0,1,1)(0,2,2)0DH PC ⋅=⋅-=,DH ∴是平面PBC 一个法向量.(0,2,0)(1,0,0)0DC FH ⋅=⋅-=,1(0,2,0)(1,0,)02DC FG ⋅=⋅-=,DC ∴是平面平面FGH 一个法向量.cos ,2DH DC DH DC DH DC⋅===⋅ ∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). (解法三)延长AE 到,Q 使得,AE EQ =连,.PQ BQQP HGFE D CBA2PD EA AQ ==,EA PD ,∴四边形ADPQ 是平行四边形,.PQAD四边形ABCD 是正方形,,.BCAD PQBC ∴F ,H分别为PB ,PC 的中点,,.FH BC FH PQ ∴FH ⊄平面PED ,PQ ⊂平面PED , FH ∴平面PED .,,FH FG F FH FG =⊂平面,ADPQ ∴平面FGH 平面.ADPQ故平面FGH 与平面PBC 所成锐二面角与二面角D PQ C --相等.,PQ CD PQ PD ⊥⊥,,,PD CD D PD DC =⊂平面,PDC PQ ∴⊥平面.PDCPC ⊂平面,,PDC PQ PC ∴⊥DPC ∠是二面角D PQ C --的平面角.,,45.AD PD AD PD DPC =⊥∴∠=︒∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). 考点:1、直线与平面平行的判定;2、平面与平面所成的角.。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

利用向量法求空间角

利用向量法求空间角
与 和 m
的夹角n
与 和 的夹角
m
n
互补
相等
a
m
a
m


o


o







n
cos =
b
b

cos ,
n
cos =
−cos ,
用向量法求异面直线所成角
设两异面直线a、b的方向向量分别为 m 和 n ,
所以,异面直线a、b所成的角的余弦
值为
cos cos m, n
⋅ AB = 0, ⋅ SA = 0
− + = 0
∴ቊ
2 − = 0
取x=1,则y=1,z=2; 故
∴ sin =
(3)由(2)知面SAB的法向量1
又∵OC⊥平面AOS,

则有
=(1,1,2)
∴ OC
是平面AOS的法向量,
2 = OC = (0,1,0)
cos < 1 , 2 >=
于是我们有 SA=(2,0,-1);
OS=(0,0,1);
(1).cos < SA, OB>=
OB=(1,1,0);
y
O
AB=(-1,1,0);
SA ⋅ OB
=
SA ⋅ OB
=
A
2
5⋅
10
5
C
2
B
x
所以异面直线SA与OB所成的角的余弦值为
10
5
(2)设平面SAB的法向量
显然有
= (, , )
二、知识讲解与典例分析
例1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB的法

法向量解立体几何专题训练

法向量解立体几何专题训练

法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量;2、设平面α的法向量为n =x, y, 1,则直线AB 和平面α所成的角θ的正弦值为sin θ=cos2π-θ = |cos<AB , n >| = AB AB n n•• 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角;这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角; 二、运用法向量求空间距离 1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • 2、求点到面的距离求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B,则A 点到平面α的距离为d =||||AB n n •,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则1a//a n α⇔⊥ 1a a//n α⊥⇔12////n n αβ⇔ 12n n αβ⊥⇔⊥四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. 1 求二面角C —DE —C 1的正切值; 2 求直线EC 1与FD 1所成的余弦值.解:I 以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D0,3,0、D 10,3,2、E3,0,0、F4,1,0、C 14,3,2 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),cos 3||||1tan 2n AA CDE n AA C DE C n AAn AA θθθ∴=--=∴--•-===⨯∴=向量与平面垂直与所成的角为二面角的平面角 II 设EC 1与FD 1所成角为β,则1111cos 14||||1EC FD EC FD β•===⨯例2:高考辽宁卷17如图,已知四棱锥P-ABCD,底面ABCD 是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E 为AB 中点,点F 为PD 中点;1证明平面PED ⊥平面PAB ; 2求二面角P-AB-F 的平面角的余弦值 证明:1∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=12∴P0,0,1,E2,0,0,B2,12,0∴PB=32,12,-1,PE=2,0,-1,平面PED的一个法向量为DC=0,1,0 ,设平面PAB的法向量为n=x, y, 1由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩∴n∵DC·n=0 即DC⊥n∴平面PED⊥平面PAB2解:由1知:平面PAB的法向量为n0, 1, 设平面FAB的法向量为n1=x, y, -1, 由1知:F0,0,12,FB,12,-12,FE,0,-12,由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y x⎧⎧-•-=-+=⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩∴n1∴二面角P-AB-F的平面角的余弦值cosθ= |cos<n, n1>| =11n5714nnn•=•例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.Ⅰ求直线AP与平面BCC1B1所成的角的大小结果用反三角函数值表示;Ⅱ设O点在平面D1AP上的射影是H,求证:D1H⊥AP;Ⅲ求点P到平面ABD1的距离.解: Ⅰ如图建立坐标系D-ACD1, ∵棱长为4 ∴A4,0,0,B4,4,0,P0,4,1∴AP = -4, 4, 1 , 显然DC=0,4,0为平面BCC1B1的一个法向量,∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<AP,DC >|=22216433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin 43333Ⅲ 设平面ABD 1的法向量为n =x, y, 1,∵AB =0,4,0,1AD =-4,0,4由n ⊥AB ,n ⊥1AD 得0440y x =⎧⎨-+=⎩ ∴ n =1, 0,1,∴点P 到平面ABD 1的距离 d =322AP n n•=例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离;解:如图,建立坐标系D-ACD 1,则O1,1,0,A 12,2,3,C0,2,0∴1(1,1,3)AO =-- 1(2,0,3)B C =-- 11(0,2,0)A B = 设A 1O 与B 1C 的公共法向量为(,,1)n x y =,则113(,,1)(1,1,3)0302(,,1)(2,0,3)023032x n AO x y x y x y x n B C y ⎧=-⎧⎪⊥•--=-+-=⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨•--=--=⊥⎩⎩⎪⎪⎩=⎪⎩ ∴ 33(,,1)22n =-∴ A 1O 与B 1C 的距离为d =()1122330,2,0,,122||332211||11331222A B n n ⎛⎫•-⎪•⎝⎭===⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭例5:在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是B 1C 1、C 1D 1的中点,求A 1到面BDFEABCDA 1B 1D 1C 1O的距离;解:如图,建立坐标系D-ACD 1,则B1,1,0,A 11,0,1,E12,1,1 ∴(1,1,0)BD =-- 1(,0,1)2BE =- 1(0,1,1)A B =-设面BDFE 的法向量为(,,1)n x y =,则(,,1)(1,1,0)002112(,,1)(,0,1)01022x y x y n BD x y x y x n BE •--=--=⎧⎧⎧⊥=⎧⎪⎪⎪⇒⇒⇒⎨⎨⎨⎨=-•-=-+=⊥⎩⎪⎪⎪⎩⎩⎩ ∴ (2,2,1)n =-∴ A 1到面BDFE 的距离为d =()()()1220,1,12,2,1|||3|13||221A B n n -•-•-===+-+新课标高二数学空间向量与立体几何测试题1一、选择题1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离图图FEA BCDA 1B 1D 1C 1AA 1DCB B 1C 1图A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离A .a 42B .a 82C .a 423D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC,AB =BC =21PA,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC,则直线OD 与平面PBC 所成角的正弦值A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D,E分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E,F 分别为棱AB,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积VA .66B .3316 C .316D .16二、填空题11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成角的正弦值 . 三、解答题 15.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,且PA ⊥底面ABCD,PD 与底面成30°角. 1若AE ⊥PD,E 为垂足,求证:BE ⊥PD ; 2求异面直线AE 与CD 所成角的余弦值.18.已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. 1求证:E 、F 、D 、B 共面;2求点A 1到平面的BDEF 的距离; 3求直线A 1D 与平面BDEF 所成的角.19.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:ⅠD1E与平面BC1D所成角的大小;Ⅱ二面角D-BC1-C的大小;Ⅲ异面直线B1D1与BC1之间的距离.高二数学空间向量与立体几何专题训练2一、选择题1.向量a=2x,1,3,b=1,-2y,9,若a与b共线,则A.x=1,y=1 B.x=错误!,y=-错误!C.x=错误!,y=-错误! D.x=-错误!,y=错误! 2.已知a=-3,2,5,b=1,x,-1,且a·b=2,则x的值是A.6 B.5 C.4 D.33.设l1的方向向量为a=1,2,-2,l2的方向向量为b=-2,3,m,若l1⊥l2,则实数m的值为A.3 B.2 C.14.若a,b均为非零向量,则a·b=|a||b|是a与b共线的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件5.在△ABC中,错误!=c,错误!=b.若点D满足错误!=2错误!,则错误!=b+错误!c 错误!c-错误!b 错误!b-错误!c 错误!b+错误!c6.已知a,b,c是空间的一个基底,设p=a+b,q=a-b,则下列向量中可以与p,q一起构成空间的另一个基底的是A.a B.b C.c D.以上都不对7.已知△ABC的三个顶点A3,3,2,B4,-3,7,C0,5,1,则BC边上的中线长为A.2 B.3 C.错误!错误!8.与向量a=2,3,6共线的单位向量是A.错误!,错误!,错误! B.-错误!,-错误!,-错误!C.错误!,-错误!,-错误!和-错误!,错误!,错误! D.错误!,错误!,错误!和-错误!,-错误!,-错误!9.已知向量a=2,4,x,b=2,y,2,若|a|=6且a⊥b,则x+y为A.-3或1 B.3或-1 C.-3 D.110.已知a=x,2,0,b=3,2-x,x2,且a与b的夹角为钝角,则实数x的取值范围是A.x>4 B.x<-4 C.0<x<4 D.-4<x<0.11.已知空间四个点A1,1,1,B-4,0,2,C-3,-1,0,D-1,0,4,则直线AD与平面ABC所成的角为A.30° B.45° C.60° D.90°12.已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是25°的直线的条数为A.2 B.3 C.4 D.5二、填空题13.已知{i,j,k}为单位正交基底,且a=-i+j+3k,b=2i-3j-2k,则向量a+b与向量a-2b的坐标分别是________;________.14.在△ABC中,已知错误!=2,4,0,错误!=-1,3,0,则∠ABC=________.15.正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为________.16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc,其中不正确的命题为________.三、解答题17.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°,F 是AD的中点,M是PC的中点.求证:DM∥平面PFB.18.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的余弦值.19.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.1证明:平面AED⊥平面A1FD1;2在AE上求一点M,使得A1M⊥平面DAE.高考真题能力提升1.如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.I设G是OC的中点,证明://FG平面BOE;II证明:在ABO∆内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.2.如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BCⅠ求证:BC ⊥平面PAC ;Ⅱ当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; Ⅲ是否存在点E 使得二面角A DE P --为直二面角 并说明理由.3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.Ⅰ求证:平面AEC PDB ⊥平面;Ⅱ当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.4.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . 1求证:平面ABM ⊥平面PCD ; 2求直线CD 与平面ACM 所成的角的大小; 3求点N 到平面ACM 的距离.yz DMCB PA NONMA BDCO5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点Ⅰ证明:直线MN OCD 平面‖;Ⅱ求异面直线AB 与MD 所成角的大小; Ⅲ求点B 到平面OCD 的距离;6. 如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点; Ⅰ求证:AB 1⊥面A 1BD ;Ⅱ求二面角A -A 1D -B 的大小; Ⅲ求点C 到平面A 1BD 的距离;7.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE Ⅰ求二面角B —AD —F 的大小;Ⅱ求直线BD 与EF 所成的角.8.如图,在长方体ABCD —A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.1证明:D 1E ⊥A 1D ;2当E 为AB 的中点时,求点E 到面ACD 1的距离;3AE 等于何值时,二面角D 1—EC —D 的大小为4π.9. 如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22, M 为BC 的中点Ⅰ证明:AM ⊥PM ;Ⅱ求二面角P -AM -D 的大小; Ⅲ求点D 到平面AMP 的距离;10.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点. 1 求证://AF 平面BCE ; 2 求证:平面BCE ⊥平面CDE ; 3 求直线BF 和平面BCE 所成角的正弦值.1A C M PD C B A A BCD EF11. 如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . 1求证:BC ⊥PB ;2求二面角P CD A --的平面角的余弦值.12. 如图,正三棱柱ABC -111C B A 的底面边长是2,D 是侧棱C 1C 的中点,直线AD 与侧面C C BB 11所成的角为45°.1 求二面角A-BD-C 的大小; 2求点C 到平面ABD 的距离.13. 如图,P 、O 分别是正四棱柱1111ABCD A B C D -上、下底面的中心,E 是AB 的中点,1AB kAA =. Ⅰ求证:1A E ∥平面PBC ;Ⅱ当k =,求直线PA 与平面PBC 所成角的大小;Ⅲ 当k 取何值时,O 在平面PBC 内的射影恰好为PBC ∆ABCD1A 1B 1C A 1C14. 如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.Ⅰ问点E 在何处时,//PA EBD 平面,并加以证明; Ⅱ当//PA EBD 平面时,求点A 到平面EBD 的距离; Ⅲ求二面角C PA B --的大小.15.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 Ⅰ求异面直线A 1M 和C 1D 1所成的角的正切值; Ⅱ证明:平面ABM ⊥平面A 1B 1M 116.已知三棱锥P -ABC 中,PA ⊥ABC,AB ⊥AC,PA=AC=½AB,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. Ⅰ证明:CM ⊥SN ;Ⅱ求SN 与平面CMN 所成角的大小.EPDCBA17.如图,四棱锥S-ABCD 中,SD ⊥底面ABCD,AB ⊥⊥Ⅰ证明:SE=2EB ; Ⅱ求二面角A-DE-C 的大小 .18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点;ABCDEFHⅠ求证:FH ∥平面EDB ;Ⅱ求证:AC ⊥平面EDB ; Ⅲ求二面角B DE C --的大小;19.如图,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== 1求证1;AC BC ⊥2在AB 上是否存在点D 使得1?AC CD ⊥ 3在AB 上是否存在点D 使得11//A C CDB 平面A1C BCD1A 1B20、如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点. Ⅰ求证:EF ⊥CD ;Ⅱ在平面PAD 内求一点G,使GF ⊥平面PCB,并证明你的结论; Ⅲ求DB 与平面DEF 所成角的大小.21、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,CB=1,CA=3, AA 1=6,M 为侧棱CC 1上一点, 1AM BA ⊥. 1求证: AM ⊥平面1A BC ; 2求二面角B -AM -C 的大小; 3求点C 到平面ABM 的距离.ABCABCM22、如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.I证明:AB1⊥BC1;II求点B到平面AB1C1的距离.III求二面角C1—AB1—A1的大小。

利用向量法求空间角教案

利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节:一、向量法求空间角的概念教学目标:1. 了解向量法求空间角的概念。

2. 掌握向量法求空间角的基本方法。

教学内容:1. 向量法求空间角的概念介绍。

2. 向量法求空间角的计算方法。

教学步骤:1. 引入向量法求空间角的概念,解释空间角的概念。

2. 讲解向量法求空间角的计算方法,通过示例进行演示。

3. 进行练习,让学生巩固向量法求空间角的方法。

教学评估:1. 通过课堂提问,检查学生对向量法求空间角概念的理解。

2. 通过练习题,检查学生对向量法求空间角计算方法的掌握。

二、向量法求空间角的计算方法教学目标:1. 掌握向量法求空间角的计算方法。

2. 能够应用向量法求解空间角的问题。

教学内容:1. 向量法求空间角的计算方法介绍。

2. 向量法求空间角的计算实例。

教学步骤:1. 复习向量法求空间角的概念,引入计算方法。

2. 讲解向量法求空间角的计算步骤,通过示例进行演示。

3. 进行练习,让学生巩固向量法求空间角的计算方法。

教学评估:1. 通过课堂提问,检查学生对向量法求空间角计算方法的理解。

2. 通过练习题,检查学生对向量法求解空间角问题的能力。

三、向量法求空间角的练习题教学目标:1. 巩固向量法求空间角的计算方法。

2. 提高学生应用向量法求解空间角问题的能力。

教学内容:1. 向量法求空间角的练习题。

教学步骤:1. 给出向量法求空间角的练习题,让学生独立完成。

2. 对学生的答案进行讲解和指导,解决学生在解题过程中遇到的问题。

3. 进行练习,让学生进一步巩固向量法求空间角的计算方法。

教学评估:1. 通过练习题,检查学生对向量法求解空间角问题的能力。

2. 通过学生的解题过程,了解学生对向量法求空间角计算方法的掌握情况。

四、向量法求空间角的拓展与应用教学目标:1. 了解向量法求空间角的拓展与应用。

2. 能够应用向量法解决实际问题中的空间角问题。

教学内容:1. 向量法求空间角的拓展与应用介绍。

高中数学_立体几何中的向量方法—空间角的计算教学设计学情分析教材分析课后反思

高中数学_立体几何中的向量方法—空间角的计算教学设计学情分析教材分析课后反思

,a b>;θ=<>;n)所成的角sin cos,a n⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。

活动三:合作学习、探究新知(18分钟)利用向量知识求线线角,线面角,二面角的大小。

一、异面线所成角:例1、如图所示的正方体中,已知与为四等分点,求异面直线与的夹角的余弦值?方法小结:1、异面直线a 、b 所成的角:在空间中任取一点O ,过点O 分别引/a ∥a ,/b ∥b ,则/a ,/b 所成的锐角(或直角)叫做两条异面直线所成的角。

两条异面直线所成角的范围:(0,]2π。

2、求法:①传统法:把两条异面直线中的一条放入一个平面,另一条与这个平面有交点,过这个交点在平面内作第一条的平行线,则这两条直线所成的角为两条异面直线所成的角。

然后解三角形得到。

②向量法:在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>。

3、利用向量求异面直线所成的角的步骤为:(1)确定空间两条直线的方向向量;(2)求两个向量夹角的余弦值;(3)确定线线角与向量夹角的关系;当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角。

练习:中,,现将沿着平面的法向量平移到的位置,已知BC=CA=C,取、的中点、,求B与A所成的角的余弦值。

二、直线与平面所成的角:例2:如图,在正方体ABCD-中,求与平面所成的角。

方法小结:1、直线a 与平面α所成角:斜线与平面所成的角就是斜线与它在平面内的射影所成的锐角。

直线与平面所成角的范围为:[0,]2π。

2、求法:①求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。

若垂足的位置难以确定,可考虑用三棱锥体积等量来求出斜线上一点到平面的距离。

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

C
D CA, DB
进行向量运算
d2

2
AB

( AC

CD

DB)2
A
图3
2
2
2
AB CD BD 2(AC CD AC DB CD DB)
a2 c2 b2 2AC DB
a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
3.2立体几何的向量方法(3)
• 空间向量与空间角
例 1、如图,在正方体 ABCD A1B1C1D1中,M、N 分别是
棱 CD、CC1的中点,则异面直线 A1M 与 DN 所成的角
的大小是
.
法二 以 D 为原点,DA、DC、DD1所在直线为坐标轴建立 空间直角坐标系,设 AB=1,
则 D(0,0,0),N0,1, 1 ,
15
例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B
处。从A,B到直线 l(库底与水坝的交线)的距离AC和BD分别为
a 和 b ,CD的长为 c, AB的长为d。求库底与水坝所成二面角的余弦值。
解:如图,AC a,BD b,CD c,AB d.
化为向量问题

B
根据向量的加法法则 AB AC CD DB
a, b), 1 a2 b2
2

0
C1(0, 0, b),
z C1
2
∵ CC1B在坐标平面yoz中
C
∴ 可取 n=(1,0,0)为面CC1B的法向量 x
D
设面 C1BD 的一个法向量为 m ( x, y, z)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B CD PQ 向量法求空间角1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 21==.(1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小.2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为26.(1)求侧面PAD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.B3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCDABCD为正方形,GPD=分别为CBPC,,的中点.=PDF,2EAD,,AP平面EFG;(1)求证://(2)求平面GEF和平面DEF的夹角.HPGFE DCB 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为6π,求锐二面角1A A C B --的大小.6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点.(1)求证:FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小.参考答案1.(1)详见解析;(2)4π 【解析】试题分析:(1)根据题中所给图形的特征,不难想到建立空间直角坐标,由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.表示出图中各点的坐标:设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P ,则可表示出),0,0(a DC =,)0,,(a a DQ =,)0,,(a a -=,根据数量积为零与垂直的充要条件进行证明,由0=⋅,0=⋅,故⊥,⊥,即可证明;(2)首先求出两个平面的法向量,其中由于⊥DC 平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n ;设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅QC n,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n ,转化为两个法向量的夹角,设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ.即可求出平面BCQ 与平面ADPQ 所成的锐二面角的大小.试题解析:(1)由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P , 故),0,0(a =,)0,,(a a =,)0,,(a a -=, 因为0=⋅,0=⋅,故⊥,⊥,即PQ DC ⊥,PQ DQ ⊥, 又DCDQ D = 所以,⊥PQ 平面DCQ .(2)因为⊥平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n,点B 的坐标为),0,(a a ,则),,0(a a -=,),,(a a a --=,设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅n ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n .设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ. 所以,平面BCQ 与平面ADPQ 所成的锐二面角的大小为4π 考点:1.空间向量的应用;2.二面角的计算;3.直线与平面的位置关系2.(1)60︒; (2)5102; (3)F 是AD 的4等分点,靠近A 点的位置. 【解析】试题分析:(1)取AD 中点M ,连接MO ,PM ,由正四棱锥的性质知∠PMO 为所求二面角P -AD-O 的平面角,∠PAO 为侧棱PA 与底面ABCD 所成的角∴tan ∠PAO =26,设AB =a ,则AO =22a ,PO =23a ,MO=12a , tan ∠PMO =3,∠PMO =60°; (2)依题意连结AE ,OE ,则OE ∥PD ,故∠OEA 为异面直线PD 与AE 所成的角,由正四棱锥的性质易证OA ⊥平面POB,故AOE ∆为直角三角形,OE =21PD =2122DO PO +=45a ∴tan ∠AEO =EO AO =5102;(3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG ,易得BC ⊥平面PMN ,故平面PMN ⊥平面PBC ,而△PMN 为正三角形,易证MG ⊥平面PBC ,取MA 的中点F,连EF,则四边形MFEG 为平行四边形,从而MG//FE,EF ⊥平面PBC,F 是AD 的4等分点,靠近A 点的位置.试题解析:(1)取AD 中点M ,连接MO ,PM ,依条件可知AD ⊥MO ,AD ⊥PO ,则∠PMO 为所求二面角P -AD -O 的平面角 (2分) M DB A CO EP∵PO ⊥面ABCD ,∴∠PAO 为侧棱PA 与底面ABCD 所成的角.∴tan ∠PAO =26设AB =a ,AO =22a ,∴PO =AO·tan∠POA =23a ,tan ∠PMO =MO PO =3.∴∠PMO =60°. (4分)(2)连接AE ,OE , ∵OE ∥PD ,∴∠OEA 为异面直线PD 与AE 所成的角. (6分)∵AO ⊥BD ,AO ⊥PO ,∴AO ⊥平面PBD .又OE ⊂平面PBD ,∴AO ⊥OE .∵OE =21PD =2122DO PO +=45a , ∴tan ∠AEO =EOAO =5102. (8分) (3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG . M D BACOEPM D B ACO E PN GF∵BC ⊥MN ,BC ⊥PN ,∴BC ⊥平面PMN∴平面PMN ⊥平面PBC . (10分)又PM =PN ,∠PMN =60°,∴△PMN 为正三角形.∴MG ⊥PN .又平面PMN∩平面PBC =PN ,∴MG ⊥平面PBC . (12分)∴F 是AD 的4等分点,靠近A 点的位置 (13分)考点:立体几何的综合问题3.(1)见解析;(2)见解析;(3)45︒.【解析】试题分析:(1)取CE 中点P ,连接FP 、BP ,根据中位线定理可知FP||DE ,且且FP=.21DE ,而AB||DE ,且AB=.21DE 则ABPF 为平行四边形,则AF||BP ,AF ⊄平面BCE ,BP ⊂平面BCE ,满足线面平行的判定定理,从而证得结论;(2)根据AB ⊥平面ACD ,DE||AB ,则DE ⊥平面ACD ,又AF ⊂平面ACD ,根据线面垂直的性质可知DE AF AF CD CD DE D ⊥⊥=.又,,满足线面垂直的判定定理,证得AF ⊥平面CDE ,又BP||AF ,则BP ⊥平面CDE ,BP ⊂平面BCE ,根据面面垂直的判定定理可证得结论;(3)由(2),以F 为坐标原点,FA ,FD ,FP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系F ﹣xyz .设AC=2,根据线面垂直求出平面BCE 的法向量n ,而m=(0,0,1)为平面ACD 的法向量,设平面BCE 与平面ACD 所成锐二面角为α,根据||cos ||||m n m n α⋅=⋅可求出所求.试题解析:(1)解:取CE 中点P,连结FP 、BP,∵F 为CD 的中点,∴FP||DE,且FP=.21DE 又AB||DE,且AB=.21DE ∴AB||FP,且AB=FP,∴ABPF 为平行四边形,∴AF||BP 又∵AF ⊄平面BCE,BP ⊂平面BCE,∴AF||平面BCE (2)∵△ACD 为正三角形,∴AF CD ⊥.∵AB ⊥平面ACD,DE||AB,∴DE ⊥平面ACD,又AF ⊂平面ACD,∴DE ⊥AF.又AF ⊥CD,CD∩DE=D,∴AF ⊥平面CDE 又BP||AF,∴BP ⊥平面CDE.又∵BP ⊂平面BCE,∴平面BCE ⊥平面CDE (3)法一、由(2),以F 为坐标原点,FA,FD,FP 所在的直线分别为x,y,z 轴(如图),建立空间直角坐标系F —xyz.设AC=2,则C (0,—1,0),).2,1,0(,),1,0,3(E B -设(,,)n x y z =为平面BCE 的法向量,300,0,220x y z n CB n CE y z ⎧++=⎪∴⋅=⋅=∴⎨+=⎪⎩,令n=1,则(0,1,1)n =-显然,)1,0,0(=m 为平面ACD 的法向量.设面BCE 与面ACD 所成锐二面角为,α则||2cos ||||2m n m n α⋅===⋅∴ 45=α.即平面BCE 与平面ACD 所成锐二面角为45︒法二、延长EB 、DA,设EB 、DA 交于一点O,连结CO.则面EBC面DAC CO =.由AB 是EDO ∆的中位线,则AD DO 2=.在OCD ∆中22OD AD AC ==, 060=∠ODC .CD OC ⊥,又DE OC ⊥.OC ∴⊥ 面,ECD 而CE ⊂面ECD,为所求二面角的平面角ECD CE OC ∠∴⊥∴,在Rt EDC ∆中,ED CD =,045=∠∴ECD 即平面BCE 与平面ACD 所成锐二面角为45︒.考点:与二面角有关的立体几何综合题;直线与平面平行的判定;平面与平面垂直的判定.4.证明见解析【解析】试题分析::(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量与平面的法向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备. 试题解析:(1)如图,以D 为原点,以,,DA DC DP 为方向向量建立空间直角坐标系,xyz D -则)0,0,2(),1,0,0(),1,1,0(),0,2,1(),0,2,0(),2,0,0(A F E G C P .)11,1(),0,1,0(),2,0,2(-=-=-=∴EG EF AP .设平面EFG 的法向量为(,,)n x y z =0,0,n EF n EG ⎧⋅=⎪∴⎨⋅=⎪⎩即⎩⎨⎧=-+=-.0,0z y x y ⎩⎨⎧==∴.0,y z x 令1=x 则(1,0,1)n =.1(2)00120,.n AP n AP ⋅=⨯-+⨯+⨯=∴⊥又⊄AP 平面//,AP EFG ∴平面.EFG(2) 底面ABCD 是正方形,,DC AD ⊥∴又⊥PD 平面ABCD.AD PD ⊥∴又D CD PD = ,AD ∴⊥平面PCD∴向量是平面PCD 的一个法向量,)0,0,2(=又由(1)知平面EFG 的法向量(1,0,1)n =.cos ,2||||22DA n DA n DA n ⋅∴<>===⋅ ∴二面角D EF G --的平面角为045.考点:(1)证明直线与平面平行;(2)利用空间向量解决二面角问题.5.(Ⅰ)详见解析;(Ⅱ)3π. 【解析】试题分析:(Ⅰ)取1A B 的中点D ,连接AD ,由已知条件推导出AD ⊥平面1A BC ,从而AD BC ⊥,由线面垂直得1AA BC ⊥.由此能证明AB BC ⊥.(Ⅱ)方法一:连接CD ,由已知条件得ACD ∠即为直线AC 与平面1A BC 所成的角,AED ∠即为二面角1A A C B --的一个平面角,由此能求出二面角1A A C B --的大小.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-, 1(0,0,2)AA =,求出平面1A BC 的一个法向量1(,,)n x y z =,设直线AC 与平面1A BC 所成的角为θ,则6πθ=得12121sin6242AC n AC n a π-===+,解得2a =,即(2,2,0)AC =-,求出平面1A AC 的一个法向量为2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α=<>==,且(0,)2πα∈, 即可求出锐二面角1A A C B --的大小.试题解析:解(1)证明:如图,取1A B 的中点D ,连接AD ,因1AA AB =,则1AD A B ⊥ 由平面1A BC ⊥侧面11A ABB ,且平面1A BC侧面11A ABB 1A B =,得1AD A BC ⊥平面,又BC ⊂平面1A BC , 所以AD BC ⊥.因为三棱柱111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以1AA BC ⊥. 又1=AA AD A ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥.-------6分解法一:连接CD ,由(1)可知1AD A BC ⊥平面,则CD 是AC 在1A BC 平面内的射影 ∴ACD ∠即为直线AC 与1A BC 平面所成的角,则=6ACD π∠ 在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴1122AD A B ==,且=2ADC π∠,=6ACD π∠ ∴22AC =过点A 作1AE A C ⊥于点E ,连DE ,由(1)知1AD A BC ⊥平面,则1AD A C ⊥,且AE AD A =∴AED ∠即为二面角1A A C B --的一个平面角且直角1A AC ∆中:113A A ACAEAC⋅===,又AD,=2ADEπ∠∴sin=ADAEDAE∠==且二面角1A A C B--为锐二面角∴=3AEDπ∠,即二面角1A A C B--的大小为3π----12分解法二(向量法):由(1)知AB BC⊥且1BB ABC⊥底面,所以以点B为原点,以1BC BA BB、、所在直线分别为,,x y z轴建立空间直角坐标系B xyz-,如图所示,且设BC a=,则(0,2,0)A,(0,0,0)B,(,0,0)C a,1(0,2,2)A,(,0,0)BC a=,1(0,2,2)BA =,(,2,0)AC a=-,1(0,0,2)AA =设平面1A BC的一个法向量1(,,)n x y z=,由1BC n⊥,11BA n⊥得:0220xay z=⎧⎨+=⎩令1y=,得0,1x z==-,则1(0,1,1)n=-设直线AC与1A BC平面所成的角为θ,则6πθ=得111sin624AC nAC nπ⋅===,解得2a=,即(2,2,0)AC=-又设平面1A AC的一个法向量为2n,同理可得2(1,1,0)n=,设锐二面角1A A C B--的大小为α,则1212121cos cos,2n nn nn nα⋅=<>==,且(0,)2πα∈,得3πα=∴锐二面角1A A C B--的大小为3π.考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系.6.(1)证明见解析;(2)045【解析】试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备. 试题解析:(1)证明:F ,G 分别为PB ,BE 的中点,FG∴PE .又FG ⊄平面PED ,PE ⊂平面PED ,FG∴平面PED .(2)解:EA ⊥平面ABCD ,EA PD ,PD ∴⊥平面.ABCD,AD CD ⊂平面,ABCD PD AD ∴⊥,PD CD ⊥.四边形ABCD 是正方形,AD CD ∴⊥.以D 为原点,分别以直线,,DA DC DP 为x 轴, y 轴,z 轴 建立如图所示的空间直角坐标系,设 1.EA = 2AD PD EA ==,D ∴()0,0,0,P ()0,0,2,A ()2,0,0,C ()0,2,0,B ()2,2,0,(2,0,1)E , (2,2,2)PB =-,(0,2,2)PC =-.F ,G ,H 分别为PB ,EB ,PC 的中点,F ∴()1,1,1,G 1(2,1,)2,H (0,1,1),1(1,0,)2GF =-,1(2,0,).2GH =-(解法一)设1111(,,)x y z =n 为平面FGH 的一个法向量,则110GF GH ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11111021202x z x z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令11y =,得1(0,1,0)=n . 设2222(,,)x y z =n 为平面PBC 的一个法向量,则2200PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即222222220220x y z y z +-=⎧⎨-=⎩,令21z =,得2(0,1,1)=n .所以12cos ,n n =1212⋅⋅n n n n=2. 所以平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒) (解法二)(0,1,1)(2,0,0)0DH BC ⋅=⋅-=,(0,1,1)(0,2,2)0DH PC ⋅=⋅-=,DH ∴是平面PBC 一个法向量.(0,2,0)(1,0,0)0DC FH ⋅=⋅-=,1(0,2,0)(1,0,)02DC FG ⋅=⋅-=,DC ∴是平面平面FGH 一个法向量.cos ,,22DH DC DH DC DH DC⋅===⋅ ∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). (解法三)延长AE 到,Q 使得,AE EQ =连,.PQ BQQP HGFE D CBA2PD EA AQ ==,EA PD ,∴四边形ADPQ 是平行四边形,.PQAD 四边形ABCD 是正方形,,.BCAD PQBC ∴F ,H 分别为PB ,PC 的中点,,.FH BC FH PQ ∴FH ⊄平面PED ,PQ ⊂平面PED , FH ∴平面PED .,,FHFG F FH FG =⊂平面,ADPQ ∴平面FGH平面.ADPQ故平面FGH 与平面PBC 所成锐二面角与二面角D PQ C --相等.,PQ CD PQ PD ⊥⊥,,,PD CD D PD DC =⊂平面,PDC PQ ∴⊥平面.PDCPC ⊂平面,,PDC PQ PC ∴⊥DPC ∠是二面角D PQ C --的平面角.,,45.AD PD AD PD DPC =⊥∴∠=︒∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). 考点:1、直线与平面平行的判定;2、平面与平面所成的角.。

相关文档
最新文档