(完整word版)高中数学必修一试卷
高中数学(必修1) 各章节测试题全套含答案

目录:数学1(必修)数学1(必修)第一章:(上)集合[训练A 、B 、C] 数学1(必修)第一章:(中)函数及其表[训练A 、B 、C] 数学1(必修)第一章:(下)函数的基本性质[训练A 、B 、C] 数学1(必修)第二章:基本初等函数(I )[基础训练A 组] [1A C 2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是()A .()()A CB CB .()()A B AC C .()()A B B CD .()A B C 4.下面有四个命题:A B C(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为()A .0个B .1个C .2个D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是()A C 6A 1((( 2.B ,则C 3B =_____________4,且A B ⊇5B =_________1.已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,试用列举法表示集合A 。
2.已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。
3.已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,求实数a 的值。
4.设全集U R =,{}2|10M m mx x =--=方程有实数根,{}()2|0,.U N n x x n C M N =-+=方程有实数根求(数学1必修)第一章(上)集合[综合训练B 组]一、选择题1.下列命题正确的有()(1)很小的实数可以构成集合;(222(3(423N M =BN N =C N M =D N =∅4⎩⎨⎧=-=+122y x y x 的解集是()56A .若A B A B A =⊆ 则, B .若B A B B A ⊆=,则 C .)(B A A )(B AD .()()()B C A C B A C U U U =二、填空题1.用适当的符号填空(1){}()(){}1|,____2,1,2|______3+=≤x y y x x x (2){}32|_______52+≤+x x ,(3){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭2.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或 34B B =,则5}0=至多有一个元素,则的取值范围。
(word版)高一数学必修一期末试卷及答案,文档

高一数学必修1试题一、选择题。
〔共10小题,每题4分〕1、设集合A={x Q|x>-1} ,那么〔〕A 、AB 、2 AC 、2AD 、2A2、设A={a ,b},集合B={a+1,5},假设A∩B={2},那么A∪B=〔〕A 、{1,2}B 、{1,5}C 、{2,5}D、{1,2,5}3、函数f(x)x1〕的定义域为〔x 2A 、[1,2)∪(2,+∞〕B 、(1,+∞〕C 、[1,2)D 、[1,+∞)4、设集合M={x|-2 ≤x≤2},N={y|0≤y≤2},给出以下四个图形,其中能表示以集合 M 为定义域, N 为值域的函数关系的是〔 〕5、三个数70。
3,0。
37,,㏑,的大小顺序是〔 〕 0。
3 , 7, ,㏑ 0.3, 0。
3 ,,㏑0.3, 7 A 、7 B 、7C 、7,,70。
3,,㏑ 0.3,D 、㏑0.3,70。
3,7, 6、假设函数f(x)=x 3+x 2-2x-2 的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2那么方程x 3+x 2-2x-2=0的一个近似根〔精确到 〕为〔〕A 、B 、 C、D、7、函数y2x,x 0〕2x ,x的图像为〔高一数学试卷第1页〔共6页〕8、设f(x)log a x〔a>0,a≠1〕,对于任意的正实数x,y,都有〔〕A、f(xy)=f(x)f(y)B、f(xy)=f(x)+f(y)C、f(x+y)=f(x)f(y)D、f(x+y)=f(x)+f(y)9、函数y=ax2+bx+3在〔-∞,-1]上是增函数,在[-1,+∞)上是减函数,那么〔〕A、b>0且a<0B、b=2a<0C、b=2a>0D、a,b的符号不定10、某企业近几年的年产值如图,那么年增长率最高的是〔万元〕〔〕〔年增长率=年增长值/年产值〕1000800A、97年B、98年600C、99年D、00年400200二、填空题〔共4题,每题4分〕9697989900(年〕11、f(x)的图像如以下列图,那么f(x)的值域为;12、计算机本钱不断降低,假设每隔3年计算机价格降低1/3,现在价格为8100元的计算机,那么9年后价格可降为;13、假设f(x)为偶函数,当x>0时,f(x)=x,那么当x<0时,f(x)=;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{xR|x0};③在(0,)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
(word完整版)高一数学必修1综合测试题3套[含解析],文档
![(word完整版)高一数学必修1综合测试题3套[含解析],文档](https://img.taocdn.com/s3/m/618df0e3844769eae109ed4b.png)
范文模范参照高一数学综合检测题〔1〕一、选择题:5 分,共60 分,请将所选答案填在括号内〕〔每题1.会集 M{4,7,8},且 M中至多有一个偶数, 那么这样的会集共有()(A)3个(B) 4个(C) 5个(D) 6个2. S={x|x=2n,n∈ Z}, T={x|x=4k± 1,k ∈ Z}, 那么〔〕(A)S T(B) T S(C)S≠T(D)S=T3.会集 P= y | y x22,x R, Q=y| y x 2,x R ,那么PI Q 等〔〕(A) 〔 0, 2〕,〔 1, 1〕(B){〔 0,2〕,〔 1, 1〕 } (C){1, 2}(D)y | y24.不等式ax2ax40 的解集为,那么a 的取值范围是〔〕R(A)16 a 0(B)a16(C)16 a0(D) a 05. f ( x) =x5( x6),那么 f(3)的值为〔〕f (x4)( x6)(A)2(B)5(C)4( D)36. 函数y x24x3, x[0,3]的值域为〔〕(A)[0,3](B)[-1,0](C)[-1,3](D)[0,2]7.函数 y=(2k+1)x+b 在 (- ∞,+ ∞ ) 上是减函数,那么〔〕(A)k> 1(B)k<1(C)k>1(D).k<1 22228. 假设函数f(x)=x2+2(a-1)x+2在区间 ( ,4]内递减,那么实数 a 的取值范围为〔〕(A)a≤ -3(B)a≥ -3(C)a≤ 5(D)a≥39.函数y(2 a23a 2) a x是指数函数,那么 a 的取值范围是(A) a 0, a1(B) a 1(C)a a 1或 a1212〔〕( D)10.函数 f(x)4 a x 1的图象恒过定点p,那么点 p 的坐标是〔〕〔A〕〔 1 ,5 〕〔B〕〔 1, 4 〕〔C〕〔 0 ,4〕〔 D〕〔 4 ,0〕11.函数 y log 1 (3 x2)的定义域是〔〕2〔A〕 [1,+](B) (32 ,)(C) [32 ,1](D)(32 ,1]12.设a,b,c都是正数,且3a4b6c,那么下列正确的是〔〕(A)111(B)221(C)122(D)212 c a b C a b C a b c a b二、填空题:〔每题 4 分,共 16 分,答案填在横线上〕13.〔 x,y 〕在照射f下的象是(x-y,x+y),那么(3,5)在f下的象是,原象是。
最新高中数学必修1综合测试卷(三套+含答案)教学教材

1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则
,
,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)
(word完整版)高中数学必修一试题和答案解析

新课标高中数学必修一课程考试试卷一、选择题:本大题共12小题,每小题5分,共60分•在每 小题的4个选项中,只有一项是符合题目要求的.1.设全集 U = R, A ={x |x >0} , B = {x |x > 1},则 An :U B=() A. {x |0 w x v 1}B. {x |0 v x < 1}C. {x |x v 0} D . {x |x > 1}2•下列四个图形中,不是 以x 为自变量的函数的图象是 ()3.下列四组函数中,表示同一函数的是 ()A. f (x ) = | x | , g (x ) = . x 22B. f (x ) = lg x , g (x ) = 2lg x得分 评卷人题号——一二三四五六总分分数注意事项:1.考生务必将自己姓名、学号写在指定位置 2.密封线和装订线内不准答题。
3.本试卷总分为150分,分为三类题型。
命题人:焦老师A. —定经过点(0 , 0)专业技术B. —定经过点(1 , 1)C. f(x) = , g(x) = x+1x-1D. f(x) = x+1 • .. x-1 , g(x) = x2-14. 幕函数y = x"(a是常数)的图象().In 2、 ln 3 In 512.若a2 ,3,C5 ,则()c.—定经过点(一1, 1)D. 一定经过点(1 , - 1)5.已知函数 f (x ) = lOg2X ,x >0 ,则 f ( —10)的值是(). f( x +3) , x w 0A. — 2 B .— 1C. 0D. 16.函数f (x )具"3)2满足f[ f(x )] x,则常数c 等于(A. 3 B .3 C . 3或 3 D . 5或3已知函数ly f (x°定义域是2,3]则|y f (2x°的定义域是(2 210 .方X9的解集是(A.5,4B .5,4C5,4 D . 5, 411.设函数51 f ( )lg x x1,则f (10)的值为A. 1 B .1 C .10D1107 .a的范围是(2 .(8分)求函数y2x 2A . a b cB . c b aC . cabD . ba c 二、填空题:本大题共4小题,每小题5分,共20分•将答案填在题中横线上.2 21.已知函数f (x ) (m 1)x (m 2)x (m 7m 12)为偶函数,则m的值是 ________三、解答题: 本大题共6小题,共60分•解答应写出文字说明、证明过程或演算步骤.1. (10 分)已知函数 f (x ) = lg(3 + x ) + lg(3 — x ).(1) 求函数f (x )的定义域;(2) 判断函数f (x )的奇偶性,并说明理由.2.求满足1X 2 —8> 4— 2x的x 的取值集合是f(x)3 .若函数 3x 2 4(x 0)(x 0)0(x 0),则 f(f(0))= __________4 .若函数f(2x 1)2x 2x ,贝y f (3) = _________3. (10 分)设a 为实数,函数f(x) x2 |x a| 1, x R (1)讨论f (x)的奇偶性;(2)求f (x)的最小值。
(完整word版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1。
已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 A. {}2 B. {}3 C. {}432,, D. {}43210,,,。
2。
下列各组两个集合A 和B,表示同一集合的是A. A={}π,B={}14159.3 B. A={}3,2,B={})32(, C. A={}π,3,1,B={}3,1,-π D 。
A={}N x x x ∈≤<-,11,B={}1 3。
函数2x y -=的单调递增区间为A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 4。
下列函数是偶函数的是A. x y =B. 322-=x y C 。
21-=xy D. ]1,0[,2∈=x x y5.已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =A 。
3B ,2C 。
1 D.0 6.当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是 .A B C D 7.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是A 。
(-2,6)B 。
[—2,6]C 。
{}6,2- D.()()∞+-∞-.62, 8. 若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )ABC 、14D 、129.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是A b c a <<. B. c b a << C. c a b << D.a c b << 10。
(word完整版)高一数学必修1综合试卷(带答案)(2)

1. 2. 3. 4. 高—数学试卷时量:100分钟 总分:120分 、选择题(本大题共12小题,每小题 项是符合题目要求的) 下列各项中,不可以组成集合的是( A .所有的正数 B .等于 下列四个集合中,空集的是( A . {x | x 3 3} B . 2C . {x | x 0}D . 下列表示图形中的阴影部分的是( A . (AUC)I (B UC) C . (AU B)I (BUC) 若集合M4分,共48分。
在每小题给出的四个选项中,只有一 2的数 ) {(x,y) | {x|x 2 x ) B . (AU B)I D . (AU B) I 接近于0的数 D .不等于0的偶数 2x ,x, y R}0,x R} (AUC) C a,b,c 中的元素是△ ABC 的三边长,则△ ABC 一定不是( D .等腰三角形) A .锐角三角形 B .直角三角形 C .钝角三角形 5. 函数y f(x)的图象与直线x 1的公共点数目是( A . 1 B .6. 已知集合A 使B 中元素 0 C . 0 或 1 D . 1 或 2 1,2,3, k , B 4,7,a 4,a 2 3a ,且y 3x 1和A 中的元素x 对应,则a, k 的值分别为( N ,x Ay B 行车,最后两人同时到达 B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快.若某人离开 A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数 图象中,甲、乙各人的图象只可能是 ()④①乙是图②乙是图②甲是图①,乙是图④ 甲是图③,乙是图④A.甲是图①, C.甲是图③, 二、填空题 13.若全集UB. D.每小题4分,共24分。
将正确答案填在题中横线上 ),则集合A 的子集共有 ________________ 个.x|2 x 10,则 AU B ________________ .6小题, 且 C u A 2 x|3 x2y x(本大题共 0,123 14 •若集合A 15.已知A 16.函数f x17. 已知 f (X ) 18. 已知函数flog 2 x , )ax 22x 1 ,By y 2x 1,则 A B=x 那么 / 3(a-的定义域是3f(f (4))—1在(.(要求写区间)A . 2,3B . 3,4C . 3,5D . 2,5x 2(x 1)三、解答题 (本大题共4小题,共48分。
(完整版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1.已知全集{}{}{}()====N M C 。
N M U U 则3,2,2.1,0,4,3,2,1,0A. B. C. D. {}2{}3{}432。
{}43210。
2.下列各组两个集合A 和B,表示同一集合的是A.A=,B=B. A=,B={}π{}14159.3{}3,2{})32(。
C. A=,B=D. A=,B={}π,3,1{}3,1,-π{}N x x x ∈≤<-,11{}13. 函数的单调递增区间为2x y -=A . B . C .D .]0,(-∞),0[+∞),0(+∞),(+∞-∞4. 下列函数是偶函数的是A. B.C.D. x y =322-=x y 21-=xy ]1,0[,2∈=x x y 5.已知函数f(2) =()则。
x x x x x f ⎩⎨⎧>+-≤+=1,31,1A.3B,2C.1D.06.当时,在同一坐标系中,函数的图象是10<<a x y a y a xlog ==-与 A BCD7.如果二次函数有两个不同的零点,则m 的取值范围是)3(2+++=m mx x y A.(-2,6)B.[-2,6]C. D.{}6,2-()()∞+-∞-.62, 8. 若函数 在区间上的最大值是最小值的2倍,则的值为(()log (01)a f x x a =<<[],2a a a )A B C 、D 、14129.三个数之间的大小关系是3.0222,3.0log ,3.0===c b a A . B. C. D.b c a <<c b a <<c a b <<a c b <<10. 已知奇函数在时的图象如图所示,则不等式的解集为()f x 0x ≥()0xf x <A. B.(1,2)(2,1)--C. D.(2,1)(1,2)-- (1,1)-11.设,用二分法求方程内近似解的过程中得()833-+=x x f x()2,10833∈=-+x x x在则方程的根落在区间()()(),025.1,05.1,01<><f f f A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定12.计算机成本不断降低,若每隔三年计算机价格降低,则现在价格为8100元的计算机9年31后价格可降为A.2400元B.900元C.300元D.3600元二、填空题(每小题4分,共16分.)13.若幂函数y =的图象经过点(9,), 则f(25)的值是_________-()x f 1314. 函数的定义域是()()1log 143++--=x x xx f 15. 给出下列结论(1)2)2(44±=-(2)331log 12log 22-=21 (3) 函数y=2x-1, x [1,4]的反函数的定义域为[1,7 ]∈(4)函数y=的值域为(0,+)x12∞其中正确的命题序号为16. 定义运算 则函数的最大值为.()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩()12x f x =*三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤)17. (12分)已知集合,, 全集,求:{|240}A x x =-<{|05}B x x =<<U R =(Ⅰ);(Ⅱ).A B ()U C A B 18. 计算:(每小题6分,共12分)(1) 36231232⨯⨯19.(12分)已知函数,(Ⅰ) 证明在上是增函数;1()f x x x=+()f x [1,)+∞(Ⅱ) 求在上的最大值及最小值.()f x [1,4]20. 已知A 、B 两地相距150千米,某人开车以60千米/小时的速度从A 地到B 地,在B 地停留一小时后,再以50千米/小时的速度返回A 地.把汽车与A 地的距离y (千米)表示为时间t (小时)的函数(从A 地出发时开始),并画出函数图象. (14分).18lg 7lg 37lg 214lg )2(-+-21.(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.22.已知函数对一切实数都有成立,且()f x ,x y R ∈()()f x y f y +-=(21)x x y ++. (Ⅰ)求的值;(Ⅱ)求的解析式;(1)0f =(0)f ()f x (Ⅲ)已知,设:当时,不等式 恒成立;a R ∈P 102x <<()32f x x a +<+Q :当时,是单调函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1数学试题
试卷说明:本卷满分150分,考试时间120分钟。
一、选择题。
(共12小题,每题5分)
1、若集合{}|13A x x =≤≤,{}|2B x x =>,则A
B =( )·
A .{}x|x>2
B .{}x|x 1≥
C .{}x|2x<3≤
D . {}x|2<x 3≤
2、设f (x )是定义在R 上奇函数,且当x >0时,)2(,32)(--=f x f x
则等于( ) A .-1
B .
411 C .1 D .-4
11 3、函数2
1
)(--=
x x x f 的定义域为( ) A 、 [1,2) B 、(1,+∞) C 、 [1,2)∪(2,+∞) D 、[1,+∞)
4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )
5、设
()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )
A 、f(xy)=f(x)f(y)
B 、f(x+y)=f(x)+f(y)
C 、f(x+y)=f(x)f(y)
D 、f(xy)=f(x)+f(y)
6、设0.32
22,0.3,log 0.3a b c ===,则,,a b c 的大小关系是( )
A .a b c <<
B .c b a <<
C .c a b <<
D .a c b <<
7、函数y=ax 2
+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )
A 、b>0且a<0
B 、b=2a<0
C 、b=2a>0
D 、a ,b 的符号不定
8、函数2,0
2,0
x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )
9、若2
log 13a
<,则a 的取值范围是( ) A. 2(,1)3 B. 2(,)3+∞ C. 2(0,)(1,)3+∞ D. 22
(0,)(,)33
+∞
10、若奇函数()f x 在区间[3,7]上是增函数且最小值为5,则()f x 在区间[]7,3--上是( )
A .增函数且最大值为5-
B .增函数且最小值为5-
C .减函数且最小值为5-
D .减函数且最大值为5- 11、函数()312f x ax a =+-在区间[1,1]-上存在0x ,使00()0(1)f x x =≠±,则a 的取值范围是( )
A .115a -<<
B .1a <- C.15a > D. 1
15
a a ><-或
12、已知(),()log (01)x
a f x a g x x a a ==>≠且,若(2)(2)0f g <,那么()f x 与()g x 在同一坐标系内
的图象可能是( )
二、填空题(共4题,每题5分)
13、f(x)的图像如下图,则f(x)的值域为 ; 14、已知幂函数()y f x =的图象过点(2,2),则
(8)f = 。
15、函数12
()log (21)f x x =-的定义域是 。
16、函数()log (23)1a f x x =-+的图像恒过定点P ,则点P 的坐标是 。
三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤。
)
17、(本题10分)设全集为R ,{}73|<≤=x x A ,{}102|<<=x x B ,求()R C A B 及()R C A B
18、(每题5分,共10分)不用计算器求下列各式的值
⑴ ()()
1
223
02
1329.63 1.548--⎛⎫
⎛⎫ ⎪ ⎪⎝⎭⎝⎭
---+
⑵ 74
log 2327
log lg 25lg 473
+++
19、(本题满分12分)已知定义在(1,1)-上的奇函数()f x ,在定义域上为减函数,且
(1)(12)0f a f a -+->,求实数a 的取值范围。
20、(本题12分)设2 2 (1)
() (12)2 (2)x x f x x x x x +≤-⎧⎪=-<<⎨
⎪≥⎩
,
(1)在下列直角坐标系中画出()f x 的图象; (2)若()3g t =,求t 值; (3)用单调性定义证明在[)2,+∞时单调递增。
21、(本题12分)已知函数f(x)=㏒a 12-x
, ,0(>a 且)1≠a , (1)求f(x)函数的定义域。
(2)求使f(x)>0的x 的取值范围
22、(本题满分14分)已知定义在R上的函数1
()21
x
f x a =-
+是奇函数,其中a 为实数。
(1)(4分)求a 的值;
(2)(5分)判断函数()f x 在其定义域上的单调性并证明; (3)(5分)当0m n +≠时,证明
()()
(0)f m f n f m n
+>+。
必修一数学参考答案
13、[-4,3] 14、 15、1
(,1]2
16、 (2,1)
三、 解答题(共44分) 17、 解:}102|{)
(≥≤=⋃x x x B A C R 或 }10732|{)(<≤<<=⋂x x x B C R 或
18、解(1)原式=232
21
)2
3()827(
1)49(--+-- =232
32
12)23()23(1)23(-⨯-⨯+-- =22)2
3()23(123--+-- =21
(2)原式=2)425lg(33log 4
3
3
+⨯+ =210lg 3log 2413++- =4
152241=++- 19、解:由已知条件有
(1)(12)0(1)(12)
f a f a f a f a -+->⇒->--()f x 是奇函数(12)(21)f a f a ∴--=-
(1)(21)
f a f a ∴->-()f
x 为其定义域上的减函数,212132111021
3121101
a a a a a a a a ⎧
>⎪-<-⎧⎪⎪
∴-<-<⇒<<⇒<<⎨⎨⎪⎪-<-<<<⎩⎪
⎩
∴实数a 的取值范围为2
(,1)3
20 21解:(1)12-x >0⇒2x -1),这个函数的定义域是(∞+⇒>⇒>000x (2)㏒a 12-x >0,当a>1时,12-x >1;1>⇒x 当0<a<1时,12-x <1且x>010<<⇒x
22题:(本题满分14分)
解:⑴
()f x 的定义域为R ,(0)f ∴有意义。
又()f x 为奇函数,(0)0f ∴=
即 01(0)021
f a =-=+。
解得1
2a =
⑵ 证明:任取12,x x R ∈,且12x x <
则1
2121111
()()()()221221
x x f x f x -=---++122
11211222121(21)(21)x x x x x x -=-=++++ 121212,22,220x x x x x x <∴<∴-<又1212(21)0,(21)0(21)(21)0x x x x +>+>∴++> 12()()0f x f x ∴->()f x ∴是R 上的增函数。
⑶ 证明:()f x 在R 上为增函数且为奇函数(0)0,()()f f n f n ∴=-=-
当0m n +>时,得m n >- ()()()f m f n f n ∴>-=-即()()()()0f m f n f m f n >-⇒+> ()()0f m f n m n
+∴>+当0m n +<时,得m n <-()()()f m f n f n ∴<-=-即
()()()()0f m f n f m f n <-⇒+< ()()0f m f n m n +∴>+所以,当0m n +≠时,有()()(0)f m f n f m n
+>+。