正方体展开图巧记口诀及解释
巧记正方体展开图

巧记正方体展开图一、先用排除法
口诀:一排最多不过四,去掉田凹等臂7
1
2
3凹
4等臂
图1中4个面构成田字,剩余2个面无论放到哪里都不能构成正方体。
图2图4中剩余1个面无论放到哪里都不能构成正方体。
也就是说,只要展开图中包含田、凹、等臂7,就不能构成正方体。
二、分类记忆:横着看,分两大类,三排和二排(其余情况没有)(一)展开是三排的,以中间一排为准,又分成三小类。
第一类,中间一排是四连方,有以下6种:
口诀:中间4个一连串,两边各一一随便。
解释:中间一排是四连方的,两边必须各一个(A和B),并且这一个可以前后随便移动。
总之,只要两边各有一个就一定是展开图。
第二类,中间一排三连方,有以下3种:
口诀:中间3个一连串,三二错一一随便。
解释:中间一排是三连方的,两连方必须和中间的三连方有一个错开(三二错一),剩下的一个面(B)在中间三连方的另一边,并且可以前后随便移动。
第三类,中间一排二连方的,就一种:
口诀:三排各二一相连。
解释:分三排,每排两个,每排之间要有一个相连。
(二)展开是两排的,就一种:
口诀:二排各三一相连。
解释:分两排,每排三个,每排之间要有一个相连。
共8句口诀,两句一组,记住之后,正方体展开图的所有问题迎刃而解。
一排最多不过四,去掉田凹等臂7。
中间4个一连串,两边各一一随便。
中间3个一连串,三二错一一随便。
三排各二一相连,二排各三一相连。
公务员考试行测图形推理之立体图解

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6),另外两个小方块在四个方块的上下两侧,共六种情况。
(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
正方体折叠与展开口诀

正方体折叠与展开口诀
正方体折叠与展开口诀:
1、正方体折叠:“头尾置中,侧面向内,顶面贴边,四面折叠。
”
2、正方体展开:“头尾相连,侧面向外,顶面对边,四角伸出。
”
详解:
1、正方体折叠:
(1)头尾置中:取正方体的一边,将它的头尾放在中间;
(2)侧面向内:取另一边,将它的侧面朝向中间;
(3)顶面贴边:将边贴在另一边的边上;
(4)四面折叠:就像将一个带有花纹的手帕折叠一样,将正方体的四个角折叠起来。
2、正方体展开:
(1)头尾相连:取正方体的一边,将它的头和尾连接在一起;
(2)侧面向外:取另一边,将它的侧面朝向外部;
(3)顶面对边:将顶面置于另一边的边上;
(4)四角伸出:将正方体的四个角分别从四个方向伸出去,形成正方体的模样。
正方体11种平面展开图口诀

正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”“7”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
口诀:中间没有面,三三连一线(1种摆法-33)。
正方体表面展开图的口诀

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
正方体展开图16种口诀

正方体展开图16种口诀一、正方体一边展开图上边把下端抹,左右倒把先穿,里外两边搭叉,外边把右端搭在上。
二、正方体二边同时展开图上里先对搭,左右穿入侧边,外圈旋转搭至上,右边把下边压。
三、正方体三边展开图上里对搭又旋,左右同时进入,外圈围圈连搭,下边把右边压。
四、正方体四边展开图右上边倒进去,左下穿入侧边,外圈旋转连搭,左右把下边压。
五、正方体五边展开图先把左下边穿,右上边旋转压,里外两边再搭,最后右边把下边带。
六、正方体六边展开图上下先对搭,右边再进侧边,外圈旋转搭叉,最后把左端连上。
七、正方体七边展开图右上边穿入一,下底旋转压二,外边翻转三抹,最后里外两边搭。
八、正方体八边展开图右上倒入一,下底旋转压二,四边穿入三,右下把左上压。
九、正方体九边展开图右上倒进去一,里外把右下穿二,外边旋转三连,左右把左上压。
十、正方体十边展开图右上倒进去一,里外把右下穿二,外边四边带叉,最后把左上压三。
十一、正方体十一边展开图上下先对搭至,里外把右下穿,外层旋转向外翻,最后把左右上压进。
十二、正方体十二边展开图上下两边把对搭,进入正上倒一,里外又把右下穿,两边把最后四边带。
十三、正方体十三边展开图上下两边先搭,里外把右下穿,外用旋转六边带,最后把左右上压。
十四、正方体十四边展开图上下先对搭至,里外又把右下穿,外用旋转八边带,两边最后把上压。
十五、正方体十五边展开图上下两边先搭,里外八边穿一,外用旋转七边带,最后两边把可上压。
十六、正方体十六边展开图上下先对搭至,里外把右上倒,外用旋转九边连,最后把右下压住。
以上是学习正方体展开图的16种口诀,从展开图边数以1到16编号,每一种口诀中,描述了如何将正方体展开成平面图案的步骤。
正方体表面展开图口诀巧记图解

正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐.一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.
1.中间四个成一行,两边各一无规矩.
“141型”.也就是中间一行是四个图形,上下两个作为上下底面,也就是口诀2的“四方成线两相卫”;共6种情况(重复的不算).
7.相隔之间是对面.
相同的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“ ”字两端处的小正方形是正方体的对面(如下面的左图):“丽”对“化”,“赵”对“学”,“美”对“中”.
8.间二拐角面相邻.
中间邻面.
2016/11/27整编
正方体表面展开图口诀巧记图解
口诀一
中间4个面,上下各一面;中间3个面,1,2隔河见;中间2个面,楼梯天天见;中间没有面,33连一线.
口诀二
正方体盒巧展开,六个面儿七刀裁.十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯.对面相隔不相连,识图排除“7凹田”.
“33型”.两排三方,两行只能有1个正方形相连.也就是口诀一的“中间没有面,33连一线”.
5.一条线上不过四.
是指在正方体的展开图中,一条直线上的小正方形不会超过四个.如下面两个图形都不是正方体得展开图.
6.田七和凹要放弃.
是指在正方体的展开图中,不会出现“田”、“凹”和整体上的“七”型结构.如下面四个图形都不是正方体得展开图.
2.二三紧连错一个,三一相连一随意.
“231”.中间三个作侧面,共三种基本图形.另外三个分别在两边,但其中两个的要相邻;也就是口诀一的“中间3个面,1,2隔河见”.
3.两两相连各错一.
正方体表面展开图的口诀 (1)

巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:
正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:
四方成线两相卫,六种图形巧组合;
跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:
工具/原料
剪刀,制作正方体
方法/步骤
1.1
四方成线两相卫,六种图形巧组合
2.2
跃马失蹄四分开
3.3
两两错开一阶梯
4.4
对面相隔不相连
5.5
识图巧排“7”、“凹”、“田”
E N D。