第一章 1.1 1.1.1 第二课时 集合的表示

合集下载

人教B版必修第一册1.1.1集合及其表示方法课件(35张)

人教B版必修第一册1.1.1集合及其表示方法课件(35张)

2.(1)已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的值为________. (2)已知集合 A 含有两个元素 a 和 a2,若 2∈A,则实数 a 的值为________. (3)已知集合 A 含有两个元素 a 和 a2,则实数 a 的取值范围为________.
【解析】(1)若 1∈A,则 a=1 或 a2=1,即 a=±1. 当 a=1 时,集合 A 有重复元素,不符合集合中元素的互异性,所以 a≠1; 当 a=-1 时,集合 A 含有两个元素 1,-1,符合集合中元素的互异性, 所以 a=-1. 答案:-1 (2)若 2∈A,则 a=2 或 a2=2,即 a=2 或 a= 2 或 a=- 2 . 答案:2 或 2 或- 2 (3)若 A 中有两个元素 a 和 a2,则由 a≠a2 解得 a≠0 且 a≠1. 答案:a≠0 且 a≠1
教材认知 掌握必备知识
一、集合与元素 1.集合:把一些能够_确__定__的__、_不__同__的__对象汇集在一起,这些对象组成一个集 合(简称为集). 2.元素:组成集合的每个_对__象__. 3.表示方法:集合通常用英文大写字母A,B,C,…表示,集合的元素通常 用英文小写字母a,b,c,…表示.
3.区间及其表示 (1)一般区间的表示. 设 a,b∈R,且 a<b,规定如下:
[a,b] (a,b)[a,b)
(a,b]
(2)特殊区间的表示.
【批注】1.用数轴表示区间时要特别注意端点是实心点还是空心点; 2.无穷大是一个符号,不是一个数,因而它不具备数的一些性质和运算法则,出现 此符号的一端时,该端必须是小括号.
[诊断]
1.下列说法:
①集合{x∈Z|x3=x}用列举法表示为{-1,0,1};

1.1.1 集合的含义与表示(第2课时)集合的表示(课件)

1.1.1 集合的含义与表示(第2课时)集合的表示(课件)

[解] (1)不大于 10 的非负偶数有 0,2,4,6,8,10,所以 A={0,2,4,6,8,10}. (2)小于 8 的质数有 2,3,5,7, 所以 B={2,3,5,7}. (3)方程 2x2-x-3=0 的实数根为-1,32.所以 C=-1,32. (4)由yy= =-x+23x, +6, 得xy= =14, . 所以一次函数 y=x+3 与 y=-2x+6 的交点为(1,4), 所以 D={(1,4)}.
[规律方法] 用列举法表示集合的个步骤 求出集合的元素 把元素一一列举出来,且相同元素只能列举一次 用花括号括起来 提醒:二元方程组的解集,函数的图象点形成的集合都是点的集合,一定要写 成实数对的形式,元素与元素之间用“,”隔开.如{2,3,5,-1}.
[跟踪训练] 1.用列举法表示下列集合: (1)方程组xx-+yy==02, 的解集; (2)A={(x,y)|x+y=3,x∈N,y∈N}.
2.(变条件)本例若将条件“只有一个元素”改为“至少有一个元素”,其他条 件不变,求实数 k 的取值范围. [解] 由题意可知,方程 kx22-8x+16=0 至少有一个实数根. ①当 k=0 时,由-8x+16=0 得 x=2,合题意; ②当 k≠0 时,要使方程 kx22-8x+16=0 至少有一个实数根,则 Δ=64-64k≤0, 即 k≥1. 综合①②可知,实数 k 的取值集合为{k|k=0 或 k≥1}.
[解] (1)解方程组23xx- +32yy= =18,4, 得xy= =-4,2, 故解集为{(4,-2)}. (2)集合用描述法表示为{x|x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x,y)|y=x2}.
“ THANKS ”
【解答】解:解集合A方程,x2-x-2=0得到x=2,x=-1, ∵y∈A,即:y=2,y=-1, ∴集合B|x|=y+2,y∈A, 得:|x|=y+2=4,|x|=y+2=1, 故:x=±4,x=±1, ∴集合B={-4,-1,1,4} 故选:B.

人教A版高中数学必修一:1.1.1集合的含义与表示第二课时课件(人教A版必修1)(2)

人教A版高中数学必修一:1.1.1集合的含义与表示第二课时课件(人教A版必修1)(2)

2.用描述法表示下列集合: (1)所有正偶数组成的集合; (2)方程x2+2=0的解的集合; (3)不等式4x-6<5的解集; (4)函数y=2x+3的图象上的点集. 解:(1)文字描述法:{x|x是正偶数}. 符号描述法:{x|x=2n,n∈N*}. (2){x|x2+2=0,x∈R}. (3){x|4x-6<5,x∈R}. (4){(x,y)|y=2x+3,x∈R,y∈R}.
2.用集合所含元素的_共__同__特__征__表示集合的方 法称为描述法.具体的方法是:在花括号内先写上 表示这个集合元素的一般符号及取值(或变化)范围, 再画一条竖线,在竖线后写出这个集合中元素所具 有的共同特征.
自主探究
1.集合{x|x>1}与集合{y|y>1}是否表示同一集合? 答:虽然两个集合的代表元素不同,但实质上它 们均表示大于1的所有实数,故是同一集合. 2.下面三个集合:①{x|y=x2+1};②{y|y=x2+ 1};③{(x,y)|y=x2+1}.它们各自的含义是什么?它 们是不是相同的集合? 答:集合①{x|y=x2+1}的代表元素是x, 满足条件y=x2+1中的x∈R,
(2)元素具有怎样的属性?当题目中用了其他字 母来描述元素所具有的属性时,要去伪存真,而不 能被表面的字母形式所迷惑.
用描述法表示集合时,若需要多层次描述属性 时,可选用逻辑连接词“且”与“或”等连接;若描述 部分出现元素记号以外的字母时,要对新字母说明 其含义或指出其取值范围.
(3)集合语言的转化 集合语言是现代数学的基本语言,也就是用集 合的有关概念和符号来叙述问题的语言.集合语言 与其他语言的关系以及它的构成如下:
3.用列举法表示大于2小于15的偶数全体为 ________.
答案:{4,6,8,10,12,14} 4.已知集合A={-1,0,1},集合B={y|y=|x|, x∈A},则B=________. 解析:∵|-1|=1,|0|=0,|1|=1,故B={0,1}. 答案:{0,1}

第一章 §1 1.1 第2课时 集合的表示

第一章 §1 1.1 第2课时 集合的表示

第2课时集合的表示学习目标 1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.2.会用集合的两种表示方法表示一些简单集合.知识点一列举法把集合中的元素一一列举出来写在花括号“{}”内表示集合的方法叫作列举法.思考一一列举元素时,需要考虑元素的顺序吗?答案不需要,集合元素具有无序性.知识点二描述法通过描述元素满足的条件表示集合的方法叫作描述法.一般可将集合表示为{x及x的范围|x 满足的条件},即在花括号内先写出集合中元素的一般符号及范围,再画一条竖线“|”,在竖线后写出集合中元素所具有的共同特征.思考不等式x-2<3的解集中的元素有什么共同特征?答案元素的共同特征为x∈R,且x<5.知识点三有限集、无限集、空集含有有限个元素的集合叫作有限集;含有无限个元素的集合叫作无限集;不含任何元素的集合叫作空集,记作∅.知识点四区间1.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.其他区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}区间(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)思考区间能表示空集吗?答案不能,因为区间[a,b]((a,b))中a<b.1.由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.(×)2.集合{(1,2)}中的元素是1和2.(×)3.集合A={x|x-1=0}与集合B={1}表示同一个集合.(√)4.{x|x>1}与{y|y>1}是不同的集合.(×)一、用列举法表示集合例1用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=2x的所有实数解组成的集合;(3)一次函数y=2x+1的图象与y轴的交点所组成的集合;(4)由所有正整数构成的集合.解(1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.(2)方程x2=2x的解是x=0或x=2,所以方程的解组成的集合为{0,2}.(3)将x=0代入y=2x+1,得y=1,即交点是(0,1),故交点组成的集合是{(0,1)}.(4)正整数有1,2,3,…,所求集合为{1,2,3,…}.(学生留)反思感悟用列举法表示集合应注意的两点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.(2)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.跟踪训练1用列举法表示下列给定的集合:(1)方程(x-1)2(x-2)=0的解组成的集合;(2)“Welcome”中的所有字母构成的集合;(3)2022年冬奥会的主办城市组成的集合;(4)函数y=2x-1的图象与坐标轴的交点组成的集合.解(1)方程(x-1)2(x-2)=0的解为1和2,因此可以用列举法表示为{1,2}.(2)由于“Welcome ”中包含的字母有W ,e ,l ,c ,o ,m ,共6个元素,因此可以用列举法表示为{W ,e ,l ,c ,o ,m}.(3)北京、张家口同为2022年冬奥会主办城市,因此可以用列举法表示为{北京,张家口}. (4)函数y =2x -1的图象与x 轴的交点为⎝⎛⎭⎫12,0,与y 轴的交点为(0,-1),因此可以用列举法表示为⎩⎨⎧⎭⎬⎫(0,-1),⎝⎛⎭⎫12,0.二、用描述法表示集合 例2 用描述法表示下列集合: (1)使y =1x -6有意义的实数x 的集合; (2)坐标平面上第一、三象限内点的集合;(3)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合; (4)方程x 2+(m +2)x +m +1=0(m ∈Z )的解组成的集合. 解 (1)要使y =1x -6有意义,则x -6≠0,即x ≠6,故满足题意的实数x 的集合是{x ∈R |x ≠6}.(2)第一、三象限内点的特征是横、纵坐标符号相同,因此满足题意的点的集合是{(x ,y )|xy >0,x ∈R ,y ∈R }.(3)满足题意的点的集合是{(x ,y )|y =ax 2+bx +c (a ≠0),x ∈R }. (4)方程的解组成的集合是{x |x 2+(m +2)x +m +1=0,m ∈Z ,x ∈R }. (学生)反思感悟 利用描述法表示集合应关注五点(1)写清楚该集合的代表元素.例如,集合{x ∈R |x <1}不能写成{x <1}. (2)所有描述的内容都要写在花括号内. (3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写. (5)在不引起混淆的情况下,可省去竖线及代表元素.如{直角三角形},{自然数}等. 跟踪训练2 用描述法表示下列集合: (1)方程x 2+y 2-4x +6y +13=0的解集; (2)平面直角坐标系中坐标轴上的点组成的集合.解 (1)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,解得x =2,y =-3. 所以方程的解集为{(x ,y )|x =2,y =-3}.(2)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点的集合可表示为{(x ,y )|xy =0}. 三、集合表示法的综合应用例3 选择适当的方法表示下列集合,并指出哪些是有限集,哪些是无限集: (1)大于1且小于70的正整数构成的集合; (2)方程x 2-22x +2=0的实数解构成的集合;(3)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集.解 (1)设大于1且小于70的正整数构成的集合为A ,则集合A 中有68个元素,是有限集,用描述法表示为A ={x ∈N |1<x <70}.(2)设方程x 2-22x +2=0的实数解构成的集合为B ,因为Δ=8-8=0,所以该方程有2个相等的实数解,即集合B 中存在1个元素,则B 是有限集.用描述法表示为B ={x |x 2-22x +2=0}.(3)由⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集可用描述法表示为⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =4,y =-2,也可用列举法表示为{(4,-2)},是有限集.反思感悟 (1)如果集合中的元素比较少或所含元素不易表述,宜用列举法. (2)如果集合中的元素比较多或有无限个元素,宜用描述法. 跟踪训练3 用适当的方法表示下列集合: (1)36与60的公约数组成的集合;(2)在自然数集内,小于1 000的奇数构成的集合; (3)不等式x -2>6的解构成的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.解 (1)36与60的公约数有1,2,3,4,6,12,所求集合为{1,2,3,4,6,12}.(2){x |x =2n +1且x <1 000,n ∈N }. (3){x |x >8}. (4){1,2,3,4,5,6}.1.用列举法表示集合{x |x 2-2x +1=0}为( ) A .{1,1} B .{1}C .{x =1}D .{x 2-2x +1=0}答案 B解析 方程x 2-2x +1=0有两个相等的实数解1,根据集合元素的互异性知B 正确. 2.下列四个集合中,是空集的是( ) A .{0}B .{x |x >8或x <5}C .{x ∈R |x 2+1=0}D .{x ∈N |3.5<x <4.5}答案 C解析 选项A ,B ,D 都含有元素,而选项C 中无元素,故选C. 3.集合{x ∈N +|x <5}的另一种表示法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}答案 B解析 N +是正整数组成的集合.4.能被2整除的正整数的集合,用描述法可表示为________________________. 答案 {x |x =2n ,n ∈N +}解析 正整数中所有的偶数均能被2整除.5.用列举法表示集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x ∈Z ,86-x ∈N =________.答案 {5,4,2,-2} 解析 ∵x ∈Z ,86-x∈N ,∴6-x ∈{1,2,4,8},此时x ∈{5,4,2,-2},即A ={5,4,2,-2}.1.知识清单:(1)用列举法和描述法表示集合.(2)两种表示法的综合应用.2.方法归纳:等价转化.3.常见误区:点集与数集的区别.1.集合{2,4,6,8,10}用描述法表示出来应是()A.{x|1<x<10}B.{x|2≤x≤10}C.{x|x≤10,x∈N}D.{x|x=2n,n∈N,1≤n≤5}答案 D解析集合{2,4,6,8,10}用描述法表示出来应是{x|x=2n,n∈N,1≤n≤5},故选D.2.如果A={x|x>-1},那么()A.-2∈A B.1∉A C.-3∈A D.0∈A答案 D解析∵0>-1,故0∈A,选D.3.已知集合M={y|y=x2},用自然语言描述M应为()A.满足y=x2的所有函数值y组成的集合B.满足y=x2的所有自变量x的取值组成的集合C.函数y=x2图象上的所有点组成的集合D.以上均不对答案 A解析由于集合M={y|y=x2}的代表元素是y,而y为函数y=x2的函数值,则M为满足y=x2的所有函数值y组成的集合.4.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{x|x2=1}C.{1} D.{y|(y-1)2=0}答案 B解析{x|x2=1}={-1,1},另外三个集合都是{1},故选B.5.(多选)下列结论不正确的是()A .集合{x ∈R |x 2=1}中有两个元素B .集合{0}中没有元素 C.13∈{x |x <23}D .{1,2}与{2,1}是不同的集合 答案 BCD解析 {x ∈R |x 2=1}={1,-1};集合{0}是单元素集,有一个元素,这个元素是0;{x |x <23}={x |x <12},13>12,13∉{x |x <23};根据集合中元素的无序性可知{1,2}与{2,1}是同一个集合.6.已知集合A ={x | 3x -7<0,x ∈N +},用列举法表示集合A =__________ 答案 {1,2}解析 因为A ={x |3x -7<0,x ∈N +},所以A ={1,2}.7.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________________. 答案 {a |a ≤-2} 解析 ∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 8.下列六种表示方法: ①{x =1,y =4};②⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =4; ③{1,4}; ④(1,4); ⑤{(1,4)};⑥{x ,y |x =1或y =4}.其中,能表示“一次函数y =x +3与y =-2x +6的图象的交点组成的集合”的是________(把所有正确答案的序号填在横线上). 答案 ②⑤9.用适当的方法表示下列集合: (1)一年中有31天的月份的全体; (2)大于-3.5小于12.8的整数的全体; (3)梯形的全体构成的集合; (4)所有能被3整除的数的集合; (5)方程(x -1)(x -2)=0的解集;(6)不等式2x -1>5的解集.解 (1){1月,3月,5月,7月,8月,10月,12月}. (2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}. (3){a |a 是梯形}或{梯形}. (4){x |x =3n ,n ∈Z }. (5){1,2}. (6){x |x >3}.10.设y =x 2-ax +b ,A ={x |y -x =0},B ={x |y -ax =0},若A ={-3,1},试用列举法表示集合B .解 集合A 中的方程为x 2-ax +b -x =0,整理得x 2-(a +1)x +b =0. 因为A ={-3,1},所以方程x 2-(a +1)x +b =0的两根为-3,1.由根与系数的关系,得⎩⎪⎨⎪⎧ -3+1=a +1,-3×1=b ,解得⎩⎪⎨⎪⎧a =-3,b =-3.所以集合B 中的方程为x 2+6x -3=0,解得x =-3±23, 所以B ={-3-23,-3+23}.11.已知P ={x |2<x ≤k ,x ∈N },若集合P 中恰有4个元素,则( ) A .6<k <7 B .6≤k <7 C .5<k <6 D .5≤k <6答案 B解析 ∵P ={x |2<x ≤k ,x ∈N },且集合P 中恰有4个元素, ∴P ={3,4,5,6},∴6≤k <7.12.(多选)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素可以为( )A .5B .6C .7D .8 答案 ABCD解析 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.13.已知集合M ={x |x =3n ,n ∈Z },N ={x |x =3n +1,n ∈Z },P ={x |x =3n -1,n ∈Z },且a ∈M ,b ∈N ,c ∈P ,若d =a -b +c ,则( ) A .d ∈M B .d ∈N C .d ∈P D .d ∈M 且d ∈N答案 B解析 由题意,设a =3k ,k ∈Z ,b =3y +1,y ∈Z ,c =3m -1,m ∈Z ,则d =3k -(3y +1)+3m -1=3(k -y +m )-2,令t =k -y +m ,则t ∈Z ,则d =3t -2=3t -3+1=3(t -1)+1,t ∈Z ,则d ∈N ,故选B.14.若一数集的任一元素的倒数仍在该集合中,则称该数集为可倒数集,则集合A = {-1,1,2}________(填“是”或“不是”)可倒数集.试写出一个含三个元素的可倒数集________.(答案不唯一) 答案 不是 ⎩⎨⎧⎭⎬⎫1,2,12解析 由于2的倒数12不在集合A 中,故集合A 不是可倒数集.若一个元素a ∈A ,则1a ∈A .若集合中有三个元素,故必有一个元素a =1a ,即a =±1,故可取的集合有⎩⎨⎧⎭⎬⎫1,2,12,⎩⎨⎧⎭⎬⎫-1,3,13等.15.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn ,则在此定义下,集合M ={(a ,b )|a ※b =16}中的元素个数是( ) A .18 B .17 C .16 D .15答案 B解析 因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M 中的元素是有序数对(a ,b ),所以集合M 中的元素共有17个,故选B.16.设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x ∈N ,62+x ∈N .(1)试判断元素1和2与集合B 的关系; (2)用列举法表示集合B .解 (1)当x =1时,62+1=2∈N ;当x =2时,62+2=32∉N ,所以1∈B ,2∉B .(2)因为62+x ∈N ,x ∈N ,所以2+x 只能取2,3,6, 所以x 只能取0,1,4, 所以B ={0,1,4}.。

高一数学 1.1.1 集合的含义与表示 新人教A版必修1

高一数学 1.1.1 集合的含义与表示  新人教A版必修1

• 3.对给定的集合用图形(常见的有圆和矩形) 表示,图形上或图形内的点表示该集合的 元素,图形外的点表示集合外的元素,这 种表示集合的方法叫图示法,或称Venn图 示.
思考感悟 (1)集合{x|x>3}与集合{t|t>3}是否表示同一个集
合? 提示:虽然两个集合的代表元素不同,但实质
上它们均表示大于3的所有实数,故是同一个集合.
• ⑤集合中的元素可以是任何事物.
变式体验1 用列举法表示下列集合:
(1)绝对值小于5的整数;
(2)满足a∈Z,且
6 3-a
∈N的a构成的集
合;
(3)满足x2+y2=25的点(x,y),其中x∈
N,y∈N.
解:(1)绝对值小于5的整数有-4,-3,-2,
-1,0,1,2,3,4,所以满足条件的集合为{-4,-3,-
• 提示:一般来讲,有限集(当集合中元素的 个数有限时,称为有限集;否则,当集合 中元素的个数无限时,称为无限集)宜采用 列举法,它具有直观明了的特点;无限集 或不宜一一列举的集合,宜采用描述法, 若无限集有规律,也可以用列举法.
• 自我检测
• 1.用列举法表示集合{x|x2-2x+1=0}为
()
• 4.已知集合A={0,1,2,3,4},试用描述法表 示该集合为________.(答案不唯一,写出 一个便可)
• 解析:A中含有0,1,2,3,4五个自然数,故可 以用描述法表示为{x∈N|x<5},也可以表示 为{x∈Z|-1<x<5}等.
• 答案:{x∈N|x<5}
• 5.将大于0不大于15且能被3整除的整数组 成的集合分别用列举法和描述法表示出 来.
• 解:列举法:{3,6,9,12,15};

高中数学第一章集合与常用逻辑用语1.1.1集合及其表示方法(第2课时)集合的表示

高中数学第一章集合与常用逻辑用语1.1.1集合及其表示方法(第2课时)集合的表示

12/9/2021
第二十六页,共四十六页。
区间及其表示 把下列数集用区间表示: (1)x|x≥-12; (2){x|x<0}; (3){x|-2<x≤3}; (4){x|-3≤x<2}; (5){x|-1<x<6}.
12/9/2021
第二十七页,共四十六页。
【解】 (1)-12,+∞; (2)(-∞,0); (3)(-2,3]; (4)[-3,2); (5)(-1,6).
集合表示法 学会在集合的不同表示法
的简单应用 中作出选择和转换
12/9/2021
第二页,共四十六页。
核心素养 数学抽象
数学抽象
数学抽象 数学抽象
问题导学 预习教材 P5 倒数第 4 行-P8 的内容,思考以下问题: 1.集合有哪几种表示方法?它们如何定义? 2.列举法的使用条件是什么?如何用符号表示? 3.描述法的使用条件是什么?如何用符号表示? 4.如何用区间表示集合?
12/9/2021
第五页,共四十六页。
2.描述法 一般地,如果属于集合 A 的任意一个元素 x 都具有性质 p(x), 而不属于集合 A 的元素都不具有这个性质,则性质 p(x)称为集 合 A 的一个特征性质.此时,集合 A 可以用它的特征性质 p(x) 表 示 为 _____{_x_|p_(_x_)}_____ . 这 种 表 示 集 合 的 方 法 , 称 为 __特__征__(t_èz_hē_n_g)_性_质__描__述_法___,简称为描述法.
12/9/2021
第三十一页,共四十六页。
3.使 51-x有意义的 x 的取值范围为________(用区间表示). 解析:要使 51-x有意义,则 5-x>0,即 x<5. 答案:(-∞,5)
试分别用描述法和列举法表示下列集合: (1)由方程 x(x2-2x-3)=0 的所有实数根组成的集合; (2)大于 2 小于 7 的整数. 解:(1)用描述法表示为{x∈R|x(x2-2x-3)=0},用列举法表示 为{0,-1,3}. (2)用描述法表示为{x∈Z|2<x<7},用列举法表示为 {3,4,5,6}.

1.1.1集合的含义及表示方法(2课时)解析

1.1.1集合的含义及表示方法(2课时)解析
集合的含义与表示
第一课时
集合论是德国数学家康托 尔在19世纪末创立的,现在已 成为现代数学的重要基础之一, 集合语言是现代数学的基本语 言,学好本章集合内容对今后 的数学学习具有奠基作用。
请同学们阅读教材P2——P5内容,并提炼新知识提纲。
一、集合的定义
我们把研究对象统称为元素 把一些元素组成的总体叫做集合
二、集合的三大特性
确定性:所研究对象必须是明确的 互异性:同一个集合内的任何两个元素都必
须是不相同的。 无序性:在一个集合中,不考虑元素之间的顺序
集合相等:两个集合中的元素相同。
三、集合与元素的关系
集合:大写字母A,B,C…表示 元素:小写字母a,b,c…表示
如果a是集合A的元素,就说a属于集
合A,记作 a A
(1){ 1,5 } , (3){ 2,4,6 } ,
(2){ x|x2+x-1=0 }, (4){ x∈N | 3<x<7 }
2、下列集合是同一集合吗?
(1){ 1,2} , { 2,1} (2) { (1,2)} , { (2,1)} (3){ y|y=x2 } , { x|y=x2 } , { (x,y)|y=x2 } .
如果a不是集合A的元素,就说a不属于集
a A 合A,记作
四、常用的数集及其符号:
▲全体非负整数的集合简称非负整数集 (自然数集),记作 N ▲非负整数集内排除0的集称为正整数集,记 作 N*或N+ ▲全体整数的集合简称整数集,记作 Z ▲全体有理数的集合简称有理数集,记作 Q
▲全体实数的集合简称实数集,记作 R
练习1:判断下列语句的对错
(1)大于3小于11的偶数能够组成集合 对
(2)“咱班的帅哥”可以构成集合

高中数学必修1_ 第一章 1.1 第2课时 集合的表示

高中数学必修1_ 第一章   1.1 第2课时 集合的表示
第 2 课时 集合的表示 [核心必知]
1.预习教材,问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. (1)在初中学正数和负数时,是如何表示正数集合和 负数集合的?表示下列数中的正数构成的集合 4.8,-3, 2,-0.5,13,73,3.1.
提示:法一:

法二:4.8,

2,13,73,3.1.
[尝试解答] (1)用列举法表示为 P={0,2,4}. (2)可用列举法表示为{6,9,12};也可用描述法 表示为{x|x=3n,4<x<15,且 n∈N}. (3)用列举法表示为{x+2,x-2}. (4)可用列举法表示为{(1,2)},也可用描述法表 示为{(x,y)|x=1,y=2}.
列举法与描述法表示集合的几点注意 用列举法与描述法表示集合时,一要明确集合中 的元素;二要明确元素满足的条件;三要根据集合中 元素的个数来选择适当的方法表示集合.
练一练 2.下面三个集合: ①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?
解:(1)集合①{x|y=x2+1}的代表元素是 x,满足 条件 y=x2+1 中的 x∈R,
所以实质上{x|y=x2+1}=R; 集合②的代表元素是 y,满足条件 y=x2+1 的 y 的取值范围是 y≥1, 所以实质上{y|y=x2+1}={y|y≥1};
集合③{(x,y)|y=x2+1}的代表元素是(x,y), 可以认为是满足 y=x2+1 的数对(x,y)的集合, 也可以认为是坐标平面内的点(x,y)构成的集合, 且这些点的坐标满足 y=x2+1,
所以{(x,y)|y=x2+1}={P|P 是抛物线 y=x2 +1 上的点}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
①试判断元素1,2与集合B的关系;
②用列举法表示集合B.
(1)[解析] 观察规律,其绝对值为奇数排列,且正负相间,
且第一个为正数,故应选C.
[答案] C
返回
6 (2)[解] ①当 x=1 时, =2∈N. 2+1 6 3 当 x=2 时, = ∉N.所以 1∈B,2∉B. 2+2 2 6 ②∵ ∈N,x∈N,∴2+x 只能取 2,3,6. 2+x ∴x 只能取 0,1,4.∴B={0,1,4}.
返回
[活学活用] 已知集合 A={-2,-1,0,1,2,3},对任意 a∈A,有|a|∈B,且 B 中只有 4 个元素,求集合 B.
解:对任意 a∈A,有|a|∈B. 因为集合 A={-2,-1,0,1,2,3}, 由-1,-2,0,1,2,3∈A,知 0,1,2,3∈B. 又因为 B 中只有 4 个元素, 所以 B={0,1,2,3}.
[活学活用] 下列三个集合: ①A={x|y=x2+1}; ②B={y|y=x2+1}; ③C={(x,y)|y=x2+1}. (1)它们是不是相同的集合? (2)它们各自的含义分别是什么?
返回
解:(1)由于三个集合的代表元素互不相同,故它们是互不相 同的集合. (2)集合 A={x|y=x2+1}的代表元素是 x,且 x∈R,所以{x|y =x2+1}=R, A=R; 即 集合 B={y|y=x2+1}的代表元素是 y, 满足条件 y=x2+1 的 y 的取值范围是 y≥1,所以{y|y=x2+1} ={y|y≥1}. 集合 C={(x,y)|y=x2+1}的代表元素是(x,y),是满足 y=x2 +1 的数对.可以认为集合 C 是坐标平面内满足 y=x2+1 的 点(x,y)构成的集合,其实就是抛物线 y=x2+1 的图象.
返回
3.给出下列说法: ①直角坐标平面内, 第一、 三象限的点的集合为{(x, y)|xy>0}; ②方程 x-2+|y+2|=0 的解集为{2,-2}; ③集合{(x,y)|y=1-x}与{x|y=1-x}是相等的. 其中正确的是________(填写正确说法的序号).
2
1},与 A={1}矛盾. 故不存在实数 a,使 A={1}.
返回
[随堂即时演练]
x+y=1, 1.方程组 2 2 x -y =9
的解集是 B.(5,-4) D.{(5,-4)}
(
)
A.(-5,4) C.{(-5,4)}
返回
x+y=1, 解析:解方程组 2 2 x -y =9,
x+y=1, ④方程组 x-y=-1
的解.
(1)[解析] 集合A={(1,2),(3,4)}中有两个元素(1,2)和(3,4).
[答案] B
返回
(2)[解] ①因为不大于 10 是指小于或等于 10,非负是大 于 或 等 于 0 的 意 思 , 所 以 不 大 于 10 的 非 负 偶 数 集 是 {0,2,4,6,8,10}. ②方程 x2=x 的解是 x=0 或 x=1,所以方程的解组成的 集合为{0,1}.
返回
[多维探究] 解答上面例题时,a=0 这种情况极易被忽视,对于方程 “ax2+2x+1=0”有两种情况:一是 a=0,即它是一元一次 方程; 二是 a≠0, 即它是一元二次方程, 也只有在这种情况下, 才能用判别式 Δ 来解决问题. 求解集合与方程问题时,要注意相关问题的求解,如: (1)在本例条件下,若 A 中至多有一个元素,求 a 的取值范 围.
1.1.1
第 一 章
1.1
第 二 课 时
集 合 的 表 示
1 理解教 材新知
知识点一 知识点二 题型一
集 合
集合 的含 义与 表示
2 突破常 考题型 3 跨越高 分障碍 4 应用落 实体验
题型二 题型三
随堂即时演练
课时达标检测
1.1
集 合
返回
1.1.1
集合的含义与表示
集合的表示
第二课时
返回
列举法
x=5, 得 y=-4,
故解集为{(5,-
4)},选 D.
答案:D
返回
2.下列四个集合中,不同于另外三个的是( A.{y|y=2} C.{2} B.{x=2}
)
D.{x|x2-4x+4=0}
解析:集合{x=2}表示的是由一个等式组成的集合,其它
选项所表示的集合都是含有一个元素2. 答案:B
[提出问题] 观察下列集合: (1)中国古代四大发明组成的集合;
(2)20的所有正因数组成的集合.
问题1:上述两个集合中的元素能一一列举出来吗? 提示:能.(1)中的元素为造纸术、印刷术、指南针、火药, (2)中的元素为:1,2,4,5,10,20. 问题2:如何表示上述两个集合?
提示:用列举法表示.
返回
1.集合与方程的综合应用
返回
[典例]
集合 A={x|ax2+2x+1=0,a∈R}中只有一个元
素,求 a 的取值范围.
[解] 当 a=0 时,原方程变为 2x+1=0, 1 此时 x=- ,符合题意; 2 当 a≠0 时,方程 ax2+2x+1=0 为一元二次方程, Δ=4-4a=0,即 a=1,原方程的解为 x=-1,符合题意. 故当 a=0 或 a=1 时,原方程只有一个解,此时 A 中只有 一个元素.
返回
用描述法表示集合
[例 2] (1)用符号“∈”或“∉”填空:
①A={x|x2-x=0},则 1________A,-1________A; ②(1,2)________{(x,y)|y=x+1}. (2)用描述法表示下列集合: ①正偶数集; ②被 3 除余 2 的正整数的集合; ③平面直角坐标系中坐标轴上的点组成的集合.
返回
(4)是否存在实数 a,使 A={1},若存在,求出 a 的值;若 不存在,说明理由.
解:∵A={1},∴1∈A,∴a+2+1=0,即 a=-3. 1 又当 a=-3 时 ,由 -3x +2x+1=0,得 x=- 或 x=1, 3
2
1 1 即方程 ax +2x+1=0 存在两个根- 和 1,此时 A={- , 3 3
返回
[导入新知] 列举法 把集合的元素 一一列举 出来,并用花括号“{}”括起来
表示集合的方法叫做列举法.
返回Biblioteka [化解疑难] 使用列举法表示集合的四个注意点 (1)元素间用“, ”分隔开, 其一般形式为{a1, 2, a „,an}; (2)元素不重复,满足元素的互异性; (3)元素无顺序,满足元素的无序性; (4)对于含有有限个元素且个数较少的集合, 采取该方法较 合适;若元素个数较多或有无限个且集合中的元素呈现一定的 规律,在不会产生误解的情况下,也可以列举出几个元素作为 代表,其他元素用省略号表示.
返回
解:A 中至多含有一个元素,即 A 中有一个元素或没有元 素. 当 A 中只有一个元素时,由本例可知,a=0 或 1. 当 A 中没有元素时,Δ=4-4a<0,即 a>1. 故当 A 中至多有一个元素时, 的取值范围为 a=0 或 a≥1. a
返回
(2)在本例条件下,若 A 中至少有一个元素,求 a 的取值范围.
返回
用列举法表示集合
[例 1] 数是 A.1 C.3 B.2 D.4 若集合 A={(1,2),(3,4)},则集合 A 中元素的个 ( )
返回
(2)用列举法表示下列集合. ①不大于 10 的非负偶数组成的集合; ②方程 x2=x 的所有实数解组成的集合; ③直线 y=2x+1 与 y 轴的交点所组成的集合;
一般符号 及 取值(或变化)范围 ,再画一条竖线,在竖线后
写出这个集合中元素所具有的 共同特征 .
返回
[化解疑难] 1.描述法表示集合的条件 对于元素个数不确定且元素间无明显规律的集合, 不能将它 们一一列举出来, 可以将集合中元素的共同特征描述出来, 即采 用描述法.
返回
2.描述法的一般形式 它的一般形式为{x∈A|p(x)}, 其中的 x 表示集合中的代表元 素,A 指的是元素的取值范围;p(x)则是表示这个集合中元素的 共同特征,其中“|”将代表元素与其特征分隔开来. 一般来说集合元素 x 的取值范围 A 需写明确,但若从上下 文的关系看,x∈A 是明确的,则 x∈A 可以省略,只写元素 x.
解:A 中至少有一个元素,即 A 中有一个或两个元素. 由例题可知,当 a=0 或 a=1 时,A 中有一个元素; 当 A 中有两个元素时,Δ=4-4a>0,即 a<1. ∴A 中至少有一个元素时,a 的取值范围为 a≤1.
(3)若 1∈A,则 a 为何值?
解:∵1∈A,∴a+2+1=0,即 a=-3.
返回
[类题通法] 判断元素与集合间关系的方法 (1)用列举法给出的集合, 判断元素与集合的关系时, 观察 即得元素与集合的关系. 例如,集合 A={1,9,12},则 0∉A,9∈A. (2)用描述法给出的集合, 判断元素与集合的关系时就比较 复杂.此时,首先明确该集合中元素的一般符号是什么,是实 数?是方程?„„,其次要清楚元素的共同特征是什么,最后 往往利用解方程的方法判断所给元素是否满足集合中元素的 特征,即可确定所给元素与集合的关系.
返回
[类题通法] 利用描述法表示集合应关注五点 (1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1} 不能写成{x<1}. (2)所有描述的内容都要写在花括号内.例如,{x∈Z|x= 2k},k∈Z,这种表达方式就不符合要求,需将 k∈Z 也写进花 括号内,即{x∈Z|x=2k,k∈Z}. (3)不能出现未被说明的字母.
返回
③将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),故两 直线的交点组成的集合是{(0,1)}.
x+y=1, ④解方程组 x-y=-1, x=0, 得 y=1.
相关文档
最新文档