统计学名词解释

合集下载

统计学名词解释

统计学名词解释

1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。

2、指标和标志标志是说明总体单位属性或特征的名称。

指标是说明总体综合数量特征和数量关系的数字资料。

3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。

简称总体。

构成总体的个体则称为总体单位,简称单位。

样本是从总体中抽取的一部分单位。

4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。

它是取得统计数据的重要手段。

5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。

统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。

6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。

时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。

7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。

假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。

8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。

数量标志和指标在统计中称为变量。

9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。

统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。

10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。

重复抽样的抽样平均误差为总体标准差的1/n。

11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。

我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。

统计学名词解释(超全)

统计学名词解释(超全)

统计学名词解释(超全)统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。

总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。

参数:是描述总体数量特征的指标,又称总体指标。

样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。

变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。

总体参数:描述总体数量特征的指标,又称总体指标。

样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。

普查:为某一特定目的而专门组织的一次性全面调查。

抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。

统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。

统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。

时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。

时点指标:反应现象整体在某一的点(瞬间)上所处状况的总量指标。

众数:是一组数据中出现次数最多的变量值。

时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。

发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。

均匀发展水平:将不同时间的发展水平加以均匀而得到的均匀数。

发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。

环比发展速度:是时间序列中敷陈期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。

定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。

统计学名词解释超级大全

统计学名词解释超级大全
小数永存法则:第一个样本中所表现出的特性,在其他样本中也会存在,这 就是小数永存法则。此处“小数”是指小数量的意思。
大量惰性原则:某一事物的某一性质或状态,在反复观察或试验中是保持不 变的。
有效数字:指能影响测量准确性的数字。
变量:又称随机变量。具有变异性的数据。三个特性,离散型,变异性,规 律性。
推断统计:又称抽样统计。它是根据对部分个体进行观测所得到的信息,通 过概括性的分析、论证,在一定可靠程度上去推测相应团体。换言之,就是根据 已知的情况推测未知情况。
实验设计:研究如何更加合理、有效地获得观测资料,如何更正确、更经济、 更有效地达到实验目的,以揭示试验中各种变量关系的实验计划。
统计常态法则:从总体中随机抽取一部分个体所组成的样本,差不多可以保 持总体的特征。这种样本特性保持着总体特性的现象叫做统计常态法则。
次数:某一事件在某一类别中出现的数目,又叫频数,用 f 表示。 频率:指每一组的数据个数除以数据的总和,又称相对次数。用符号 p 表示。 百分频率:频率与百分数的乘积。
组中值:每一组的中点值,常用 m 或 Xc 表示。 全距:全部数据的距离,也称极差,是用一群数据中的最大值减去最小值。 组距:指每一组所包含的间隔或数据单位,用 i 表示。 组限:指每一组的起止点或每一组的界限。
统计表:以表格的形式表达统计资料数量关系的方式或工具。 统计图:以几何图形和形象图形表示统计资料数量关系的工具。
次数分布 累积次数:以简单次数为基础,从最低组开始逐级累加直至最高组,或从最 高组开始逐级累加直至最低组,用符号 cum﹒f 或 F 表示。 累积百分频率:各组累计次数与总次数的比值。
一时性资料:在一定时限内所收集的有关问题的资料为一时性资料。来源三 个方面,教育与心理调查,教育与心理测量和教育与心理实验。

统计学名词解释

统计学名词解释

名词解释●统计工作:是从数量方面对社会经济现象做调查研究的一种工作,是人们为认识客观事物而进行的搜集、整理、分析和提供统计资料的工作过程;●统计资料:是统计工作的成果,是指在统计实践活动中所取得的,反映统计研究对象有关特征的各种综合性的数字资料和分析报告;●统计学:是阐述统计理论与方法的系统性科学,是统计工作实践的理论概括和科学总结,是研究、整理、分析统计资料的理论和方法的科学;●总体:是指客观存在的,在某一相同性质基础上结合起来的许多个别事物的整体●总体单位:构成总体的个别事物●样本:从总体当中抽取出来,用从代表这一总体的部分个体组成的集合●标志:是说明总体单位属性或特征的名称●统计指标:说明总体数量特征的,简称指标;有俩种理解,一是指反映现象总体数量特征的概念;二是指反映现象总体数量特征的概念及其数量表现;●普查:是专门组织的一次性的全面调查;这种调查,主要用来搜集一些比较全面而又不能或不宜从经常调查中得出的统计资料;●重点调查:是一种非全面调查,它是从所要调查的单位中选择一部分重点单位进行调查●抽样调查:也是一种非全面调查,它是按照随机原则从被研究总体中抽取出一定数量的单位样本进行调查,根据样本指标数值来推算总体指标数值的一种调查●典型调查:是一种十分重要的、行之有效的非全面调查方法;它是从研究总体中有意识地选取若干具有代表性单位典型单位进行调查,用来了解总体的详细情况●统计调查:根据统计工作任务和统计设计的要求,用科学的方法,有计划有组织地向调查单位搜集调查资料的过程●统计分组:根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法●分配数列:又称分布数列、次数数列,是在统计分组的基础上形成的,用来反映总体单位在各组中分布状况的统计数列●总量指标:是反映社会经济现象的总体规模和水平的统计指标;总量指标通常是将总体单位数相加或总体单位某一数量标志值相加得到的,大多数是统计整理的直接成果,是用绝对数的形式表示的,因此也称统计绝对数●相对指标:是将两个有联系的反映社会经济现象的统计指标相互对比得到的一种抽象的比值,是反映社会经济现象间数量对比关系的综合指标●平均指标:是反映总体各单位某一数量标志值一般水平的综合指标,又称统计平均数●标志变异指标:是反映总体各单位标志值的差异程度的,即反映分配数列中各标志值的变动范围或离差程度的综合指标,也叫标志变动度,简称变异指标●成数:具有某种表现或不具有某种表现的单位数占全部总体单位数的比重●时间数列:是将说明社会经济象在各个不同时期或时点上某种数量特征的指标数值,按时间的先后顺序排列起来而形成的统计数列; 时间数列中每项数值是与时间相对应的,所以又称动态数列●时期数列:在绝对数动态数列中,各项指标都是反映某种现象在一段时间内发展过程的总量●时点数列:在绝对数动态数列中,每个指标所反映的事现象在某一时点上瞬间所处状态的数量水平●发展水平:社会经济现象在某时期或某时点达到的指标数值●统计指数:广义指同类社会经济现象数量对比的相对数,包括动态相对数、比较相对数、计划完成程度相对数等;狭义指用来反映由不能直接加总的多要素所构成的复杂社会经济现象综合变动程度的特殊相对数●抽样误差:指在遵守随机原则的条件下,用抽样指标代表总体所产生的不可避免的误差;●简单随机抽样:又称纯随机抽样;它是对全及总体的所有单位不进行任何分类或排队处理,而是完全按照随机原则从总体中抽出样本单位加以观察,以保证总体中每个单位有相等被抽中的机会●类型抽样:也称分层抽样或分类抽样;它首先把全及总体按某一标志分成若干组,然后分别在各组内按随机原则抽取一定数目的样本单位构成样本的抽样方式●等距抽样:又称机械抽样或系统抽样,它是先将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽选样本单位的一种抽样组织形式●整群抽样:将总体各单位划分成若干群或组,然后以群或组为单位从中随机抽取一些群,对中选群的所有单位进行全面调查的抽样组织形式●相关关系:是现象之间确实存在有数量上的依存关系,但这种数量上的关系式不确定的●相关表:指按照相关现象的数量对应关系以及一定的逻辑顺序编制成的一种统计表。

统计学名词解释

统计学名词解释

1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。

具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。

2、总体:是根据研究目的确定同质的所有观察单位某种变量的集合。

3、变异:同一性质的事物,其观察值(变量值)之间的差异。

4、抽样研究:从所研究的总体中随机抽取一部分有代表性的样本进行研究,用样本指标推论总体,最终达到了解总体的目的。

这种用样本指标推论总体参数的方法称为抽样研究。

5、统计描述:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。

6、统计推断:根据样本资料的特性对总体的特性作估计或推论的方法称统计推断,常用方法是参数估计和假设检验。

7、概率:是指某事件出现可能性大小的度量,以符号P表示。

8、医学参考值范围:参考值范围又称正常值范围。

医学上常把包括绝大多数人某项指标的数值范围称为该指标的参考值范围。

9、正态分布规律:实际工作中,经常需要了解正态曲线下横轴上的一定区域的面积占总面积的百分数,用以估计该区间的观察例数占总例数的百分数,或变量值落在该区间的频数或概率。

10、可比性:是指对研究结果有影响的非处理因素在各处理组之间尽可能相同或相近。

11、动态数列:是一系列按时间顺序排列起来的统计指标,包括绝对数、相对数或平均数,用以说明事物在时间上的变化和发展趋势。

12、抽样误差:在同一总体中随机抽取样本含量相同的若干样本时,样本指标之间的差异以及样本指标与总体指标的差异。

13、标准误:表示样本均数间变异程度。

14、率的抽样误差:抽样过程中产生的同一总体中均数之间的差异称为均数的抽样误差,率之间的差异称为率的抽样误差。

15、参数估计:是指用样本指标(称为统计量)估计总体指标(称为参数)。

16、可信区间:总体参数的所在范围通常称为参数的可信区间或置信区间,即该区间以一定的概率(如95%或99%)包含总体参数。

统计学名词解释

统计学名词解释

1第一章1.统计数据:即统计信息,是指通过统计工作过程中取得的各项数据资料以及与之相关的其他资料的总称。

2.统计学:即统计理论,是指系统地阐述统计实践活动根本原理和研究方法的理论。

它是一门研究如何搜集、整理和分析统计资料的理论和方法论科学。

4.统计学的研究对象:客观事物中的数量特征、数量关系和数量变化。

5.统计学包括商务管理统计的研究对象特点:数量性〔根本特点〕、总体性、变异性。

7.商务管理统计研究方法大量观察法统计分组法比照分析法综合指标法统计推断法动态测定法8.统计总体。

又称“调查总体〞简称“总体〞,在数理统计中又称母体,与样本相对应。

但凡客观存在的、具有共同性质的个体所构成的整体就是统计总体。

其形成必须具备以下条件:客观性:即统计总体必须是客观存在的,并且能实际观察到的。

同质性:即构成统计总体的所有单位至少具有某一个共同性质是统计总体的前提条件。

变异性:即构成统计总体的各总单位至少在某一性质上具有共同特征外,在其他性质上应具有差异性,变异性是统计研究的重点。

9.总体单位:构成统计总体的每个根本单位称为总体单位,简称单位或个体,它是各项统计特征的原始承当者。

10.统计总体分类:按其包含的单位数是否可计分为有限总体与无限总体按总体单位的形态分为实体总体和行为总体。

11.总体与总体单位的关系:a.总体是由总体单位组成,总体单位是组成总体的个别事物。

b.根据研究目的不同,总体和总体单位是可以相互转化的。

12.标志:表示总体单位特征的名称。

如性别、年龄、籍贯、企业所有制、规模等。

13.标志表现:即标志特征在各单位的具体表现。

如性别标志的表现有“女〞、“男〞,年龄标志用“30〞岁“50〞岁等数量来表现。

14.标志的分类a.根据标志表现的形式不同。

数量标志,说明总体单位数量特征的标志,是可以用数值表示的。

品质标志,说明总体单位属性特征的标志,不能用数值表现。

b.按照各总体单位标志的具体表现是否一样。

不变标志:某一标志的具体表现在总体中各总体单位都一样。

统计学的名词解释

统计学的名词解释统计学是一门研究数据收集、分析和解释的学科,旨在通过收集和解析数据来支持决策过程和了解现象。

统计学涉及一系列概念和方法,包括数据收集、数据描述性统计、概率理论、假设检验、统计推断和回归分析等。

1. 数据收集:统计学中的第一步是收集数据。

数据可以通过各种方法获得,包括实地观察、实验、调查问卷和从现有的数据集中获取等。

2. 数据描述性统计:在收集到数据后,统计学家使用描述性统计来总结和描述数据的特征。

描述性统计包括计算数据的平均数、中位数、众数、标准差和百分位数等。

3. 概率理论:概率理论是统计学的基石之一。

它研究随机现象发生的可能性,并给出事件发生的数学表达。

概率理论为统计推断和建立模型提供了理论基础。

4. 假设检验:假设检验用于确定一个观察结果是否与一个给定的假设相符。

它提供了一种确定性地评估研究或实验结果的方法,并决定是否拒绝或接受一个假设。

5. 统计推断:统计推断是通过对样本数据进行分析和推断来对总体进行推断的过程。

它使用样本数据估计总体参数,并根据这些估计进行一些统计判断。

6. 回归分析:回归分析是一种统计方法,用于建立和探索变量之间的关系。

它可以用来预测一个变量(因变量)如何随着其他变量(自变量)的变化而变化。

7. 统计模型:统计模型是由统计学方法和理论构建的数学表达式,用于描述和解释观察数据之间的关系。

统计模型可以是简单的线性模型,也可以是更复杂的非线性模型。

8. 抽样方法:在统计学中,由于往往难以调查每一个个体或观察每一个事件,人们通常采用抽样方法来从总体中选择一部分样本进行研究。

常见的抽样方法包括随机抽样和分层抽样等。

9. 统计图表:统计图表是一种可视化数据的方式,用来展示和比较数据。

常见的统计图表包括柱状图、饼图、散点图和箱线图等。

10. 多元统计分析:多元统计分析是一项通过同时考虑多个变量来分析数据的方法。

它包括主成分分析、因子分析和聚类分析等。

总之,统计学是一门研究数据收集、分析和解释的学科,它运用一系列概念和方法来帮助人们理解数据,并从中获取有关现象和决策的信息。

完整版)统计学名词解释

完整版)统计学名词解释统计学名词解释第一章绪论在统计学上,随机变量指的是取值之间不能预料到的变量。

总体,又称母全体或全域,是指具有某种特征的一类事物的全体。

构成总体的每个基本单元称为个体。

从总体中抽取的一部分个体称为样本。

次数指的是某一事件在某一类别中出现的数目,又称为频数。

频率,又称相对次数,指某一事件发生的次数被总的事件数目除,即某一数据出现的次数被这一组数据总个数去除。

概率指某一事物或某一情在某一总体中出现的比率。

一旦确定了某个值,就称这个值为某一变量的观测值。

参数,又称为总体参数,是描述一个总体情况的统计指标。

样本的那些特征值叫做统计量,又称特征值。

第二章统计图表统计表是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。

一般由表号、名称、标目、数字、表注组成。

统计图一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。

纵轴表示事物出现的次数或因变量,称为数值轴。

一般由图号及图题、图目、图尺、图形、图例、图组成。

简单次数分布表适合数据个数和分布范围比较小的时候用,它是依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表。

而分组次数分布表适合数据个数和分布范围比较大的时候用。

数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来。

分组次数分布表的编制步骤包括求全距、定组距和组数、列出分组组距、登记次数和计算次数。

相对次数分布表用频数比率或百分数来表示次数,而累加次数分布表则把各组的次数由下而上或由上而下加在一起。

最后一组的累加次数等于总次数。

双列次数分布表用同一个表表示有联系的两列变量的次数分布。

而不等距次数分布表则适用于像工资级别和年龄分组这样的不等距数据。

需要注意的是,归组效应是分组次数分布表的缺点之一,因为原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差。

统计学名词解释

统计学名词解释1.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学2.描述统计:研究数据收集、处理、汇总、图标描述、概括与分析等统计方法3.推断统计:研究如何利用样本数据来推断总体特征的统计方法4.分类数据:只能归于某一类别的非数字型数据5.顺序数据:只能归于某一有序类别的非数字型数据6.数值型数据:按数字尺度测量的观察值7.观察数据:通过调查或观测收集到的数据8.实验数据:实验中控制实验对象而收集到的数据9.截面数据:在相同或近似相同的时间点上收集的数据10.时间序列数据:在不同时间收集的数据11.样本:从总体中抽取的一部分元素的集合12.样本量:构成样本元素的数目13.参数:用来描述总体特征的概括性数字度量14.统计量:用来描述样本特征的概括性数字度量15.变量:说明现象某种特征的概念16.离散型变量:只能取可数值的变量17.连续性变量:可以在一个或多个区间中取任何值的变量18.概率抽样:(随机抽样)遵循随机原则进行的抽样,总体中每个单位都有一定机会被选入样本19.抽样框:包括所有形体单位信息20.分层抽样:将抽样单位按某种特征或者某种规则划分为不同的层,从不同层中独立、随机抽取样本21.整群抽样:将总体中若干单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查22.系统抽样:将总体中所有单位按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位23.非概率抽样:抽取样本时根据研究目的对数据的要求采取某种方式从总体中抽取部分单位对其实施调查24.抽样误差:抽样的随机性引起的样本结果与总体真值之间的误差25.累积频数:将各有序类别或组的频数逐级累加起来得到的频数26.集中趋势:一组数据向某一中心值靠拢的程度27.自由度:样本个数减128.统计量:样本构造函数,不依赖于任何未知参数,此函数为一个统计量29.次序统计量:30.充分统计量:对样本加工处理过程中信息部损失的统计量31.抽样分布:在总体分布类型已知时,若对任一自然数n都能到处统计量的分布数学表达式32.中心极限定理:33.估计量:用来估计总体参数的统计量34.估计值:根据一个具体的样本计算出来的估计量的数值35.点估计:用样本统计量的某个取值直接作为总体参数的估计值36.区间估计:在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到37.置信区间:在区间估计中,由样本统计量所构造的总体参数的估计区间38.置信水平:(置信系数)若果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例。

(完整版)统计学名词解释

统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。

2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。

3.个体:构成总体的每个基本单元称为个体。

4.样本:从总体中抽取的一部分个体,称为总体的一个样本。

5.次数:指某一事件在某一类别中出现的数目,又称为频数。

6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。

7.概率:某一事物或某一情在某一总体中出现的比率。

8.观测值:一旦确定了某个值。

就称这个值为某一变量的观测值。

9.参数:又称为总体参数,是描述一个总体情况的统计指标。

10.统计量:样本的那些特征值叫做统计量,又称特征值。

第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。

一般由表号、名称、标目、数字、表注组成。

2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。

纵轴表示事物出现的次数或因变量,称为数值轴。

一般由图号及图题、图目、图尺、图形、图例、图组成。

3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。

4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。

5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。

B.可显示一组数据的集中情况和差异情况等。

(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学研究对象的特点:数量性、总体性、变异性
时期指标——是反映社会经济现象在一段时间上发展变化结果的总量。

特点:1.具有可加性2.指标数值的大小与所属时期的长短直接相关。

3.必须连续登记而得
时点指标——反映社会经济现象在某一时刻或某一时点上的状况的总量。

特点:1.不具有可加性。

2.数值大小与登记时间的间隔长短无关。

3.指标数值是间断计数的
区分时期指标与时点指标的方法:第一,数据收集方法不同;第二,数据加工与使用不同;时期指标要连续登记汇总;时点指标则一次性登记调查。

时期指标不能用于反映时点的状况;时点指标要以序时平均数的形式来反映时期的水平
总量的作用:它是认识事物的起点;它是决策和管理的依据;它是其他指标的计算基础;总量指标的计算方法:直接汇总、折算汇总
相对指标---用两个有联系的指标进行对比的比值来反映社会经济现象数量特征和数量关系的综合指标。

相对指标也称作相对数,其数值有两种表现形式:无名数和复名数。

相对指标的用途:第一,反映总体深层次的数量特征;第二,具有广泛的可比性。

标志:指总体各单位所具有的属性和特征,标志的具体表现称为标志值
统计指标:反映社会经济现象总体数量特征的概念及其具体数值。

性质:数量性、具体性、综合性
标志与指标的联系与区别:
联系:1)标志是总体指标的来源和基础,指标则是标志的综合。

(2)标志与指标之间存在着变换关系。

区别:(1)标志是说明总体单位:特征的,指标则是说明统计总体:数量特征的。

(2)有的标志用数值表示,有的标志用文字表示,而指标都是用数值表示的。

按分组标志的多少不同:简单分组、复合分组
按分组标志的性质不同:品质标志分组、数量标志分组
按分组作用和任务不同:类型、结构、分析
统计分组的关键在于选择分组标志和划分各组界限。

连续型变量连续组距分组的组距公式:组距=本组上限-本组下限
离散型变量连续式分组公式:组距=(本组上限-1)-本组下限
间断组距分组的组距公式(离散和连续型变量均成立):组距=本组上限-前组上限
组距=本组下限-前组下限
组距=本组上限-本组下限+1
组限:指每组两端表示各组界限的变量值,各组的最小值为下限,最大值为上限
组距:每组变量值实际变动区间的长度。

组中值:每组变量实际取值范围的中点数值。

集中趋势:指总体中各单位的次数分布从两边向中间集中的趋势,用平均指标来反映。

测定集中趋势的意义:可以反映现象总体的一般水平和集中趋势;可以对比同类现象在不同的时间、地点或不同总体下的一般水平;可以分析现象之间的依存关系。

强度相对指标与平均指标的区别:①指标的含义不同。

强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是总体各单位某一标志值的平均水平。

②计算方法不同。

强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系;而平均指标是在一个同质总体内标志总量与单位总量的对比。

加权算术平均数的大小受单位标志值大小、各标志值次数(频率)的影响
抽样推断的特点:按随机原则抽取样本单位;目的是推断总体的数量特征;抽样推断的结果具有一定的可靠程度,抽样误差可以事先计算并控制
抽样极限误差:可允许的误差范围。

第六章
假设检验:事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立。

类型:参数假设检验,非参数假设检验。

第一类错误(弃真错误):原假设为真时拒绝原假设,被称为显著性水平。

第二类错误(取伪错误):原假设为假时接受原假设
第七章
函数关系:指现象间所具有的严格的确定性的依存关系。

相关关系:指客观现象间确实存在,但数量上不是严格对应的依存关系。

按相关关系涉及因素多少分为单相关复相关/偏相关。

按照表现形式不同分为:线性相关,非线性相关。

按照变化方向不同分:正相关,负相关按照相关关系程度分为:完全相关,不完全相关、不相关。

在线性的条件下,用以反映两变量间相关密切程度的统计指标,用r表示:r>0 为正相关,r < 0 为负相关;|r|=0 只是表示不存在线性关系;|r|=1 表示完全线性相关;0<|r|<1表示存在不同程度线性相关:|r| < 0.3 为微弱相关;0.3≤|r| <0.5为低度相关;0.5≤|r| <0.8为显著相关。

0.8≤|r| <1为高度相关
相关VS回归:联系:1相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。

2只有当变量之间存在较高程度相关时,可以进行回归分析寻求其相关的具体形式才有意义。

区别:1相关分析中x与y对等,回归分析中x与y要确定自变量和因变量,而且方向非常明确2相关分析中x、y均为随机变量,回归分析中只有y为随机变量,而x一般情况下是给定的非随机变量3相关分析测定相关程度和方向,回归分析用具体化的回归模型能进行预测和控制
回归分析:按自变量的个数分:简单回归和复回归。

按回归曲线的形态分:线性,非线性
判定系数VS相关系数:判定系数无方向性,相关系数则有方向,其方向与样本回归系数b 相同;判定系数说明变量值的总离差平方和中可以用回归线来解释的比例,相关系数只说明两变量间关联程度及方向
时间序列:将反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的统计数列,也称时间序列或动态数列。

构成要素:现象所属时间,反映现象发展水平的指标数值。

时间序列作用:1)计算水平指标和速度指标,分析社会经济现象发展过程;2)利用数学模型揭示社会经济现象发展变化的规律性并预测现象的未来的发展趋势;3) 揭示现象之间的相
互联系程度及其动态演变关系。

编制原则:时间一致,口径一致,计算方法一致。

时期数列:可加性,指标数值大小与所属时间长短有直接关系,指标数值采用连续统计的方式获得。

时点序列:不可加性,指标数值大小与所属时间长短一般没有直接关系,指标数值采用间断统计的方式获得。

平均发展水平:又叫序时平均数,是把时间数列中各期指标数值加以平均而求得的平均数,用以反映一段时期上的水平。

序时平均数VS一般平均数:计算的依据不同:前者是根据变量数列计算的,后者则是根据时间数列计算的;说明的内容不同:前者表明总体内部各单位横截面的一般水平,后者则表明整个总体在纵截面内的一般水平。

增长量:指报告期水平与基期水平之差,也称增长水平。

年距增长量:本期发展水平与去年同期水平之差,目的是消除季节变动的影响。

平均增长量:逐期增长量的序时平均数,也称平均增长水平。

用于描述现象在观察期内平均每期增长的数量。

发展速度:指报告期水平与基期水平的比值,表明现象发展程度的相对指标。

年距发展速度:报告期水平与上年同期水平对比达到的程度。

增长速度:指增长量与基期水平的比值,说明报告期水平较基期水平增长的程度。

平均发展速度:各时期环比发展速度的平均数,说明较长时期内现象每期变化的平均程度平均增长速度:说明现象逐期增长的平均程度。

相关文档
最新文档