太阳能光伏逆变并网及储能电站技术方案
储能技术在光伏并网发电系统中的应用

储能技术在光伏并网发电系统中的应用摘要:由于光伏发电随光照强度的变化,稳定性较差,且光伏发电产生电量无法储存,给光伏并网电能质量造成一定影响,所以只能将其转换为电能进行储存来满足电网用电负荷高峰时的使用,而且光伏发电的输出功率容易受到环境条件中光照强度以及温度等因素变化的影响,在并网发电时容易对电网产生较大的冲击影响,因此需要采用储能技术对其进行控制以及减弱并网发电时对电网的冲击,基于此,本文对储能技术在光伏并网发电系统中的应用进行探讨。
关键词:储能技术;光伏并网发电系统;应用1光伏并网发电系统的特点及结构光伏并网发电系统可以将太阳能电池阵列输出的直流电转化为与电网电压同幅、同频、同相的交流电,并实现与电网连接并向电网输送电能。
这种发电系统的灵活性在于,在日照较强时,光伏发电系统在给交流负载供电的同时将多余的电能送入电网;而当日照不足,即太阳能电池阵列不能为负载提供足够电能时,又可从电网索取电能为负载供电。
1.1光伏并网发电系统的特点(1)光照强度、温度等各种环境因素会对光伏发电系统产生影响,由此就会导致其输出功率产生剧烈变化,天气多变状况下,其功率也会呈现出非常明显的随机性和不可控性;(2)光伏发电系统整体造价成本较高,因此,要充分利用最大功率点跟踪技术来实现对太阳能资源的最大程度利用,而且,电网必须还能够对光伏电能进行最大程度的吸收;(3)为了实现对太阳能的高效利用,通常情况下光伏发电系统在并网的过程中会将电流以及电压设置为同相,即整个系统只能够提供有功功率。
1.2光伏并网发电系统结构其主要包括了光伏列阵、最大功率点跟踪装置、储能系统、并网逆变器以及并网电压器等几个部分。
在整个光伏并网发电系统中,光伏列阵是其最基本的组成部分,其主要通过将太阳能光伏电池进行单体串并联来组成,然后充分结合发电系统实际需要,将其按照串联以及并联等方式安装在支架上,光伏并网发电系统中太阳能转化为电能的过程主要是通过光伏列阵单元来实现;为了充分保证光伏能源能够实现充分利用,就必须要利用最大功率点跟踪装置来实现对其控制,由于光伏电池阵列具有非常明显的非线性特征,因此,其功率输出会受到光照、温度、负载等各种因素的一种影响,而利用最大功率点跟踪装置能够充分保证光伏电池阵列在实际运行过程中始终保持相应的最大功率输出状态,在此基础上就能够实现对光伏能源的高效利用;储能系统在整个光伏并网发电系统中发挥出了调节、控制的作用。
光伏储能电站总体技术方案

光伏储能电站总体技术方案目录1.概述 (3)2.设计标准 (5)3.储能电站(配合光伏并网发电)方案 (7)3.1系统架构 (7)3.2光伏发电子系统 (8)3.3储能子系统 (9)331储能电池组 (9)3.3.2电池管理系统(BMS) (11)3.4并网控制子系统 (14)3.5储能电站联合控制调度子系统 (15)4.储能电站(系统)整体发展前景 (17)1•概述大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。
电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。
上世纪90年代末德国在Herne 1 MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。
从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh的全锐液流电池(VRB)储能系统,用于平抑输出功率波动。
2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。
总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷” 等几大功能应用。
比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。
而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。
配电用电发电输电匚配电变电笛“煲荷铜节.平洛祈能渾弥补线捉旳望*楼、提两稳定性光伏+储能系统,提高了用户自发自用率,带来更大的收益15kWh图一光伏发电系统这是传统光伏发电系统示意图,5KW的系统,一天发电20度,有10度电是供给用户使用的,自发自用的比列就是10/20二50弔图二光伏+储能发电系统这是加了储能的光伏发电系统,光伏发电同样是20度,10度供给用户使用, 另外有4度电存入蓄电池,当用户需要的时候将这4度电释放出来供用户使用, 那么自发自用的比列就变成了4+10/20二70%。
光伏电站技术方案(整理后)

光伏电站技术方案1.系统概况1.1项目背景及意义系统由室外太阳电池组件阵列系统、室外太阳能电池组件汇流系统、室内控制储能系统、逆变配电装置与布线系统、室内光伏发电综合测试系统组成。
用于研究不同材料电池组件的光伏阵列,采取跟踪模式和固定模式时发电的情况,以及5种相同功率不同方式的太阳能电发电的对比。
本系统建成后可以作为学校光伏科研方向的重点实验室,为学校学科建设、科技创新、人才培养发挥重要作用。
1.2光伏发电系统的要求系统是一个教学实习兼科研项目,根据要求设计一个5kWp的小型光伏电站系统,包含3kWp的并网光伏系统,2kWp的离网光伏系统,共计平均每天发电约9.5kWh,可供一个1kW的负载工作9小时左右。
2.项目概况2.1光伏系统方案的确定根据现场资源和环境条件,系统设计采用独立型离网光伏系统和离散型并网光伏系统方案。
太阳能光伏并网发电系统主要组成如下:(1)太阳能电池组件及其专用固定支架;(2)光伏阵列汇流箱;(3)光伏并网逆变器;(4)系统的通讯监控装置;(5)系统的防雷及接地装置;(6)土建、配电房等基础设施;(7)系统的连接电缆及防护材料;太阳能光伏离网发电系统主要组成如下:(1)太阳能电池组件及其双轴跟踪逐日支架;(2)光伏阵列汇流箱;(3)光伏控制器;(4)光伏离网逆变器;(5)系统的通讯监控装置;(6)系统的防雷及接地装置;(7)土建、配电房等基础设施;(8)系统的连接电缆及防护材料;3.设计方案3.1方案介绍将系统分成并网和离网两个部份。
并网和离网系统中用到的太阳能电池组件有3种,一是175Wp单晶硅太阳能电池板,其工作电压为35.9V,开路电压为43.6V,经过计算,6块此类电池板串联,构成1个1KW的光伏阵列。
二是175Wp多晶硅太阳能电池板,其工作电压为33.7V,开路电压为42.5V, 经过计算,6块此类电池板串联,构成1个1KW的光伏阵列。
三是100Wp薄膜太阳能电池板,其工作电压为102V,开路电压为135V, 经过计算,10块此类电池板串并联,构成1个1KW的光伏阵列。
光伏储能系统设计方案

光伏储能系统设计方案一、引言随着全球能源需求的日益增长和环境问题的日益突出,光伏作为可再生能源得到了广泛的应用和推广。
然而,光伏发电的间歇性和不稳定性问题也给电力系统的稳定运行带来了挑战,光伏储能系统应运而生,下面将介绍光伏储能系统的原理、应用场景和设计方案等信息。
二、光伏储能系统原理光伏储能系统是一种通过将太阳能转换成电能并存储起来的方式,为人们提供电力的系统。
它由太阳能电池板、电池储能系统以及电力逆变器等组成。
光伏储能系统的工作原理是将太阳能转换成电能,然后将产生的电能存储到电池储能系统中,通过电力逆变器将电能转化为直流或交流电。
三、应用场景1.居民住宅光伏储能系统通过安装太阳能光伏板来收集太阳能并转化为电能,通常安装在房屋的屋顶或外墙上。
不仅能够直接供给居民使用,还可以通过储存系统来进行储存,避免晚上或阴天时光伏板产生的电力不足以满足居民使用需求。
2.商业建筑商业建筑通常有较大的用电需求,通过安装在屋顶、立面或停车场上的太阳能光伏板收集太阳能。
在用电需求较低或太阳能用电量较高时,多余的电力会存储在储能系统中。
当用电需求较高时,储能系统会释放存储的电力以满足需求。
3.农村地区农村地区有许多仍旧出现供电条件有限和传统燃料资源匮乏等现象,通过安装太阳能光伏板,能够满足基本用电需求,如照明、通信和家庭用电等。
除此之外,还可以实现农业灌溉和畜牧业发展,通过将多余的电力存储起来,在夜间或阴天时仍能保证灌溉和畜牧设施的正常运行。
4.偏远地区偏远地区的供电条件较差,通过安装太阳能光伏板并配备适当规模的储能系统,可以实现电力的自给自足。
需要注意的是,偏远地区安装需要考虑长时间无日照或恶劣天气条件下的用电需求,要准备足够的储能容量和高效的储能技术。
还可以与传统发电设备结合使用,以应对突发情况或特殊需求。
四、设计方案光伏储能系统设计方案需要考虑多方面因素,包括光伏发电的规模和输出功率、电池储能技术、系统的调度策略和智能监控管理、环境和安全问题等因素。
光伏储能建设方案

光伏储能建设方案随着能源需求的增长和可再生能源的重要性日益凸显,光伏储能技术逐渐引起了人们的关注。
光伏储能是通过将太阳能转化为电能,并将其储存在电池中,以供日后使用。
本文将介绍一个可行的光伏储能建设方案,旨在提供清洁、可持续的能源解决方案。
一、引言光伏储能技术是一种综合利用光伏发电和电池储能的技术手段,可以有效地解决太阳能发电的不稳定和间断性。
本方案旨在通过建设光伏发电站和配套的储能系统,实现可持续发电和能源供给。
二、光伏发电站建设1.选址与土地准备首先,需要选择适合光伏发电站建设的区域,优先考虑日照充足、地形平整、无阻碍物、电网接入便利等因素。
同时,还需要完成土地准备工作,确保发电站的基础设施建设和设备安装顺利进行。
2.光伏组件安装在选定的区域内,按照一定的布局计划,安装光伏组件。
光伏组件的安装应遵循一定的角度和间距要求,以最大程度地吸收太阳能并转化为电能。
3.光伏逆变器和电网连接光伏逆变器可以将光伏组件产生的直流电转换为交流电,并与电网进行连接。
逆变器的选用应考虑其效率、可靠性和适应性,以确保发电效果的最大化。
4.监控与维护系统建设为了确保光伏发电站的正常运行,需要建立监控与维护系统,及时监测发电情况、故障检测、设备维护等工作。
这可以通过远程监控系统和巡检人员的日常工作来实现。
三、储能系统建设1.储能技术选择光伏储能系统的核心是电池组,其选择应考虑功率密度、能量密度、循环寿命、安全性等方面,以满足系统储能和释放的需求。
2.储能系统容量根据光伏发电站的实际情况和负荷需求,确定储能系统的容量。
这涉及到电池组的数量、额定容量和并联、串联连接的配置等。
3.储能系统运行管理为了保证储能系统的高效运行,需要建立合理的运行管理机制。
这包括电池组的定期检测与维护、充放电策略的优化、系统的安全监控等。
四、光伏储能建设方案优势与挑战1.优势光伏储能建设方案具有可再生、清洁、无排放等优点,可以有效减少对传统能源的依赖,并为环境保护作出贡献。
储能电站技术方案设计

储能电站技术方案设计本文档旨在介绍储能电站总体技术方案,包括设计标准、系统架构、光伏发电子系统、储能子系统、并网控制子系统和储能电站联合控制调度子系统。
同时,本文档还探讨了储能电站系统的整体发展前景。
2.设计标准储能电站的设计标准应该符合国家相关规定和标准,同时考虑到实际情况和技术水平。
在设计过程中,应该充分考虑电站的安全性、可靠性、经济性和环保性等方面的要求。
3.储能电站(配合光伏并网发电)方案3.1系统架构储能电站与光伏发电系统的配合需要考虑系统架构,包括光伏发电子系统和储能子系统。
光伏发电子系统负责发电,储能子系统负责储存电能并提供稳定的电力输出。
3.2光伏发电子系统光伏发电子系统是储能电站的重要组成部分,它通过光伏电池板将太阳能转换为电能,并通过逆变器将直流电转换为交流电。
3.3储能子系统储能子系统是储能电站的核心部分,它通过储能电池组将电能储存起来,并通过电池管理系统(BMS)对电池进行管理和控制。
3.3.1储能电池组储能电池组是储能电站的关键部分,它需要具备高能量密度、长寿命、高安全性和高性价比等特点。
目前常用的储能电池包括铅酸电池、镍氢电池、锂离子电池等。
3.3.2电池管理系统(BMS)电池管理系统(BMS)是储能电池组的重要组成部分,它负责对电池进行监测、管理和控制,保证电池的安全性、可靠性和性能。
3.4并网控制子系统并网控制子系统是储能电站与电网连接的关键部分,它负责实现电站与电网的互联互通和安全稳定运行。
3.5储能电站联合控制调度子系统储能电站联合控制调度子系统是储能电站的智能化管理系统,它负责对电站进行联合控制和调度,实现储能电站的最优化运行。
4.储能电站(系统)整体发展前景随着新能源的快速发展,储能电站作为新能源发展的重要组成部分,具有广阔的发展前景。
未来,储能电站将会越来越普及,并逐渐成为新能源发电的重要支撑。
大容量电池储能系统已经在电力系统中应用了20多年,最初主要用于孤立电网的调频、热备用、调压和备份等功能。
光伏储能方案

光伏储能方案在现代能源领域,光伏储能方案是一种受到广泛关注和应用的技术。
随着可再生能源的发展和利用越来越重要,光伏储能方案作为一种高效可靠的能源存储解决方案,正在被越来越多的国家和地区采用。
本文将介绍光伏储能方案的基本原理、应用场景以及未来发展前景。
一、基本原理光伏储能方案基于太阳能光伏发电和储能技术。
太阳能光伏发电通过将太阳光转化为电能,完成电能的产生。
而储能技术则是通过将电能转化为其他形式的能量,以备不时之需。
在光伏储能方案中,光伏发电系统将太阳能转化为电能,然后将电能经过逆变器转化为直流电能,并储存在电池系统中。
当需要时,电池系统会再次将储存的电能转化为可供使用的交流电能,以满足家庭、企业或社区的用电需求。
二、应用场景光伏储能方案可以广泛应用于各个领域。
首先,在家庭和商业用电方面,光伏储能方案可以为用户提供可靠的家庭和商业用电系统。
通过将太阳能光伏发电与储能技术相结合,可以实现对电能的长期储存和有效利用,解决了传统能源系统供电不稳定的问题。
此外,光伏储能方案还可以用于乡村和偏远地区的电力供应,为这些地区提供可靠、可持续的电力支持。
其次,光伏储能方案在建筑领域有着广泛的应用潜力。
在建筑中,光伏储能方案可以作为一种绿色能源解决方案,为建筑物提供可靠的电力支持。
此外,光伏储能方案还可以与智能电网技术相结合,实现对建筑能源系统的智能管理和调度,提高能源利用效率,减少对传统能源的依赖。
最后,光伏储能方案也可以应用于电动交通领域。
随着电动汽车的普及和市场需求的增加,电动交通领域对可靠的储能方案有着更高的要求。
通过将光伏发电和储能技术与电动汽车充电设施相结合,可以实现电动汽车的可持续充电和使用,促进无污染交通的发展。
三、未来发展前景光伏储能方案在可再生能源领域的应用前景广阔。
随着科技的不断进步和能源需求的增长,光伏储能方案将在未来得到更加广泛的应用。
首先,随着光伏发电设备的进一步优化和成本的降低,光伏储能方案的实施成本也将逐渐降低。
太阳能光伏逆变并网及储能电站技术方案

儲能電站(系統)技術方案2010年11月目錄1.概述 (3)2.设计标准 (4)3.储能电站(配合光伏并网发电应用)详细方案 (5)3.1系统架构 (5)3.2光伏发电子系统 (6)3.3储能子系统 (6)3.4并网控制子系统 (12)3.5储能电站联合控制调度子系统 (14)4.储能电站(系统)整体发展前景 (16)1.概述大容量電池儲能系統在電力系統中的應用已有20多年的歷史,早期主要用於孤立電網的調頻、熱備用、調壓和備份等。
電池儲能系統在新能源並網中的應用,國外也已開展了一定的研究。
上世紀90年代末德國在Herne 1MW的光伏電站和Bocholt 2MW的風電場分別配置了容量為1.2MWh的電池儲能系統,提供削峰、不中斷供電和改善電能品質功能。
從2003年開始,日本在Hokkaido 30.6MW風電場安裝了6MW /6MWh 的全釩液流電池(VRB)儲能系統,用於平抑輸出功率波動。
2009年英國EDF電網將600kW/200kWh鋰離子電池儲能系統配置在東部一個11KV配電網STATCOM中,用於潮流和電壓控制,有功和無功控制。
總體來說,儲能電站(系統)在電網中的應用目的主要考慮“負荷調節、配合新能源接入、彌補線損、功率補償、提高電能品質、孤網運行、削峰填穀”等幾大功能應用。
比如:削峰填穀,改善電網運行曲線,通俗一點解釋,儲能電站就像一個儲電銀行,可以把用電低谷期富餘的電儲存起來,在用電高峰的時候再拿出來用,這樣就減少了電能的浪費;此外儲能電站還能減少線損,增加線路和設備使用壽命;優化系統電源佈局,改善電能品質。
而儲能電站的綠色優勢則主要體現在:科學安全,建設週期短;綠色環保,促進環境友好;集約用地,減少資源消耗等方面。
2.設計標準GB 21966-2008 锂原电池和蓄电池在运输中的安全要求GJB 4477-2002 锂离子蓄电池组通用规范QC/T 743-2006 电动汽车用锂离子蓄电池GB/T 12325-2008 电能质量供电电压偏差GB/T 12326-2008 电能质量电压波动和闪变GB/T 14549-1993 电能质量公用电网谐波GB/T 15543-2008 电能质量三相电压不平衡GB/T 2297-1989 太阳光伏能源系统术语GB/T 18479-2001 地面用光伏(PV)发电系统概述和导则GB/T 19939-2005 光伏系统并网技术要求GB/T 20046-2006 光伏(PV)系统电网接口特性GB 2894 安全标志(neq ISO 3864:1984)GB 16179 安全标志使用导则GB/T 17883 0.2S 和0.5S 级静止式交流有功电度表DL/T 448 能计量装置技术管理规定DL/T 614 多功能电能表DL/T 645 多功能电能表通信协议DL/T 5202 电能量计量系统设计技术规程SJ/T 11127 光伏(PV)发电系统过电压保护——导则IEC 61000-4-30 电磁兼容第4-30 部分试验和测量技术——电能质量IEC 60364-7-712 建筑物电气装置第7-712 部分:特殊装置或场所的要求太阳光伏(PV)发电系统3.儲能電站(配合光伏並網發電應用)詳細方案3.1系統架構在本方案中,儲能電站(系統)主要配合光伏並網發電應用,因此,整個系統是包括光伏組件陣列、光伏控制器、電池組、電池管理系統(BMS)、逆變器以及相應的儲能電站聯合控制調度系統等在內的發電系統。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能光伏逆变并网及储能电站技术方案
一、方案概述
太阳能光伏逆变并网及储能电站技术方案是通过将太阳能光伏电池组
装成光伏电池阵列进行发电,然后通过逆变器将直流电转换为交流电,最
后与电网实现并网。
同时,通过储能技术将多余的电能存储起来,以便在
夜间或天气不好时使用。
二、系统设计
1.光伏电池阵列设计:根据电站所在地的日照情况和发电需求,设计
合理的光伏电池阵列布置,包括光伏组件的种类选择、安装角度和朝向等
参数。
2.逆变器设计:选择高效、可靠的逆变器,将光伏发电系统产生的直
流电转换为交流电。
逆变器应具备最大功率点跟踪功能,以提高发电效率。
3.并网逆变器设计:根据所在地的电网要求,选用符合标准的并网逆
变器,能够实施多台逆变器的并联运行,确保电站的安全稳定运行,并能
够实现与电网的双向交流。
4.储能系统设计:选择适当的储能设备,如锂离子电池、钠硫电池等,将多余的电能储存起来。
同时,设置智能控制系统,对储能设备进行充放
电管理,以提高储能系统的效率和使用寿命。
5.快速充电技术设计:提供快速充电技术,并通过充电桩与电动车连接,实现电动车对储能电站的快速充电,提高电动车的使用便利性和运行
效率。
6.安全保护设计:在整个系统设计中,应考虑建立完善的安全保护措施,包括电网保护、电池保护、逆变器保护等,确保电站运行的安全可靠。
三、技术特点
1.发电效率高:通过合理的光伏电池阵列设计和高效的逆变器,充分
利用太阳能资源,提高电站的发电效率。
2.系统稳定性强:逆变器和并网逆变器具有高可靠性和抗干扰能力,
确保系统在复杂的电网环境下稳定运行。
3.储能效果好:选用高性能储能设备,并采用智能充放电控制技术,
提高储能系统的效率和使用寿命。
4.提供快速充电服务:通过与充电桩的连接,为电动车提供快速充电
服务,满足电动车用户对充电需求的需求。
5.环境友好:太阳能光伏发电是一种清洁能源,通过该技术方案实施
的光伏电站可以减少使用传统能源的量,减少对环境的污染。
四、经济效益
太阳能光伏逆变并网及储能电站技术方案具有较高的经济效益。
一方面,通过光伏发电可以减少对传统能源的依赖,降低电费开支;另一方面,通过储能技术能够将多余的电能储存起来,以供不足时使用,减少电网对
外购电的需求,节约电费开支。
同时,该技术具有较长的使用寿命和较低的维护成本,可以提供可靠
的发电服务,并为使用电动车的用户提供快速充电服务,赢得更多的用户
信赖和市场份额。
综上所述,太阳能光伏逆变并网及储能电站技术方案是一种具有较高发电效率和可靠性的技术方案,具有较好的经济效益和环境效益,将在未来能源领域发挥更加重要的作用。