仪器分析-紫外可见吸收光谱法.

合集下载

仪器分析-无机化合物的紫外可见吸收光谱

仪器分析-无机化合物的紫外可见吸收光谱

主讲教师:苏萍 第五章 5.4 无机化合物的紫外 可见吸收光谱无机化合物的紫外可见吸收光谱1. 镧系和锕系离子的吸收—f-f 跃迁镧系和锕系元素离子的吸收光谱是由一些狭窄的而很明确的特征吸收峰所组成,且这些吸收峰几乎不受该金属离子结合的配位体影响。

镧系吸收跃迁涉及的是4f 的电子的各种能级,锕系是5f 电子与辐射作用。

吸收系数 max较小 (102),很少用于定量分析;多用于研究配合物结构及其键合理论。

无机化合物的紫外可见吸收光谱2. 过渡金属元素的吸收— d-d 跃迁过渡金属元素都具有未充满的d轨道,电子可以在能级不同的d轨道之间跃迁,其能量差相应于紫外和可见光区域的能量,但这种吸收光谱与f-f 跃迁不同的是其吸收带较宽且易受环境因素的影响。

吸收系数 max较小 (102),很少用于定量分析。

无机化合物的紫外可见吸收光谱3. 电荷转移吸收光谱当吸收紫外可见辐射后,分子中原定域在金属M轨道上电荷的转移到配位体L的轨道,或按相反方向转移,这种跃迁称为电荷转移跃迁,所产生的吸收光谱称为荷移光谱。

max 较大 (104以上),荷移光谱常用于微量组分的定量分析,在分光光度法中具有重要意义。

3. 电荷转移吸收光谱例如,稀酸性溶液中,Fe3+与SCN-生成红色配合物溶液:(血红色)Fe3++nCNS−⇔[Fe CNS n3−nFe3+越多,红色愈深。

根据朗伯-比尔定律A = bc,可对样品中Fe3+的进行定量分析。

电荷转移吸收光谱采用 A-C 标准曲线法进行定量测定c1c2 c3 c4 c5 A1A2 A3 A4 A5A*0.800.600.400.200.00A xc x0 1.0 2.0 3.0 4.0 c(mg/mL)。

《现代仪器分析教学课件》2.紫外-可见吸收光谱法

《现代仪器分析教学课件》2.紫外-可见吸收光谱法
CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm 但是大多数吸收峰λmax小于200nm。
C. π→π*:发生在近紫外线区 ~200nm
CH2=CH2:λmax=165 nm 、CH≡CH:λmax=173 nm 但是随着共扼体系的增大或杂原子的取代, λmax向长波移 动;εmax≥104,是强吸收带。
4.E带:由苯环环形共轭系统的π→ π*跃迁产生 ✓ 芳香族化合物的特征吸收带 。 • E1 180nm εmax>104 (常观察不到) • E2 200nm εmax=7000 强吸收 • 苯环有发色团取代且与苯环共轭时,E2带与K带合并
一起红移(长移)
影响吸收带位置的因素:
主要是溶剂极性对λmax的影响; n-π*跃迁:溶剂极性↑,λmax↓蓝移 π-π*跃迁:溶剂极性↑ ,λmax↑红移 对吸收光谱精细结构影响 溶剂极性↑,苯环精细结构消失
共轭体系增长,λmax↑→红移,εmax↑
C. 羰基化合物: n →π* (R 吸收带)、n→ σ*、 π→π*
醛、酮: n →π* λmax~ 270~300 nm ε max~10-20
羧酸及其衍生物: n →π* 存在助色团:-OH、-OR、-NH2、-Cl
形成 n →π共轭, π轨道能量降低,π* 轨道能量升高 n 轨道能量不受影响,因此 n→π* 蓝移 λmax~210nm
减色
λ
2.3.3 吸收带类型和影响因素
吸收带:相同跃迁类型所产生的吸收峰。
1.K带:由共轭双键的π→ π*跃迁产生 (—CH=CH—)n,—CH=C—CO—
• λmax 217~280nm,εmax>104 • 共轭体系增长,λmax↑→红移,εmax↑ • K 吸收带是共轭分子的特征吸收带,可用于判断共

仪器分析课后习题答案

仪器分析课后习题答案

第三章 紫外-可见吸收光谱法1、已知丙酮的正己烷溶液的两个吸收峰 138nm 和279nm 分别属于л→л*跃迁和n →л*跃迁,试计算л、n 、л*轨道间的能量差,并分别以电子伏特(ev ),焦耳(J )表示。

解:对于л→л*跃迁,λ1=138nm =1.38×10-7m则ν=νC =C/λ1=3×108/1.38×10-7=2.17×1015s -1则E=hv=6.62×10-34×2.17×1015=1.44×10-18JE=hv=4.136×10-15×2.17×1015=8.98ev对于n →л*跃迁,λ2=279nm =2.79×10-7m则ν=νC =C/λ1=3×108/2.79×10-7=1.08×1015s -1则E=hv=6.62×10-34×1.08×1015=7.12×10-19JE=hv=4.136×10-15×1.08×1015=4.47ev答:л→л*跃迁的能量差为1.44×10-18J ,合8.98ev ;n →л*跃迁的能量差为7.12×10-19J ,合4.47ev 。

3、作为苯环的取代基,-NH 3+不具有助色作用,-NH 2却具有助色作用;-DH 的助色作用明显小于-O -。

试说明原因。

答:助色团中至少要有一对非键电子n ,这样才能与苯环上的л电子相互作用产生助色作用,由于-NH 2中还有一对非键n 电子,因此有助色作用,而形成-NH 3+基团时,非键n 电子消失了,则助色作用也就随之消失了。

由于氧负离子O -中的非键n 电子比羟基中的氧原子多了一对,因此其助色作用更为显著。

4、铬黑T 在PH<6时为红色(m ax λ=515nm ),在PH =7时为蓝色(m ax λ=615nm ), PH =9.5时与Mg 2+形成的螯合物为紫红色(m ax λ=542nm ),试从吸收光谱产生机理上给予解释。

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

第三章紫外可见吸收光谱法一、选择题1、人眼能感觉到的可见光的波长范围是()。

A、400nm~760nmB、200nm~400nmC、200nm~600nmD、360nm~800nm2、在分光光度法中,透射光强度(I)与入射光强度(I0)之比I/I0称为( )。

A、吸光度B、吸光系数C、透光度D、百分透光度3、符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置( )。

A、向长波方向移动B、向短波方向移动C、不移动D、移动方向不确定·4、对于符合朗伯-比尔定律的有色溶液,其浓度为c0时的透光度为T0;如果其浓度增大1倍,则此溶液透光度的对数为( )。

A、T0/2B、2T0C、2lgT0D、5、在光度分析中,某有色物质在某浓度下测得其透光度为T;若浓度增大1倍,则透光度为( )。

A、T2B、T/2C、2TD、T1/26、某物质的摩尔吸光系数很大,则表明( )。

A、该物质溶液的浓度很大B、光通过该物质溶液的光程长C、该物质对某波长的光的吸收能力很强D、用紫外-可见光分光光度法测定该物质时其检出下限很低7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是( )。

A、比色皿外壁有水珠B、待测溶液注到比色皿的2/3高度处)C、光度计没有调零D、将比色皿透光面置于光路中8、下列说法正确的是( )。

A、透光率与浓度成正比B、吸光度与浓度成正比C、摩尔吸光系数随波长而改变D、玻璃棱镜适用于紫外光区9、在分光光度分析中,常出现工作曲线不过原点的情况。

与这一现象无关的情况有( )。

A、试液和参比溶液所用吸收池不匹配B、参比溶液选择不当C、显色反应的灵敏度太低D、被测物质摩尔吸光系数太大10、质量相等的A、B两物质,其摩尔质量M A>M B。

经相同方式发色后,在某一波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是( )。

A、εA>εBB、εA<εBC、εA=εBD、2εA>εB11、影响吸光物质摩尔吸光系数的因素是( )。

仪器分析实验5-紫外可见光谱分析

仪器分析实验5-紫外可见光谱分析

实验五色氨酸、苯丙氨酸和酪氨酸的紫外吸收光谱分析一、实验目的1. 掌握紫外-可见分光光度计的工作原理和基本操作。

2. 掌握紫外-可见吸收光谱的绘制(包括导数光谱)以及定量测定方法。

3. 掌握。

4. 了解氨基酸类物质的紫外吸收光谱特点。

二、实验原理1. 紫外-可见吸收光谱法测定蛋白质含量的基本原理紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收广度法,它包括比色分析法和紫外-可见分光光度法。

紫外-可见分光光度法属于吸收光谱法,分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。

电子由于受到光、热、电等的激发,从一个能级转移到另一个能级,称为跃迁。

当这些电子吸收了外来辐射的能量,就从一个能量较低的能级跃迁到另一个能量较高的能级。

图1 电子跃迁示意图物质对不同波长的光线具有不同的吸收能力,如果改变通过某一吸收物质的入射光的波长,并纪录该物质在每一波长处的吸光度(A),然后以波长为横坐标,以吸光度为纵坐标作图,这样得到的谱图为该物质的吸收光谱或吸收曲线。

当一定波长的光通过某物质的溶液时,入射光强度I。

与透过光强度I之比的对数与该物质的浓度c及样品池厚度b成正比。

其数学表达式为:此式为Lambert-Beer定律,是分光光度法定量分析的基础,其中A为吸光度。

由于不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收,具有不同的吸收光谱,因而,我们可以利用紫外-可见吸收光谱法对物质结构进行鉴定和进行定量分析、根据被测量物质分子对紫外-可见波段范围(150~800nm)单色辐射的吸收或反射强度来进行物质的定性、定量或结构分析的一种方法。

氨基酸(amino acid):含有氨基和羧基的一类有机化合物的通称,是蛋白质的基本组成单位。

氨基酸类物质的一个重要光学性质是对光有吸收作用。

20种氨基酸在可见光区域均无光吸收,在远紫外区均有光吸收,而在近紫外区(220nm-300nm)只有三种AA有光吸收能力,这三种氨基酸分别是色氨酸(Try)、酪氨酸(Tyr)和苯丙氨酸(Phe)因为它们的结构均含有芳香共轭π键系统。

仪器分析第六章UVVIS

仪器分析第六章UVVIS

C
O
CH3
—环己烷 …水
异丙叉丙酮的紫外-可见光谱
二、溶剂极性对吸收光谱精细结构的影响 例如:对称四嗪在不同溶剂中的吸收光谱
Ⅰ:在蒸汽态中 Ⅱ:在环己烷中 Ⅲ:在水中

三、正确选择溶剂 溶剂对紫外-可见吸收光谱影响很大,因此选择溶
剂应注意下列要求: 1.对试样有很好的溶解力,且对试样应是惰性的; 2.在溶解度允许的范围内,尽量选择极性较小的
二、配位场跃迁
过渡金属离子及其化合物除了电荷迁移跃 迁外,还有配位场跃迁。
配位场跃迁的产生:过渡金属离子配合物 在配体的配位场作用下,5个能量相等的d 轨道或7个能量相等的f轨道裂分成几组能 量不等的d轨道或f轨道,当物质吸收光能 后,处于低能级的d电子或f电子可分别跃 迁至高能级的d轨道或f轨道,产生吸收光 谱。
最大吸收峰所对应的波长λmax是化合物中电 子能级跃迁时吸收的特征波长,对鉴定化 合物尤为重要,与λmax相应的εmax也是定性 和定量分析的另一重要参数。
整个吸收光谱的形状决定于物质的性质, 反映物质分子内部能级分布状况,是物质 定性的依据。

6.2有机化合物紫外—可见吸收光谱
一、有机化合物电子跃迁类型 紫外-可见吸收光谱是由分子中价电子在电
能复合成白光的两种颜色的光叫互补色光。物 质所显示的颜色是吸收光的互补色。
KMnO4的颜色及吸收光谱

6.1 分子吸收光谱基本原理
一、电子跃迁产生紫外—可见吸收光谱 分子和原子一样,也有它的特征分子能级,
这些能级是由分子内部运动决定的。
①价电子的运动
分子内部运动
②分子内原子在平衡 位置附近的振动
使电子从给予体外层轨道向接受体相应的 轨道跃迁产生吸收光谱,此过程又称内氧 化-还原。

《环境仪器分析》第五章 紫外-可见吸收光谱法 (2)

《环境仪器分析》第五章 紫外-可见吸收光谱法 (2)
可见光区:白炽光源,如钨灯、卤钨灯,钨灯辐射 波长范围在320~2500 nm。
碘钨灯:波长范围340-1200 nm。无论钨灯或碘钨灯, 在可见区发射的能量与工作电压4次方成正比,因此,预 使光源稳定,必须由一个很好的稳定电源。
紫外区:气体放电光源,如氢、氘灯。适用的波长 范围185~400 nm的连续光谱。
光栅是利用光的衍射与 干涉作用制成的,它可用 于紫外、可见及近红外光 域,而且在整个波长区具 有良好的、几乎均匀一致 的分辨能力。
优点:色散波长范围宽 、分辨本领高、成本低、 便于保存和易于制备等;
缺点:各级光谱会重叠 而产生干扰。
2019/10/31
6
3、样品室
样品室(吸收池,常用比色皿)
紫外区:必须是石英池 可见和近红外区:玻璃 池或石英池
2019/10/31
7
4、检测器(光电倍增管)

电子倍增极



电子倍 增极

R1
R2
R3
R4
负电压

R

mA
R5
5、读数装置: 记录仪、数字显示器
2019/10/31
8
二、常用紫外-可见仪器类型
单光束紫外-可见分光光度计 双光束紫外-可见分光光度计 双波长分光光度计
例如:0.2M Na2SO4 溶解偶氮基—N=N—染料(甲基橙), 可以选择0.2 M Na2SO4作为溶剂参比。
2019/10/31
36
(2)试剂参比
如果显色剂或其他试剂在测定波长有吸收, 按显色反应条件下,只是不加入试样,同样加 入试剂和溶剂作为参比,可消除试剂中的组分 产生吸收的影响。
Fe2+ + 邻二氮菲 → 橙红色络合物

仪器分析 第三章 紫外可见吸收光谱法

仪器分析 第三章 紫外可见吸收光谱法

第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。

◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。

◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。

2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。

◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。

◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。

◆准确:近紫外-可见分光光度法(200-780 nm)。

3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。

4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。

2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。

◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。

◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。

2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。

◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。

◆电子能级能量差:1~20 eV。

电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。

7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。

◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按照电磁辐射与物质相互作用形式的不同, 可分为发射、吸收和荧光及拉曼光谱。
光谱分析法
吸收光谱法
Absorption Spectroscopy
发射光谱法
Emission Spectroscopy
荧光光谱法
Fluorescence Spectroscopy
拉曼光谱法
Raman Spectroscopy
吸收光谱法
当辐射光通过固体、液体或气体样品中的一个透明层时,样品 的粒子(分子、原于或离子)会选择性地吸收某种频率的辐射能,从 低能态M(基态)跃迁至高能态M*(激发态),这种现象称为辐射的吸 收。通常表示为:
M十hv → M* 为了使吸收现象发生,电磁辐射的能量必须与吸收粒子的基态 与激发态的能级差相当。由于各种粒子的结构不同,造成能级差不 尽相同,根据普朗克关系式:
荧光光谱法
当一种吸收物质吸收电磁辐射后跃迁到高能态,它的 寿命约为10-10~10-9秒,在一般情况下,受光激发的粒子与 系统中的其它粒子有一系列碰撞并将激发能转化为热,此 为无辐射跃迁。某些情况下,被电磁辐射激发到高激发态 的粒子很快通过碰撞失去振动能到达第一电子激发态的最 低振动能级,然后发射电磁辐射回到基态。
和记录系统。
a 发射光谱仪 b 吸收光谱仪
c 荧光和散射光谱仪
紫外可见吸收光谱法 Ultraviolet Visible Spectrophotometry
波长200~400 nm 范围的光称为紫外光,人眼能感觉到 的光的波长大约在400~760 nm之间,称为可见光。
通过光激发物质再发光的现象为荧光。由此方式得到 的光谱为荧光光谱。
荧光是一种光致发光现象。
光谱法的仪器
尽管各种光谱法所依据的原 理不同.但它们均包含3个主要过 程:光源提供能量;能量与待测物 质发生相互作用;检测相互作用时 产生的信号。因此,各类光谱法所 用仪器的基本部件大致相同,但部 件的结构、布局及光路稍有不同。 三种光谱仪结构示意如图,由5部 分组成(1)光源(2)单色器(3) 样品池(4)检测器(5)信号显示
∆E=hc/λ 所以各种粒子吸收线的波长或频率不同。因此.对吸收线波长 及强度的研究,可以提供样品的性质,结构及含量的信息。 根据吸收光谱所在的光谱区域及吸收粒子的差别,主要可分为: 紫外—可见吸收光谱法、原子吸收光谱法及红外光谱法,此外还有 核磁共振波谱法及X射线吸收光谱法。
各类吸收光谱Leabharlann 的主要特点穆斯堡尔光谱法 激光吸收光谱法 核磁共振波谱法
γ射线 激光 射频(0.1~100MHz)
原子核
分子(溶液)
原子核磁量子 有机化合物分子的质子
吸收后的γ射线 吸收 吸收
发射光谱法
当粒子(分子、原子或离子)吸收能量后,从低能态跃迁至高能态, 处于高能态的粒子是不稳定的,在短暂的时间内(约10-8s),又从高能态返 回低能态或基态,在此过程中,将吸收的能量释放出来,若以光的形式 释放能量,则得到发射光谱。通常表示为:
电磁辐射(电磁波)按其波长可分为不同的区域,包括从γ 射线到无线电波的所有电磁波谱范围。所有这些波长区域,在 光学分析中都涉及,因而光学分析的方法是很多的。
10-2 nm
105 cm
x 射射 线线
10 nm
102 nm 104 nm
紫红 外外 光光
0.1 cm 10cm 103 cm



线
紫外可见吸收光谱法
光学分析法 紫外、可见 吸收光谱法
仪器结构
点击按钮进行选择
进入紫外可见吸收光谱 法之前,先了解一下“光学 分析”的概念吧。若已经去 过,请直接进入分析方法。
光学分析法 Optical Analysis
光学分析法是根据物质发射、吸收电磁辐射或电磁辐射与 物质间相互作用而建立起来的一类分析方法。电磁辐射与物质 相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍 射、偏振等。


可见光
光学分析方法分类
光学分析法分为光谱法和非光谱法两类。 光谱法是电磁波与物质作用时,引起分子或原子内部量子化能级跃迁 而产生发射、吸收、散射或荧光,通过检测这些光谱的特征波长和强度来 进行定性定量分析。这类方法包括:原子吸收、原子发射、原子荧光、紫 外可见、红外光谱、分子荧光、分子磷光、核磁共振等等。 非光谱法则是通过测量电磁波与物质作用时,电磁波的某些其他性质, 如反射、折射、散射、干涉、衍射和偏振等变化而建立。这类方法有折射 法、干涉法、散射浊度法、旋光法、圆二向色性法、X射线衍射法和电子 衍射法等。
方法名称
原子发射光谱法 原子荧光光谱法 分子荧光光谱法 分子磷光光谱法 化学发光法 X射线荧光分析
激发方式
电弧、火花、等离子炬等 高强度紫外、可见光 紫外、可见光 紫外、可见光 化学能 X射线(0.01—2.5nm)
作用物质或机理
气态原子的外层电子
检测信号
紫外、可见光
气态原子的外层电子 分子
原子荧光 荧光(紫外、可见光)
分子
磷光(紫外、可见光)
分子
可见光
原子内层电子的逐出,外层能级电子跃 特征X射线(X射线荧光) 入空位(电子跃迁)
拉曼散射光谱法
当用单色光照射到透明样品时,大部分光按照原来方 向透射,而一小部分光则按照不同的角度散射开来,这种 现象称为光的散射。如果由于辐射与待测物质分子相互作 用时发生能量交换、引起分子振动能级的变化并有辐射能 量的增加或减小,因而产生与入射光波长不同的散射光, 这种散射称为拉曼散射。根据拉曼散射光谱而建立起来的 分析方法称为拉曼光谱法。
方法名称
紫外、可见分光光度法 原子吸收光谱法 红外光谱法 X射线吸收光谱法
辐射能
紫外、可见光
紫外、可见光
红外光(1.5~2.5μ )
X射线 放射性同位素辐射
作用物质
分子外层的电子
气态原子外层的电子
分子的振动
z>1O的重元素 原子的内层电子
检测信号
吸收后的紫外、可见光 吸收后的紫外、可见光 吸收后的红外光 吸收后的X射线
M* →M十hv 由于各种元素的原子结构或化合物的分子结构不同,造成能级差不 同.发射光谱的特征波长也各不相同。 根据发射光谱所在的光谱区和激发方法的不同以及待测物质粒子的 差别.主要可分为:原子发射光谱法、原子荧光光谱法及分子荧光光谱 法,此外还有X射线荧光分析法、磷光光谱法及化学发光分析法等。
各类发射光谱法的主要特点
相关文档
最新文档