湖南省长沙市长郡教育集团2019-2020学年度九年级第三次月考数学试卷(word版,已校对)

合集下载

湖南省长沙市2019-2020学年中考第三次适应性考试数学试题含解析

湖南省长沙市2019-2020学年中考第三次适应性考试数学试题含解析

湖南省长沙市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣1a,其中正确的结论个数是()A.1 B.2C.3 D.42.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x3.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③4.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)5.下列计算正确的是()A.2m+3n=5mn B.m2•m3=m6C.m8÷m6=m2D.(﹣m)3=m36.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .7.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .838.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v9.如图,在⊙O 中,弦AB=CD ,AB ⊥CD 于点E ,已知CE•ED=3,BE=1,则⊙O 的直径是( )A .2B .5C .5D .510.下列计算正确的是( ) A .2x 2+3x 2=5x 4 B .2x 2﹣3x 2=﹣1 C .2x 2÷3x 2=23x 2D .2x 2•3x 2=6x 411.甲、乙、丙三家超市为了促销同一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A .甲B .乙C .丙D .都一样12.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( ) A .2sin AB A = B .2cos AB A = C .2tan BC A =D .2cot BC A =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A 与圆C 外切,那么圆C 的半径长r 的取值范围是_____.14.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.15.在平面直角坐标系xOy 中,若干个半径为1个单位长度,圆心角是60o 的扇形按图中的方式摆放,动点K 从原点O 出发,沿着“半径OA →弧AB →弧BC →半径CD →半径DE ⋯”的曲线运动,若点K 在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,设第n 秒运动到点K ,(n 为自然数),则3K 的坐标是____,2018K 的坐标是____16.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为__. 18.分解因式:x 2-9=_ ▲ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.20.(6分)如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若»EF的长为2π,则图中阴影部分的面积为_____.21.(6分)如图,AB 是⊙O 的直径,BC ⊥AB ,垂足为点B ,连接CO 并延长交⊙O 于点D 、E ,连接AD 并延长交BC 于点F .(1)试判断∠CBD 与∠CEB 是否相等,并证明你的结论;(2)求证:BD CDBE BC = (3)若BC=32AB ,求tan ∠CDF 的值.22.(8分)如图,梯形ABCD 中,AD ∥BC ,AE ⊥BC 于E ,∠ADC 的平分线交AE 于点O ,以点O 为圆心,OA 为半径的圆经过点B ,交BC 于另一点F . (1)求证:CD 与⊙O 相切;(2)若BF=24,OE=5,求tan ∠ABC 的值.23.(8分)已知AB 是O e 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O e 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长;如图②,P 为AB 上一点,CP 延长线与O e 交于点Q ,若AQ CQ =,求APC ∠的大小及PA 的长.24.(10分)如图,已知一次函数的图象与反比例函数的图象交于A,B 两点,点A 的横坐标是2,点B 的纵坐标是-2。

2019届湖南省九年级上学期第三次月考数学试卷【含答案及解析】

2019届湖南省九年级上学期第三次月考数学试卷【含答案及解析】

2019届湖南省九年级上学期第三次月考数学试卷【含答案及解析】姓名 ____________ 班级 _______________ 分数 ____________题号-二二三四总分得分、选择题1. 下列运算中正确的是( )A IB •■厂''D.「:2. 下列根式中与「是同类二次根式的是 ( A. 」B• -' C3.若了,则锐角,等于( )A. 15°B . 30°C5.已知三角形两边长分别为 2和9,第三边的长为二次方程 x2-14x+48=0的一根,则这个7.三角形的重心是( )A. 三条角平分线的交点4.关于x 的一元二次方程 m-1) x2 + x + m2-1=0的一个根是 0,贝V m 的值为 -1C -1 或 1D45D.60°三角形的周长为( ) A. 11 B. 17C6. 使分式一的值等于零的x 是(141A. 6B. -1 或 6.17 或 19D.19).C.-1DB. 三条高的交点C. 三条中线的交点D. 三条边的垂直平分线的交点8. 下列两个图形一定相似的是( )A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形9. 有一种竞猜游戏的规则如下:在 20个商标牌中,有5个商标牌的背面注明一定的奖金 额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖.小王随机翻动一个商标牌,那 么他获奖的概率是()1 1 宀 1 1A. — B . — C . D .—23 4 5、填空题11.当;时,二次根式'有意义.12. 已知x=1是方程2x2+x+n=0的根,则n= __________ . 13. 在厶AB (中, D E 分别为 AB AC 的中点,DE=5 -,贝V BC= :.14. _______________________ 如图,小明在打网球时,要使球恰好能打过网,而且落在离网 击球的高度A 应为米.15.如图,某次台风把一棵大树在离地面 3米处的B 点拦腰刮断,大树顶端着地点 A 到树5米的位置上,则球拍10.下列四个三角形,与左图中的三角形相似的是()根部C的距离为4米,那么这棵树的高度是16. 若两个相似三角形的相似比为2:5,则它们对应周长的比为17. 如图,AB与CD相交于点Q OA=3 OB=5 0D=6.当0C= 时,图中的两个三角形相似•(只需写出一个条件即可)18. 在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀.随机地从袋中摸出1只球,则摸出白球的概率是三、计算题19. 计算:(1) J:(2) 1/.' 4 J ' - ■ .-1:'.'四、解答题20. 解方程:(1)J - -1.1 '-(2)J _ 一21. 已知关于x的方程 1 1」,当m为何值时,方程有两个实数根?22. 若求* 叮’ 飞’.- 的值。

湖南省长沙市2019-2020学年中考第三次模拟数学试题含解析

湖南省长沙市2019-2020学年中考第三次模拟数学试题含解析

湖南省长沙市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列计算正确的是( ) A .a 2•a 3=a 6B .(a 2)3=a 6C .a 2+a 2=a 3D .a 6÷a 2=a 32.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =23,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C ,则OC =( )A .1B .2C .3D .43.若代数式22x x -有意义,则实数x 的取值范围是( )A .x =0B .x =2C .x≠0D .x≠24.如图,ABC ∆为等边三角形,要在ABC ∆外部取一点D ,使得ABC ∆和DBC ∆全等,下面是两名同学做法:( )甲:①作A ∠的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求; 乙:①过点B 作平行于AC 的直线l ;②过点C 作平行于AB 的直线m ,交l 于点D ,点D 即为所求.A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确5.如图,A 、B 两点在双曲线y=4x上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .66.抛物线y =mx 2﹣8x ﹣8和x 轴有交点,则m 的取值范围是( )A .m >﹣2B .m≥﹣2C .m≥﹣2且m≠0D .m >﹣2且m≠07.在一个不透明的袋子中装有除颜色外其余均相同的m 个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100 1000 5000 10000 50000 100000 摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( ) A .5B .10C .15D .208.一次函数y=kx+k (k≠0)和反比例函数()0ky k x=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .9.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )A .120°B .140°C .150°D .160°10.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=5,AC=5 ,则∠B的度数是( )A .30°B .45°C .50°D .60°11.下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A .线段B .等边三角形C .正方形D .平行四边形12.在实数|﹣3|,﹣2,0,π中,最小的数是( ) A .|﹣3|B .﹣2C .0D .π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F 处,联结FC,当△EFC是直角三角形时,那么BE的长为______.14.若关于x的分式方程2233x mx x-=--有增根,则m的值为_____.15.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60 70 80 90 100人数 4 8 12 11 5则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分16.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.17.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.18.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,点A ,B ,C 都在抛物线y=ax 2﹣2amx+am 2+2m ﹣5(其中﹣14<a <0)上,AB ∥x 轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为 (用含m 的代数式表示); (2)求△ABC 的面积(用含a 的代数式表示);(3)若△ABC 的面积为2,当2m ﹣5≤x≤2m ﹣2时,y 的最大值为2,求m 的值.20.(6分)先化简,后求值:22321113x x x x x -++⋅---,其中21x =+.21.(6分)化简求值:212(1)211x x x x -÷-+++,其中31x =-.22.(8分)问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填“>”“<”“=”); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由; 问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF 为1.6米,他从远处正对广告牌走近时,在P 处看广告效果最好(视角最大),请你在图③中找到点P 的位置,并计算此时小刚与大楼AD 之间的距离.23.(8分)先化简2211a a a a ⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 24.(10分)如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)25.(10分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o ①如图1,DCB ∠=o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论; (2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<o o,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明) 26.(12分)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.。

2020-21长郡九上第三次月考数学试卷

2020-21长郡九上第三次月考数学试卷

27-9-1-2020-21-302长郡九上第三次月考数学试卷数 学本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(共12小题,每小题3分,共36分)1.在实数−√3,﹣3.14,0,π,√643中,无理数有( ) A .1个 B .2个 C .3个 D .4个2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历 史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了 30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为( ) A .30.81×108 B .30.81×109 C .3.081×109 D .3.081×108 3.点M (3,﹣2)与Q (a ,b )关于y 轴对称,则a +b 的值为( ) A .1 B .﹣1 C .5 D .﹣54.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1; ②若2a 2与3a x+1的和是单项式,则x =1; ③若|x |=|﹣7|,则x =﹣7;④若a 、b 互为相反数,则a 、b 的商为﹣1. 其中正确的个数为( ) A .1 B .2 C .3 D .45.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( ) A .{2x +4y =883x +2y =84 B .{2x +4y =882x +3y =84 C .{4x +2y =883x +2y =84 D .{4x +2y =882x +3y =846.抛物线y =﹣(x ﹣2)2+3,下列说法正确的是( ) A .开口向下,顶点坐标(2,3) B .开口向上,顶点坐标(2,﹣3) C .开口向下,顶点坐标(﹣2,3) D .开口向上,顶点坐标(2,﹣3)7.如图,转盘中四个扇形的面积都相等.小明随意转动转盘1次,指针指向的数字为偶数的概率为( ) A .14B .56C .34D .128.已知抛物线y =x 2+2x ﹣k ﹣2与x 轴没有交点,则函数y =kx 的图象大致是( )A .B .C .D .9.如图,点E 是▱ABCD 的边AD 上的一点,且DE AE=12,连接BE 并延长交CD 的延长线于点F ,若DE=3,DF =4,则▱ABCD 的周长为( ) A .21 B .28 C .34 D .4210.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为(2,4).点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,点P 是BC 的中点.以坐标原点O 为位似中心,将矩形OABC 放大为原图形的1.5倍,记点P 的对应点为P 1,则P 1的坐标为( ) A .(3,3) B .(3,2)或(﹣3,﹣2) C .(3,3)或(﹣3,﹣3) D .(2,3)或(﹣2,﹣3)第10题图 第11题图第12题图11.如图,在地面上的点A 处测得树顶B 的仰角为α,AC =2,则树高BC 为( )(用含α的代数式表示) A .2sinαB .2tanαC .2cosαD .2tanα12.如图,直线y =12x +1与x 轴、y 轴分别相交于A 、B 两点,P 是该直线上的任一点,过点D (3,0)向以P 为圆心,12AB 为半径的⊙P 作两条切线,切点分别为E 、F ,则四边形PEDF 面积的最小值为( ) A .54√3B .√5C .2√5D .52√3二.填空题(共4小题,满分12分,每小题3分) 13.小明用s 2=110[(x 1﹣6)2+(x 2﹣6)2+…+(x 10﹣6)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= . 14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5cm ,CD =8cm ,则AE = .15.如图,第一象限内的点A 在反比例函数y =4x 上,第二象限的点B 在反比例函数y =kx 上,且OA ⊥OB ,OB OA=34,BC 、AD 垂直于x 轴于C 、D ,则k 的值为 .第12题图 第15题图 第16题图16.如图,在矩形ABCD 中,BC =6,AB =2,Rt △BEF 的顶点E 在边CD 或延长线上运动,且∠BEF =90°,EF =13BE ,DF =√10,则BE = .三.解答题(共9小题,满分72分)17.(6分)计算115452−⎛⎫−−+︒ ⎪⎝⎭.18.先化简,再求值:211339x x x x x +⎛⎫−÷ ⎪−−−⎝⎭ ,其中x 满足方程260x x −−=.FCDE19.解不等式组:2623,312,2x x x x ⎧⎛⎫−<− ⎪⎪⎪⎝⎭⎨−⎪−≤⎪⎩①②,并把解集在数轴上表示出来.20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A 、B 、C 、D 四个(1)参加此次演讲比赛的学生共有 人,a = ,b = . (2)请计算扇形统计图中B 等级对应的扇形的圆心角的度数;(3)已知A 等级四名同学中包括来自同一班级的甲、乙两名同学, 学校将从这四名同学中随机选出两名参加县级比赛,请用列表 法或树状图,求甲、乙两名同学都被选中的概率.21.为加快城乡对接,建设全域美丽乡村,某地区对A 、B 两地间的公路进行改建.如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶.已知BC =80千米,∠A =45°,∠B =30°.(1)开通隧道前,汽车从A 地到B 地大约要走多少千米? (2)开通隧道后,汽车从A 地到B 地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:√2≈1.41,√3≈1.73)22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=kx (k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O 于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.F B24. (10分)定义:若一次函数y ax b =+与反比例函数ky x=同时经过点(),P x y ,则称二次函数2y ax bx k =+−为一次函数与反比例函数的“关联函数“,称点P 为关联点,例如:一次函数2y x =+与反比例函数8y x=,都经过点()2,4,则228y x x =+−就是两个函数的“关联函数”.(1)判断21y x =+与3y x=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”,如果不存在,请说明理由;(2)已知整数a 、b 、c 满足条件8c b a <<,并且一次函数()122y b x a =+++与反比例函数2021y x=存在“关联函数”()()2102021y a c x a c x =++−−,求a 的值;(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足6m x m ≤≤+的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.25. (10分)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴的两个交点分别为A 、B ,与y轴相交于点C ,点()2,0A −,4BO AO =,连接BC ,tan 2OCB ∠=.(1)求该抛物线的解析式;(2)设点P 是抛物线上在第一象限内的动点(不与C 、B 重合),过点P 作PD BC ⊥,垂足为点D .①点P 在运动过程中,线段PD 的长度是否存在最大值?若存在,请求出点D 的坐标,若不存在,请说明理由;②以P 、D 、C 为顶点的三角形与COA ∆相似时,求出点P 的坐标.。

2019—2020年最新湘教版九年级数学上册上学期第三次月考检测试题及答案解析(试卷).docx

2019—2020年最新湘教版九年级数学上册上学期第三次月考检测试题及答案解析(试卷).docx

湘教版最新九年级数学上学期 第三次月考(期末)复习试卷一、选择题(8小题)1.关于x 的方程032)1(12=-+-+mx x m m 是一元二次方程,则m 的取值是( )A 、任意实数B 、1C 、―1D 、±12.若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( ) A .1 B .-1 C .2 D .-2 3.抛物线y=﹣(x-2)2﹣3的顶点坐标是( )A .(﹣2,﹣3)B .(2,3)C .(﹣2,3)D .(2,﹣3) 4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( )A .点(0,3)B .点(2,3)xy110BCAC .点(5,1)D .点(6,1)6.下列函数中,当x >0时,y 随x 增大而减小的是( )A 、y=x 2B 、y=x -1C 、y=x 43D 、y=-x 2 7.如图所示,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P •是AB •延长线上一点,•BP=2cm ,则tan ∠OPA 等于( )A .32B .23C .2D .128.如图△ABC 中,点D 、E 分别在边AB 、AC 上,13AE AD AB AC ==,则BCED ADE S S 四边形△:的值为( )A .3:1B .1:3C .1:8D .1:9二、填空题(8小题)9.如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE 是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB 是__ ___米.10.如图,△ABC 中,BC=7,cosB =22,sinC =53,则△ABC 的面积是 . 11.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点,如果MC=n ,∠CMN=α,那么P 点与B 点的距离为 .12.小明从图所示的二次函数c bx ax y ++=2的图象中,观察得出了下面五条信息:①0<c ;②0>abc ;③0>+-c b a ;④032=-b a ;⑤04>-b c ,你认为其中正确..信息有 。

2020年湖南省长沙市长郡滨江中学中考数学模拟试卷(3月份) 解析版

2020年湖南省长沙市长郡滨江中学中考数学模拟试卷(3月份)  解析版

2020年湖南省长沙市长郡滨江中学中考数学模拟试卷(3月份)一.选择题(共12小题)1.化简的结果是()A.2B.4C.2 D.42.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.83.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.5.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.6.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.则△ABC的面积为()A.1B.C.D.27.下列几何体中,俯视图为三角形的是()A.B.C.D.8.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为x尺,下列方程符合题意的是()A.(x+2)2+(x﹣4)2=x2B.(x﹣2)2+(x﹣4)2=x2C.x2+(x﹣2)2=(x﹣4)2D.(x﹣2)2+x2=(x+4)29.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排m名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.12×m=18×(28﹣m)×2 B.12×(28﹣m)=18×m×2C.12×m×2=18×(28﹣m)D.12×(28﹣m)×2=18×m10.以原点O为位似中心,作△ABC的位似图形△A'B'C',△ABC与△A'B'C'相似比为1:3,若点C的坐标为(4,1),则点C′的坐标为()A.(12,3)B.(﹣12,3)或(12,﹣3)C.(﹣12,﹣3)D.(12,3)或(﹣12,﹣3)11.如图,已知⊙O的半径为5,弦AB=8,CD=6,则图中阴影部分面积为()A.π﹣24 B.9πC.π﹣12 D.9π﹣612.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)二.填空题(共6小题)13.使代数式有意义的实数x的取值范围为.14.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.15.某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,计划在2018年投入资金2880万元.设年平均增长率为x,根据题意可列出的方程为.16.已知圆锥的底面半径为10,母线长为30,则圆锥侧面积是.17.如图,在▱ABCD中,E为CD上一点,连接AE,BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=.18.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.三.解答题(共8小题)19.计算:.20.先化简,再求值:(x+1﹣)÷,其中x满足x2+4x﹣12=0.21.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件,(1)若降价a元,则平均每天销售数量为件(用含a的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=,求劣弧BD与弦BD所围图形的面积.(3)若AC=4,BD=6,求AE的长.25.定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.(1)当n=3时,点B的坐标是,点M的坐标是;(2)如图1,当点M落在y=的图象上,求n的值;(3)如图2,当点M落在直线l上,点C是点B关于直线l的对称点,BC与直线l相交于点N.①求证:△ABC是直角三角形;②当点C的坐标为(5,3)时,求MN的长.26.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF 的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是,CG和EH 的数量关系是,的值是.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是(用含a、b的代数式表示).参考答案与试题解析一.选择题(共12小题)1.化简的结果是()A.2B.4C.2 D.4【分析】利用二次根式的性质化简把化简即可.【解答】解:∵=2,∴答案A正确,故选:A.2.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【解答】解:袋中球的总个数是:2÷=8(个).故选:D.3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】由图可得∠ACB=135°,AC=,BC=2,然后分别求得A,B,C,D中各三角形的最大角,继而求得答案.【解答】解:如图:∠ACB=135°,AC=,BC=2,A、最大角=135°,对应两边分别为:1,,∵:1=2:,∴此图与△ABC相似;B、∵最大角<135°,∴与△ABC不相似;C、∵最大角<135°,∴与△ABC不相似;D、∵最大角<135°,∴与△ABC不相似.故选:A.4.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.5.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【解答】解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,6.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.则△ABC的面积为()A.1B.C.D.2【分析】先由三角形的高的定义得出∠ADB=∠ADC=90°,解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1,然后根据三角形的面积公式计算即可;【解答】解:在Rt△ABD中,∵sin B==,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD==2.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2+1,∴S△ABC=•BC•AD=×(2+1)×1=,故选:C.7.下列几何体中,俯视图为三角形的是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是圆,故A不符合题意;B、俯视图是矩形,故B不符合题意;C、俯视图是三角形,故C符合题意;D、俯视图是四边形,故D不符合题意;8.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为x尺,下列方程符合题意的是()A.(x+2)2+(x﹣4)2=x2B.(x﹣2)2+(x﹣4)2=x2C.x2+(x﹣2)2=(x﹣4)2D.(x﹣2)2+x2=(x+4)2【分析】由题意可得门高(x﹣2)尺、宽(x﹣4)尺,长为对角线x尺,根据勾股定理可得的方程.【解答】解:设门对角线的长为x尺,由题意得:(x﹣2)2+(x﹣4)2=x2,故选:B.9.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排m名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.12×m=18×(28﹣m)×2 B.12×(28﹣m)=18×m×2C.12×m×2=18×(28﹣m)D.12×(28﹣m)×2=18×m【分析】题目已经设出安排m名工人生产螺钉,则(28﹣m)人生产螺母,由一个螺钉配两个螺母可知,螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排m名工人生产螺钉,则(28﹣m)人生产螺母,由题意得12×m×2=18×(28﹣m),故选:C.10.以原点O为位似中心,作△ABC的位似图形△A'B'C',△ABC与△A'B'C'相似比为1:3,若点C的坐标为(4,1),则点C′的坐标为()A.(12,3)B.(﹣12,3)或(12,﹣3)C.(﹣12,﹣3)D.(12,3)或(﹣12,﹣3)【分析】根据位似变换的性质计算即可.【解答】解:∵△ABC与△A'B'C'相似比为1:3,若点C的坐标为(4,1),∴点C′的坐标为(4×3,1×3)或(4×(﹣3),1×(﹣3)),∴点C′的坐标为(12,3)或(﹣12,﹣3),故选:D.11.如图,已知⊙O的半径为5,弦AB=8,CD=6,则图中阴影部分面积为()A.π﹣24 B.9πC.π﹣12 D.9π﹣6【分析】过点O作OE⊥AB于E,作OF⊥CD于F,根据垂径定理求出AE、CF,再利用勾股定理列式求出OE=OF,从而得到AE=OF,OE=CF,然后利用“边角边”证明△AOE和△OCF全等,根据全等三角形对应角相等可得∠AOE=∠OCF,再求出∠AOE+∠COF=90°,然后求出∠AOB+∠COD=180°,把弧CD旋转到点D与点B重合,构建直角三角形ABC;然后根据圆的面积公式和直角三角形的面积公式来求阴影部分的面积:阴影面积=半圆面积﹣直角三角形ABC的面积.【解答】解:如图,过点O作OE⊥AB于E,作OF⊥CD于F,由垂径定理得,AE=AB=×8=4,CF=CD=×6=3,由勾股定理得,OE===3,OF===4,∴AE=OF,OE=CF,在△AOE和△OCF中,,∴△AOE≌△OCF(SAS),∴∠AOE=∠OCF,∵∠OCF+∠COF=90°,∴∠AOE+∠COF=90°,∴∠AOB+∠COD=2(∠AOE+∠COF)=2×90°=180°,把弧CD旋转到点D与点B重合.∴△ABC为直角三角形,且AC为圆的直径;∵AB=8,CD=6,∴AC=10(勾股定理),∴阴影部分的面积=S半圆﹣S△ABC=π×52﹣×6×8=π﹣24;故选:A.12.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A8即可.【解答】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从A到A3经过了3次变化,∵45°×3=135°,1×()3=2.∴点A3所在的正方形的边长为2,点A3位置在第四象限.∴点A3的坐标是(2,﹣2);可得出:A1点坐标为(1,1),A2点坐标为(2,0),A3点坐标为(2,﹣2),A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),A8(0,16),故选:D.二.填空题(共6小题)13.使代数式有意义的实数x的取值范围为.【分析】二次根式的被开方数是非负数.【解答】解:依题意得 2x﹣1≥0,解得.故答案是:.14.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.15.某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,计划在2018年投入资金2880万元.设年平均增长率为x,根据题意可列出的方程为1280(1+x)2=2880 .【分析】设年平均增长率为x,根据:2016年投入资金给×(1+增长率)2=2018年投入资金,列出方程即可.【解答】解:设该地投入异地安置资金的年平均增长率为x,根据题意,得1280(1+x)2=2880,故答案为:1280(1+x)2=2880.16.已知圆锥的底面半径为10,母线长为30,则圆锥侧面积是300π.【分析】利用圆锥的底面半径为10,母线长为30,直接利用圆锥的侧面积公式求出即可.【解答】解:依题意知母线长=30,底面半径r=10,则由圆锥的侧面积公式得S=πrl=π×10×30=300π.故答案为:300π.17.如图,在▱ABCD中,E为CD上一点,连接AE,BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=2:3 .【分析】由四边形ABCD为平行四边形,得到对边平行且相等,利用两直线平行得到两对内错角相等,进而得到三角形DEF与三角形ABF相似,由相似三角形面积之比等于相似比的平方求出相似比,即可求出所求之比.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,DC=AB,∴∠EDF=∠FBA,∠DEF=∠FAB,∴△DEF∽△BAF,∴S△DEF:S△ABF=(DE)2:(AB)2=4:25,即DE:AB=2:5,∴DE:DC=2:5,则DE:EC=2:3,故答案为:2:318.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为2π﹣4 .【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:连接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=CD=4,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=﹣×42=2π﹣4.故答案为2π﹣4.三.解答题(共8小题)19.计算:.【分析】本题涉及负指数幂、乘方、特殊角的三角函数值、二次根式化简、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣4+|2﹣4|++2×=﹣4+4﹣2+3+2=3.20.先化简,再求值:(x+1﹣)÷,其中x满足x2+4x﹣12=0.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则化简,再解方程计算得出答案.【解答】解:原式=•=,x2+4x﹣12=0,(x+6)(x﹣2)=0,解得:x1=﹣6,x2=2,当x=﹣6时,原式==.21.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为45% ,所抽查的学生人数为60 .(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.【分析】(1)根据题意列式计算即可;(2)根据题意即可得到结果;(3)根据众数,平均数的定义即可得到结论;(4)根据题意列式计算即可.【解答】解:(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60人;故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18人;(3)这部分学生的平均睡眠时间的众数是7,平均数==7.2小时;(4)1200名睡眠不足(少于8小时)的学生数=×1200=780人.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.【分析】(1)由题意可证BE=DE,四边形BEDF是平行四边形,即可证四边形BEDF为菱形;(2)由三角形内角和定理求出∠ABC=50°,由菱形的性质即可得出答案.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件,(1)若降价a元,则平均每天销售数量为2a+20 件(用含a的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据“平均每天可售出20件,每件盈利40元,销售单价每降低1元,平均每天可多售出2件,若降价a元”,列出平均每天销售的数量即可,(2)设每件商品降价x元,根据“平均每天可售出20件,每件盈利40元,销售单价每降低1元,平均每天可多售出2件,每件盈利不少于25元”列出关于x的一元二次方程,解之,根据实际情况,找出盈利不少于25元的答案即可.【解答】解:(1)根据题意得:若降价a元,则多售出2a件,平均每天销售数量为:2a+20,故答案为:2a+20,(2)设每件商品降价x元,根据题意得:(40﹣x)(20+2x)=1200,解得:x1=10,x2=20,40﹣10=30>25,(符合题意),40﹣20=20<25,(舍去),答:当每件商品降价10元时,该商店每天销售利润为1200元.24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=,求劣弧BD与弦BD所围图形的面积.(3)若AC=4,BD=6,求AE的长.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可证AD是⊙O的切线;(2)连接OD,作OF⊥BD于F,由直角三角形的性质得出CD=AC=1,BC=AC=3,得出BD=BC﹣CD=2,由直角三角形的性质得出DF=BF=BD=1,OF=BF=,得出OB=2OF=,由扇形面积公式和三角形面积公式即可得出结果;(3)证明△ACD∽△BCA,得出==,求出CD=2,由勾股定理得出AD==2,求出AB=4,再由切割线定理即可得出AE的长.【解答】(1)证明:连接OD,如图1所示:∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为⊙O的切线;(2)解:连接OD,作OF⊥BD于F,如图2所示:∵OB=OD,∠B=30°,∴∠ODB=∠B=30°,∴∠DOB=120°,∵∠C=90°,∠CAD=∠B=30°,∴CD=AC=1,BC=AC=3,∴BD=BC﹣CD=2,∵OF⊥BD,∴DF=BF=BD=1,OF=BF=,∴OB=2OF=,∴劣弧BD与弦BD所围图形的面积=扇形ODB的面积﹣△ODB的面积=﹣×2×=﹣;(3)解:∵∠CAD=∠B,∠C=∠C,∴△ACD∽△BCA,∴==,∴AC2=CD×BC=CD(CD+BD),即42=CD(CD+6),解得:CD=2,或CD=﹣8(舍去),∴CD=2,∴AD==2,∵=,∴=,∴AB=4,∵AD是⊙O的切线,∴AD2=AE×AB,∴AE===.25.定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.(1)当n=3时,点B的坐标是(4,6),点M的坐标是(2.5,3);(2)如图1,当点M落在y=的图象上,求n的值;(3)如图2,当点M落在直线l上,点C是点B关于直线l的对称点,BC与直线l相交于点N.①求证:△ABC是直角三角形;②当点C的坐标为(5,3)时,求MN的长.【分析】(1)根据平移的性质可得出点B的坐标,再根据中点坐标公式得出点M的坐标;(2)把线段AB中点M的坐标代入y=,即可得出n的值;(3)①连接CM,由题意,可得AM=CM=BM,即可得出△ABC是直角三角形;②由两点距离公式可求AC的长,由三角形中位线定理可求解.【解答】解:(1)根据平移的性质,点A(1,0)经过n次斜平移得到点B的坐标为(1+n,2n),∴当n=3时,点B的坐标是(4,6),∵点M是线段AB中点,∴点M的坐标是(2.5,3),故答案为:(4,6),(2.5,3)(2)由题意,A(1,0),B(1+n,2n),∴线段AB中点M(,n),∵点M落在y=的图象上,∴×n=4,解得n=2或n=﹣4(舍去),∴n=2;(3)①连接CM,如图1,∵M是AB的中点,∴AM=BM,由轴对称可知:BM=CM,∴AM=CM=BM,∴∠MAC=∠ACM,∠MBC=∠MCB,∵∠MAC+∠ACM+∠MBC+∠MCB=180°,∴∠ACM+∠MCB=90°,即∠ACB=90°,∴△ABC是直角三角形;②∵点C的坐标为(5,3),点A(1,0),∴AC==5,∵点C是点B关于直线l的对称点,∴BN=CN,∵点M是线段AB的中点.∴AM=BM,∴MN=AC=.26.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF 的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是AB=3EH,CG 和EH的数量关系是CG=2EH,的值是.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是ab(用含a、b的代数式表示).【分析】(1)本问体现“特殊”的情形,=3是一个确定的数值.如答图1,过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;(2)本问体现“一般”的情形,=m不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示.(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示.【解答】解:(1)依题意,过点E作EH∥AB交BG于点H,如右图1所示.则有△ABF∽△EHF,∴,∴AB=3EH.∵▱ABCD,EH∥AB,∴EH∥CD,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH.===.故答案为:AB=3EH;CG=2EH;.(2)如右图2所示,作EH∥AB交BG于点H,则△EFH∽△AFB.∴==m,∴AB=mEH.∵AB=CD,∴CD=mEH.∵EH∥AB∥CD,∴△BEH∽△BCG.∴==2,∴CG=2EH.∴==.故答案为:.(3)如右图3所示,过点E作EH∥AB交BD的延长线于点H,则有EH∥AB∥CD.∵EH∥CD,∴△BCD∽△BEH,∴==b,∴CD=bEH.又=a,∴AB=aCD=abEH.∵EH∥AB,∴△ABF∽△EHF,∴===ab,故答案为:ab.。

湖南省长沙市长郡教育集团2019-2020—1初三年级统一考试(期末)数学试卷 配套同步检测题

湖南省长沙市长郡教育集团2019-2020—1初三年级统一考试(期末)数学试卷  配套同步检测题

长郡教育集团2013-2019-1初三年级统一考试数 学 试 卷一、选择题(共10小题,每小题3分,共30分)1、-12的相反数是( ) A .-2 B .-12 C .12D .22、下列运算正确的是( )A .6a ÷23=a a B . 5a -32=a aC .3293)=6a a ( D . 322()a b -323)=a b (-62a b 3、函数2-=x y 中自变量的取值范围是( )A .0≥xB .2≤xC .2≥xD .2<x4、化简xxx x -+-112的结果是( ) A .x +1 B .x -1 C .—x D .x5、下列方程中,有两个不等实数根的是( ) A .238x x =- B .2510x x +=-C .271470x x -+=D .2753x x x -=-+6、若直线m x y +=3经过第一、三、四象限,则点A(m ,1)必在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7、函数a ax y -=2与)0(≠=a xay 在同一直角坐标系中的图象可能是( )8、下列长度的三条线段,能组成三角形的是( )A .1、l 、2B .3、4、5C .1、4、6D .2、3、79、到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点 B .三条高的交点 C .三条边的垂直平分线的交点 D .三条角平分线的交点10、如图,已知△ACD ∽△BCA ,若CD =4,CB =9,则AC 等于( ) A .3B .4C .5D .6二、填空题(共8小题,每小题3分,共24分) 11、如图,直线a ∥b ,∠1=115°,则∠2=_________. 12、分解因式:3244x x x -+= .13、PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为 。

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷 解析版

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷  解析版

2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.(﹣2)02.(3分)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个3.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a94.(3分)估计3的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.(3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)如图所示的几何体的左视图是()A.B.C.D.7.(3分)如图,直线l1∥l2,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°8.(3分)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,509.(3分)一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.10.(3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)11.(3分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC 相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.412.(3分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,B到AC的距离为,求点D到BC′的距离为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)函数y=中,自变量x的取值范围是.14.(3分)分解因式:3a3﹣6a2+3a=.15.(3分)若关于x的分式方程+=2m有增根,则m的值为.16.(3分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.17.(3分)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD =1,BD=2,BC=4,则EF=.18.(3分)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上,则y1+y2+…+y100的值为.三、解答题(共66分)19.(6分)计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°20.(6分)先化简,再求值:÷(+1),其中x为整数且满足不等式组21.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.22.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)23.(9分)如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是⊙O的切线;(2)若sin∠EGC=,⊙O的半径是3,求AF的长.24.(9分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)25.(10分)定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA 中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.26.(10分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x 轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠P AB=2∠ACO.求点P的坐标.2019-2020学年湖南省长沙市天心区长郡教育集团九年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列各数中,负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.(﹣2)0【分析】直接利用绝对值以及零指数幂的性质、相反数的性质分别化简得出答案.【解答】解:A、﹣(﹣2)=2,故此选项错误;B、﹣|﹣2|=﹣2,故此选项正确;C、(﹣2)2=4,故此选项错误;D、(﹣2)0=1,故此选项错误;故选:B.【点评】此题主要考查了绝对值以及零指数幂的性质、相反数的性质,正确化简各数是解题关键.2.(3分)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2×109个B.12×109个C.1.2×1010个D.1.2×1011个【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120亿个用科学记数法可表示为:1.2×1010个.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9【分析】根据单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(a3)2=a6,故本选项错误.故选:C.【点评】本题考查了单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质.熟练掌握法则是解题的关键.4.(3分)估计3的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:∵3=,36<45<49,∴6<7,故选:C.【点评】此题主要考查了估算无理数的大小,正确估算无理数是解题关键.5.(3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握不等式组的解法是解题关键.6.(3分)如图所示的几何体的左视图是()A.B.C.D.【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:D.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.7.(3分)如图,直线l1∥l2,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°【分析】过点E作EF∥11,利用平行线的性质解答即可.【解答】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=30°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=30°+180°=210°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.8.(3分)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,50【分析】设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设有x人,物价为y,可得:,解得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴右侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+b图象过第一、二、四象限,∴a<0,b>0,∴﹣>0,∴二次函数y3=ax2+bx+c开口向下,二次函数y3=ax2+bx+c对称轴在y轴右侧;∵反比例函数y2=的图象在第一、三象限,∴c>0,∴与y轴交点在x轴上方.满足上述条件的函数图象只有选项A.故选:A.【点评】本题考查了一次函数的图象、反比例函数的图象以及二次函数的图象,解题的关键是根据一次函数与反比例函数的图象找出a、b、c的正负.本题属于基础题,难度不大,熟悉函数图象与系数的关系是解题的关键.10.(3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.11.(3分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.4【分析】由切线的性质得出AC⊥OD,求出∠A=30°,证出∠ODB=∠CBD,得出OD ∥BC,得出∠C=∠ADO=90°,由直角三角形的性质得出∠ABC=60°,BC=AB=6,AC=BC=6,得出∠CBD=30°,再由直角三角形的性质即可得出结果.【解答】解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.【点评】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出OD∥BC是解题的关键.12.(3分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC′,DC′与AB交于点E,连结AC′,若AD=AC′=2,B到AC的距离为,求点D到BC′的距离为()A.B.C.D.【分析】根据折叠的性质和点到直线的距离即可求解.【解答】解:过B作BM⊥DC于M,过D作DN⊥BC于N,如下图所示,∵把△BDC沿BD翻折,得到△BDC′,∴CD=C′D=2,∠CDB=∠C′DB,∵AD=AC′=2,∴△ADC′为等边三角形,∴∠C′DA=60°,∴,∵BM⊥DC,∴,∴,∴,∵S△BDC=,∴DN=,故选:D.【点评】本题考查了折叠的性质和点到直线的距离,解题的关键是求出CD和BC的长度.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)分解因式:3a3﹣6a2+3a=3a(a﹣1)2.【分析】先提取公因式3a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:3a3﹣6a2+3a=3a(a2﹣2a+1)=3a(a﹣1)2.故答案为:3a(a﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.(3分)若关于x的分式方程+=2m有增根,则m的值为1.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.(3分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.17.(3分)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD =1,BD=2,BC=4,则EF=.【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【解答】解:∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF﹣DE=2﹣,故答案为:【点评】此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.18.(3分)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上,则y1+y2+…+y100的值为20.【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.【解答】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=2﹣2,即:y2=2﹣2,同理:y3=2﹣2,y4=2﹣2,……y100=2﹣2∴y1+y2+…+y100=2+2﹣2+2﹣2……2﹣2=20,故答案为20.【点评】考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.三、解答题(共66分)19.(6分)计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°【分析】根据实数的运算法则,特殊角的三角函数值,算术平方根的运算分别进行化简即可;【解答】解:原式=﹣1+3﹣1﹣2×=1﹣2×3=﹣5;【点评】本题考查实数的运算,零指数幂,特殊角的三角函数值;牢记特殊角的三角函数值,掌握实数的运算性质是解题的关键.20.(6分)先化简,再求值:÷(+1),其中x为整数且满足不等式组【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出其整数解,继而代入计算可得.【解答】解:原式=÷(+)=•=,解不等式组得2<x≤,则不等式组的整数解为3,当x=3时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元一次不等式组的能力.21.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.(8分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)【分析】(1)作BH⊥AF于点K,交MN于点H,则△ABK∽△ACG,设圆形滚轮的半径AD的长是xcm,根据相似三角形的对应边的比相等,即可列方程求得x的值;(2)求得CG的长,然后在直角△ACG中,求得AC即可解决问题;【解答】解:(1)作BH⊥AF于点K,交MN于点H.则BK∥CG,△ABK∽△ACG.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)在Rt△ACG中,CG=80﹣8=72(cm).则sin∠CAF=,∴AC=80,(cm)∴BC=AC﹣AB=80﹣50=30(cm).【点评】本题考查解直角三角形的应用,切线的性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算.23.(9分)如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EF是⊙O的切线;(2)若sin∠EGC=,⊙O的半径是3,求AF的长.【分析】(1)连接EO,由∠EOG=2∠C、∠ABG=2∠C知∠EOG=∠ABG,从而得AB ∥EO,根据EF⊥AB得EF⊥OE,即可得证;(2)由∠ABG=2∠C、∠ABG=∠C+∠A知∠A=∠C,即BA=BC=6,在Rt△OEG中求得OG==5、BG=OG﹣OB=2,在Rt△FGB中求得BF=BG sin∠EGO,根据AF=AB﹣BF可得答案.【解答】解:(1)如图,连接EO,则OE=OC,∴∠EOG=2∠C,∵∠ABG=2∠C,∴∠EOG=∠ABG,∴AB∥EO,∵EF⊥AB,∴EF⊥OE,又∵OE是⊙O的半径,∴EF是⊙O的切线;(2)∵∠ABG=2∠C,∠ABG=∠C+∠A,∴∠A=∠C,∴BA=BC=6,在Rt△OEG中,∵sin∠EGO=,∴OG===5,∴BG=OG﹣OB=2,在Rt△FGB中,∵sin∠EGO=,∴BF=BG sin∠EGO=2×=,则AF=AB﹣BF=6﹣=.【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键.24.(9分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【分析】(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t≤50、50<t≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额﹣总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.【解答】解:(1)由题意,得:,解得,答:a的值为0.04,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、(100,20)代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式,根据相等关系列出利润的函数解析式及二次函数的性质是解题的关键.25.(10分)定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA 中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠MON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ON cos60°=,∴OD=OP cos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.26.(10分)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x 轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠P AB=2∠ACO.求点P的坐标.【分析】(1)把点A、C坐标代入抛物线解析式即可求得b、c的值.(2)设点Q横坐标为t,用t表示直线AQ、BN的解析式,把x=﹣1分别代入即求得点M、N的纵坐标,再求DM、DN的长,即得到DM+DN为定值.(3)点P可以在x轴上方或下方,需分类讨论.①若点P在x轴下方,延长AP到H,使AH=AB构造等腰△ABH,作BH中点G,即有∠P AB=2∠BAG=2∠ACO,利用∠ACO 的三角函数值,求BG、BH的长,进而求得H的坐标,求得直线AH的解析式后与抛物线解析式联立,即求出点P坐标.②若点P在x轴上方,根据对称性,AP一定经过点H 关于x轴的对称点H',求得直线AH'的解析式后与抛物线解析式联立,即求出点P坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3),∴解得:,∴抛物线的函数表达式为y=x2+2x﹣3.(2)结论:DM+DN为定值.理由:∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1,∴D(﹣1,0),x M=x N=﹣1,设Q(t,t2+2t﹣3)(﹣3<t<1),设直线AQ解析式为y=dx+e∴解得:,∴直线AQ:y=(t+3)x﹣t﹣3,当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6,∴DM=0﹣(﹣2t﹣6)=2t+6,设直线BQ解析式为y=mx+n,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长郡教育集团2019-2020学年第一学期第三次月考
初三 数学试卷
一、选择题(共12小题,每小题3分,共36分)
1.,()π--,3-,3,其中最大的数是( )
B.()π--
C.3-
D.3
2.下列运算正确的是( )
A.3362x x x +=
B.632x x x ÷=
C.325x x x ⋅=
D.()32639x x =
3.下列说法正确的是( )
A.成绩好的同学中考得6A 是必然事件
B.要了解某班学生的数学学习情况适合用抽样调查
C.如果有一组数据为5,3,6,4,2,那么它的中位数是6
D.甲、乙两人射击环数的方差分别为22s =甲,23s =乙,说明甲的射击成绩比乙稳定 4.若点()1,A a 和点()4,B b 在直线2y x m =-+上,则a 与b 的大小关系是( )
A.a b >
B.a b <
C.a b =
D.与m 的取值有关 5.关于函数6y x
=的说法不正确的是( ) A.经过点()2,3--
B.图象在第一、三象限
C.y 随x 的增大而减小
D.图象关于原点对称 6.如图是一个正方体的展开图,则与“富”字相对的面上的字为( )
A.强
B.主
C.文
D.明
第6题图 第7题图 第8题图
7.如图,ABC ∆中,//DE BC ,3AD =,6BD =,2DE =,则BC 的长度为( )
A.4
B.5
C.6
D.8
8.如图,若AB 是O 的直径,CD 是O 的弦,65ABD ∠=,则BCD ∠的度数为( )
A.25
B.32.5
C.35
D.65
9.如图,30APB ∠=,点O 在射线PA 上,O 的半径为2,当O 与PB 相切时,OP 的长度为( )
A.3
B.4
C.
D.10.如图,在44⨯的方格中,每个小方格都是边长为1的正方形,O 、A 、B 分别是小正方形的顶点,则AB 的长度为( )
A.π C.2π D.4π
第9题图 第10题图 第11题图 11.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.
x y x y +=⎧⎨+=⎩在图2所示的算筹图中有一个图形被墨水覆盖了,如果图
2所表示的方程组中x 的值为3,则被墨水所覆盖的图形为( )
12.在平面直角坐标系中,已知反比例函数()20k y k x
=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线3y x k =-+都经过点P ,且7OP =
,则满足条件的实数k 的值有( ) A.0个
B.1个
C.2个
D.无法确定
二、填空题(本大题共6个小题,每小题3分,共18分)
13.因式分解:349xy xy -=__________.
14.函数
y =x 的取值范围是__________. 15.如图,已知直线//m n ,则α∠的度数为__________.
16.袋子中有6个白球,k 个红球,经过实验从中任取一个球恰好为红球的概率为14
,则k =__________. 17.如图,在平面直角坐标系中,已知()1,0A ,()3,0D ,ABC ∆与DEF ∆位似,原点O 是位似中心,若1.5AB =,则DE =__________.
18.如图,在Rt ABC ∆中,90ABC ∠=,6AB =,8BC =,P 是BC 边上的动点,设BP x =,若能在AC 边上找到一点Q ,使90BQP ∠=,则x 的取值范围是__________.
第17题图 第18题图
三、解答题(本大题共8个小题,共66分)
19.(6分)1113-⎛⎫--- ⎪⎝⎭
20.(6分)先化简,再求值:()()()2222x y x y x y y +-+--,其中12
x =-
,2y =.
21.(8分)在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱体育项目”进行了一次
调查统计,下面是他通过收集数据后,绘制的两
幅不完整的统计图.请你根据图中提供的信息,
解答以下问题:
(1)该班共有________名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“其他”部分所对应的圆心角度数为_________;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
22.(8分)如图,点E 为ABCD □的边BC 延长线上一点,AE 与BD 交于点F ,与DC 交于点G .
(1)求证:ABE GDA ∆∆∽;
(2)若2BC CE =,15BD =,求DF 的长度.
23.(9分)如图,曲线()110k y x x =
>与直线22y k x b =+交于()2,4A ,(),2B a 两点.
(1)求曲线()110k y x x
=>和直线22y k x b =+的解析式; (2)根据图象观察,当12y y >时,x 的取值范围是________;
(3)求AOB ∆的面积.
24.(9分)如图,在ABC ∆中,90BAC ∠=,BM 平分ABC ∠交AC 于M ,以A 为圆心,AM 为半径作A 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交A 于P ,K 两点,作MT BC ⊥于T . (1)求证:AK MT =;
(2)求证:AD BC ⊥;
(3)当AK BD =时,求证:BN AC BP BM
=. 135,105.请判断四边形
图1 图2 图 3
∠45,FMG。

相关文档
最新文档