初三数学竞赛选拔试题(含答案)
九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。
A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。
A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。
A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。
()2. 任何数乘以0都等于0。
()3. 二次函数的图像一定是一个抛物线。
()4. 平行四边形的对角线互相平分。
()5. 一元一次方程的解一定是整数。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。
2. 若等差数列的首项为a,公差为d,则第n项为______。
3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。
4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。
5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述二次函数的图像特点。
3. 简述勾股定理。
4. 简述平行线的性质。
5. 简述一元二次方程的解法。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。
2. 已知等差数列的首项为3,公差为2,求第10项。
3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。
4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。
九年级数学竞赛题(含答案)

初三数学竞赛题(含答案)(全卷满分120分考试时间90分)姓名_________班级________指导教师_________ 得分_________一 .单项选择题(每题6分,共30分)1.22016-22017=( )A.-22016B.-2C. 22016D.22.若关于x 的多项式x 2-6x+m 2是一个完全平方式,则m=( ) A. 3 B. ±3 C. 9 D. ±93.圆锥的侧面展开是圆心角为90°的扇形,则圆锥的母线与底面半径之比为() A . 6:1 (B ). 4:1 (C ).3:1 (D ).2:14.如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形AB CD 外部的点A 1、D 1处,则阴影部分图形的周长为() A.15 B.20 C.25 D.305.如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF和EG .记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,n = ( )A.3B. 4C.6D.8第4题图第5题图二 .填空题(每题6分,共30分)6.已知2cos 2β+3sin β-3=0,则锐角β=________. 7.化简:324324--+=________8.(1+2+3+…+99)(2+3+4+…+100)-(1+2+3+…+100)(2+3+4+…99)=________. 9.已知关于x 的分式方程111=--++x kx k x 的解为负数,则k 的取值范围是_______. 10.如图,点A 1,A 2依次在的图象上,点B 1,B 2依次在x 轴的正半轴上,若ΔA 1OB 1 ,ΔA 2B 1B 2均 为等边三角形,则点B 2的坐标为 . 三.解答题(每题20分,共60分)11.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?BCAD12. 如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.13.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.数学竞赛答案1.A2.B3.D4. D5. C6.3007.28.1009. k>1/2, 且k≠1 10.(26,0)11. 解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,12. 解:(1)∵顶点A的横坐标为x==1,且顶点A在y=x-5上,∴当x=1时,y=1-5=-4,∴A(1,-4).(2)△ABD是直角三角形.将A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,∴c=-3,∴y=x2-2x-3,∴B(0,-3)当y=0时,x2-2x-3=0,x1=-1,x2=3∴C(-1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x-5交y轴于点A(0,-5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线并交于点C设P(x1,x1-5),则G(1,x1-5)则PC=|1-x1|,AG=|5-x1-4|=|1-x1|PA=BD=3由勾股定理得:(1-x1)2+(1-x1)2=18,x12-2x1-8=0,x1=-2,4∴P(-2,-7),P(4,-1)存在点P(-2,-7)或P(4,-1)使以点A.B.D.P为顶点的四边形是平行四边形.第12题图第13题图S△AEM =.13.(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE =,∴BE=6-=;(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=-+x=-(x-3)2+,∴AM=-5-CM ═(x-3)2+,∴当x=3时,AM 最短为,又∵当BE=x =3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE ==4,此时,EF⊥AC,∴EM ==,。
九年级数学竞赛试题(含答案)-

初三数学竞赛试题(本卷满分:120分,时间:120分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 20082、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。
(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中正确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________. 10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 .A BCG F E D11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。
初三数学竞赛试题及答案

初三数学竞赛试题一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2分,共20分)1.下列各式中,最简二次根式为( )A.B 。
D 。
2。
方程(x+1)x=0的根是()A。
x1=1,x2=0 B.x1=—1,x2=1 C。
x1=—1,x2=0 D.x1=x2=03。
如图,PA、PB分别切⊙O于A、B,点C 为优弧上一点,∠ACB=60°,则∠APB的度数是()A。
60° B.120° C.30°或120° D.30°4.二次函数y=—x2-4x+2的顶点坐标、对称轴分别是( )A。
(—2,6),x=—2 B。
(2,6),x=2 C。
(2,6),x=-2 D.(-2,6),x=25。
已知Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,且AB=2A′B′,则sinA 与sinA′的关系为()A。
sinA=2sinA′ B。
2sinA=sinA′ C.sinA=sinA′ D。
不确定6.在下面四种边长相等的正多边形的组合中,能作平面镶嵌的组合是()7.如图,点P是x轴正半轴上的一个动点,过点P做x轴的垂线PQ交双曲线y=1x于点Q,连结OQ,当点P向右运动时,Rt△QOP的面积()A.逐渐增大 B。
逐渐减小 C。
保持不变D。
无法确定8。
已知⊙O1和⊙O2的半径分别为2和m,圆心距为n,且2和m都是方程x2-10x+n=0的两根,则两圆的位置关系是()A。
相交 B.外离 C.内切 D.外切9。
将某氢氧化钠溶液加水,则描述溶液pH值与加水量(m)间变化规律的图象大致是()10.如图,AB是⊙O的弦,C是AB的三等分点,连结OC并延长交⊙O于点D。
若OC=3,CD=2,则圆心O到弦AB的距离是()A。
B。
9CD。
二、填空题(每小题2分,共20分)11.已知点P(—3,2),点P′是点P关于原点的对称点,则点P′的坐标是____。
全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)842.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.1003.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.4.若不等式ax2+7x-1>2x+5对-1≤a≤1恒成立,则x的取值范围是( ).A.2≤x≤3B.2<x<3C.-1≤x≤1D.-1<x<15.在Rt△ABC中,∠B=60°,∠C=90°,AB=1,分别以AB、BC、CA为边长向△ABC外作等边△ABR、等边△BCP、等边△CAQ,联结QR交AB于点T.则△PRT的面积等于( ).(A) (B) (C) (D)6.在3×5的棋盘上,一枚棋子每次可以沿水平或者垂直方向移动一小格,但不可以沿任何斜对角线移动.从某些待定的格子开始,要求棋子经过全部的小正方格恰好一次,但不必回到原来出发的小方格上.在这15个小方格中,有( )个可以是这枚棋子出发的小方格.A.6B.8C.9D.10二、填空题1.正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= .2.设a、b、c为整数,且对一切实数x,(x-a)(x-8)+1="(x-b)(x-c)" 恒成立.则a+b+c的值为 .3.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .4.从1, 2,…, 2 006中,至少要取出个奇数,才能保证其中必定存在两个数,它们的和为2 008.三、解答题1.(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.2.(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.3.(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?全国初三初中数学竞赛测试答案及解析一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)84【答案】D【解析】分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以=,即=,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.故答案为D.2.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.100【答案】C【解析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+" =10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.解:n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:99.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.3.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.【答案】D【解析】本题考查二次函数与一元二次方程关系的综合应用问题。
九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若函数f(x) = 2x + 3,则f(-1)的值为()。
A. 1B. 2C. 3D. 54. 下列哪个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形5. 若一个圆的半径为r,则它的周长为()。
A. 2rB. 2πrC. πr²D. r²/2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 任何数乘以0都等于0。
()3. 对角线相等的四边形一定是矩形。
()4. 一元二次方程ax² + bx + c = 0(a≠0)的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。
()5. 任何数都有倒数。
()三、填空题(每题1分,共5分)1. 若一个三角形的两个内角分别为30°和60°,则第三个内角的度数为______°。
2. 若2x 5 = 0,则x的值为______。
3. 若一个圆的直径为10cm,则它的面积为______cm²。
4. 若一个等差数列的首项为3,公差为2,则第5项的值为______。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述一元一次方程的求解方法。
3. 请简述等差数列的定义及通项公式。
4. 请简述平行四边形的性质。
5. 请简述圆的周长和面积的计算公式。
五、应用题(每题2分,共10分)1. 已知一个长方形的长是宽的2倍,且长方形的周长是24cm,求长方形的长和宽。
2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
全国初中数学联赛试题(含参考答案)

全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分) 1、设17-=a ,则=--+12612323a a a ( A )A 、24B 、 25C 、1074+D 、1274+ 2、在ABC ∆中,最大角A ∠是最小角C ∠的两倍,且7=AB ,8=AC ,则=BC ( C ) A 、27 B 、10 C 、105 D 、37 3、用[]x 表示不大于x 的最大整数,则方程[]0322=--x x 的解的个数为( C ) A 、1 B 、2 C 、3 D 、 44、设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A 、143 B 、73 C 、21 D 、74 5、如图,在矩形ABCD 中,3=AB ,2=BC ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则=∠CBE sin ( D )A 、36 B 、32C 、31D 、10106、设n 是大于1909的正整数,使得nn --20091909为完全平方数的n 的个数是 ( B )A 、3B 、 4C 、 5D 、6 二、填空题(本题满分28分,每小题7分)1、已知t 是实数,若a ,b 是关于x 的一元二次方程0122=-+-t x x 的两个非负实根,则()()1122--b a的最小值是____________.答案:3-2、设D 是ABC ∆的边AB 上的一点,作BC DE //交AC 于点E ,作AC DF //交BC 于点F ,已知ADE ∆、DBF ∆的面积分别为m 和n ,则四边形DECF 的面积为______.答案:mn 23、如果实数a ,b 满足条件122=+b a ,2212|21|a b a b a -=+++-,则____=+b a . 答案:1-4、已知a ,b 是正整数,且满足⎪⎪⎭⎫ ⎝⎛+b a 15152是整数,则这样的有序数对(a ,b )共有_对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学竞赛选拔试题
一、选择题: (每小题5分,共 35分)
1 .2003减去它的21,再减去剩余的,31再减去剩余的,4
1
……依次类推,一直减去剩余的,2003
1
则最后剩下的数是( B ) (A )
20031 (B )1 (C )2002
1 (D )无法计算 2. 若 x 3+ax 2+bx+8有两个因式x+1和x+2,则a+b 的值是 ( D ) (A ) 7 (B ) 8 (C ) 15 (D )21
3. ΔABC 的周长是24,M 是AB 的中点,MC=MA=5,则ΔABC 的面积是( C ) (A ) 12 (B ) 16 (C ) 24 (D )30
4. DE 为?ABC 中平行于AC 的中位线,F 为DE 中点,延长AF 交BC 于G ,则?ABG 与?ACG 的面积比为 ( A )
(A )1:2(B )2:3(C )3:5(D )4:7
5. 三角形三条高线的长为3,4,5,则这三角形是( C ) (A )锐角三角形(B )直角三角形(C )钝角三角形(D )形状不能确定
6. 已知关于x 的方程022=+++m mx x 有不同的实数根,其中m 为整数,且仅有一个实根的整数部分是2,则m 的值 为( A ) (A )–2(B )–3(C )–2或–3(D )不存在
7. 在凸四边形ABCD 中,DA=DB=DC=BC ,则这个四边形中最大角的度数是( A )
(A ) 120o (B ) 135o (C ) 150o (D ) 165o
C
_________________学区 ___________________中学 姓名_________________ 准考证号码_________________
………………………………装………………………………订………………………………线………………………………
二、填空题: (每小题5分,共 35分)
1. 若在方程 y(y+x)=z+120 中, x,y,z都是质数,而z是奇数,则x= 2 .y= 11 .z= 23 .
2. 将 2003x2-(20032-1)x-2003 因式分解得 (x-2003)(2003x+1) .
3.正三角形ABC所在平面内有一点P,使得⊿PAB、⊿PBC、⊿PCA都是等腰三角形,则这样的P点有 10 个
4.已知直角梯形ABCD中,AD∥BC,AB=BC,∠A=o
45,CD的垂直
90,∠D=o
平分线交CD于E,交BA于的延长线于F,若AD=9cm,则BF=9 cm;
5.已知四边形的四个顶点为A(8,8),B(-4,3),C(-2,-5),D(10,-2),
856
则四边形在第一象限内的部分的面积是
15
6.小明和小刚在长90米的游泳池的对边上同时开始游泳,小明每秒游3米,小刚每秒游2米,他们来回游了12分钟,若不计转向的时间,则他们交汇的次数是20 。
7.一副扑克牌有54张,最少抽取 16 张,方能使其中至少有2张牌有相同的点数
三、(本题满分15分)
下表是某学校参加一次数学竞赛中参赛同学做对题目的情况记录表,第一行的值表示做对的题目的题数,第二行的值表示做对相应题目的同学人数。
对此次竞赛的情况有如下统计:
(1)本次竞赛共有12道题目;
(2)做对3题和3题以上的同学每人平均做对6题;
(3)做对10题和10题以下的同学每人平均做对5题;
问:参加本次竞赛的同学共有多少人
解:设共有x 名同学参加了本次竞赛。
做对3题和3题以上的人数为x-(1+3)=x-4, 那么,所有同学做对 6(x-4)+1⨯1+2⨯3=6x-17题;
做对10题和10题以下的人数为x-(1+1)=x-2, 那么,所有同学做对 5(x-2)+11⨯1+12⨯1=5x+13题。
又做对的总题数相等,所以6x-17=5x+13. 解这个方程得 x=30.
答:共有30名同学参加了本次竞赛。
四、(本题满分15分)
如图:菱形PQRS 内接于矩形ABCD ,使得P 、Q 、R 、S 为AB 、BC 、CD 、DA 上的内
点。
已知PB=15、BQ=20、PR=30、QS=40、若既约分数n m
为矩形ABCD 的周长,求
m +n 。
设AS=x 、AP=y ……(2分),由菱形性质知PR ⊥SQ ,且互相平分,这样得到8个直角三角形,易知PR 与SQ 的交点是矩形ABCD 的中心。
由已知可得其中6个三角形的边长分别为15、20、25。
由对称性知CQ 、CR 的长为x 、y 。
则Rt △ASP 和Rt △CQR 的三边长分别为x 、y 、25,矩形面积等于8个Rt △的面积之和。
则有:
(20+x )(15+y )=6×21×20×15+2×2
1
xy (8分)
则有 3x +4y =120 (1)
又 x 2+y 2
=625 (2) (2分) 得 x 1=20 x 2=
5
44 y 1=15 y 2=5
117 (5分)
当x=20时 BC=x +BQ=40 这与PR=30不合
故 x =544
y =5
117 (2分)
∴矩形周长为2(15+20+x +y )=
5
672
(5分) 即:m+n=677 (1分)
五、(本题满分20分)
1、试设计一种方法,把一个正方形不重复不遗漏地分割成8个正方形(分得的正方形大小可以不相同);又问如何把正方形按上要求分成31个正方形
2、试设计一种方法,把一个立方体分割成55个立方体(要求:不重复不遗漏,分得的立方体大小可以不相同)。
1、容易把一个正方形分成42=16个正方形,再把其中位于一角的9个拼成一个正方形,共得:16-9+1=8个正方形 。
(6分)
分成16个正方形后,把其中任意5个分成4个小正方形,共有16-5+5×4=31个正方形。
(6分)
2、把立方体分割成33=27个立方体,再把其中4个各分成23=8个立方体,共27-4+4×23=55个立方体。
(8分)。