北师大版七年级数学下册《相交线与平行线》知识点汇总

合集下载

北师大版七年级数学下册第二章平行线与相交线汇总

北师大版七年级数学下册第二章平行线与相交线汇总

北师大版七年级数学下册第二章平行线与相交线汇总一、基本概念1.1 直线和平行线•直线:一个没有端点的、无限长的、只有一个方向的线段。

•平行线:在同一个平面内,永远不会相交的两条直线。

1.2 相交线和交点•相交线:在同一个平面内,有共同一个交点的两条直线。

•交点:相交线的交点。

1.3 直角和垂线•直角:两条相交线夹角为 $90^{\\circ}$ 的角。

•垂线:在直角所在平面上,与另一条线垂直相交的线段。

二、平行线的判定定理2.1 直角判定定理•如果一条线段与另一条直线所形成的角是直角,那么这条线段与这条直线是平行线。

2.2 同旁内角和定理•如果两条直线与一条横截线相交,同侧内角的和为 $180^{\\circ}$,则这两条直线是平行线。

2.3 改错•如果两个角的数值相等,则这两个角是相等角,而不一定是平行线上的对应角。

三、平行线的性质3.1 垂线的性质•平行线和被它们所截的横截线所形成的各对同旁内角相等,且同旁外角互补。

•平行线和被它们所截的任何一条横截线所形成的交点之间的连线都是垂线。

3.2 平行线的传递性•如果直线l垂直于直线m,直线m平行于直线n,那么直线l垂直于直线n。

四、平行线的应用4.1 错排问题•和错排问题相似,当n个人排成一排时,共有(n−1)!种不同的排列方式。

4.2 平行四边形的性质•平行四边形的对边相等,对角线相交于中点,对角线互相平分。

五、小结通过学习本章内容,我们了解了平行线的基本概念和判定定理,并熟悉了平行线的性质及其应用。

熟练掌握平行线在几何中的应用,对我们解决实际问题的数学思维有很大的帮助。

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)【知识点一】同位角、内错角、同旁内角的概念(“三线八角”模型)如图1,直线AB、CD 与直线EF 相交(或者说两条直线AB、CD 被第三条直线EF 所截),构成八个角,简称为“三线八角”,如图1.特别提醒:⑴两条直线AB,CD与同一条直线EF 相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.【知识点二】同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD 的同一方,并且都在直线EF 的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD 之间,并且在直线EF 的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD 之间,并且在直线EF 的同一旁,像这样的一对角叫做同旁内角.特别提醒:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【知识点三】同位角、内错角、同旁内角位置特征及形状特征图1特别提醒:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【考点目录】【考点1】“三线八角”模型的认识;【考点2】同位角、内错角、同旁内角的辨别;【考点3】与同位角、内错角、同旁内角相关的综合【考点1】“三线八角”模型的认识;【例1】(1)图1中,∠1、∠2由直线被直线所截而成.(2)图2中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1)EF,CD;AB;(2)不是.【分析】(1)根据三线八角的定义求解即可;(2)根据三线八角的定义求解即可;解:(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.所以图1中,∠1、∠2由直线EF,CD被直线AB所截而成.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【点拨】此题主要考查了“三线八角”,熟练掌握:“三线八角”的定义是解答此题的关键.【变式1】如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【答案】A【分析】根据同旁内角定义可判断A、根据同位角定义可判断B、根据内错角的定义可判断C、D即可.解:A、由图与同旁内角定义,∠2和∠3是两直线被第三条直线所截,在截线的同侧,在被截直线内部的角可知:∠2和∠3是同旁内角,故选项A正确符合题意;B、∠1和∠2是两条直线被两条直线所截得到的角,不是同位角,故选项B不正确不符合题意;C、∠1和∠3是两直线被第三条直线所截,在截线的两侧,在被截直线内部的角是内错角,不是同位角,故选项C不符合题意;D、∠1和∠2是两条直线被两条直线所截得到的角不是内错角,故选项D不符合题意;故选:A .【点拨】本题考查了同旁内角、同位角、内错角,熟练掌握同位角、内错角、同旁内角的定义是解题关键.【变式2】如图,有下列说法:①能与DEF ∠构成内错角的角的个数有2个;②能与BFE ∠构成同位角的角的个数有2个;③能与C ∠构成同旁内角的角的个数有4个.其中正确结论的序号是.【答案】①【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与DEF ∠构成内错角的角的个数有2个,即EFA Ð和EDC ∠,故正确;②能与EFB ∠构成同位角的角的个数只有1个:即FAE ∠,故错误;③能与C ∠构成同旁内角的角的个数有5个:即CDE ∠,B ∠,CED ∠,CEF ∠,A ∠,故错误;所以结论正确的是①.故答案为:①.【点拨】本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记相关的定义.【考点2】同位角、内错角、同旁内角的辨别;【例2】两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3.(2)若∠1=2∠2,∠2=2∠3,求∠3的度数.【答案】(1)见分析;(2)36°【分析】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)利用邻补角的关系可求出∠3的度数.解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,故x+4x=180°,解得:x=36°,故∠3的度数为36°.【点拨】此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.【变式1】下列四幅图中,1∠和2∠是同位角的是几个()A.1个B.2个C.3个D.4个【答案】B【分析】根据同位角的定义(截线的同一侧,被截线的同一方位)解决此题.解:根据同位角的定义,第一张图和第四张图中的∠1和∠2是同位角.故选:B.【点拨】本题主要考查同位角的定义,熟练掌握同位角的定义是解决本题的关键.【变式2】如图,直线a,b被直线c所截,145∠=︒,2110∠=︒,则1∠的同位角的度数是;4∠的内错角的度数是;3∠的同旁内角的度数是.【答案】70︒/70度45︒/45度70︒/70度【分析】根据同位角,内错角和同旁内角的概念以及邻补角求解即可.解:∵24180∠+∠=︒,2110∠=︒,∴470∠=︒,∵1∠和4∠是一组同位角,∴1∠的同位角的度数是70︒;∵145∠=︒,∴31801135∠=︒-∠=︒,∴4∠的内错角的度数是180318013545︒-∠=︒-︒=︒;3∠的同旁内角4∠的度数是70︒.故答案为:70︒;45︒;70︒.【点拨】此题考查了邻补角,同位角,内错角和同旁内角的概念,解题的关键是熟练掌握以上知识点.【考点3】与同位角、内错角、同旁内角相关的综合【例3】如图,直线AB ,CD 被直线EF 所截,交点分别为G ,H ,∠CHG =∠DHG =34∠AGE .(1)CD 与EF 有怎样的位置关系?请说明理由.(2)求∠CHG 的同位角、内错角、同旁内角的度数.【答案】(1)CD ⊥EF ;(2)∠CHG 的同位角∠AGE =120°,内错角∠BGF =∠AGE =120°,同旁内角∠AGF =60°【分析】(1)先由∠CHG +∠DHG =180°及∠CHG =∠DHG ,可得∠CHG =∠DHG =90°,再根据垂直的定义得到CD 与EF 互相垂直;(2)先由∠CHG =∠DHG =34∠AGE ,可得∠AGE =120°,再根据同位角、内错角、同旁内角的定义即可求解.解:(1)CD ⊥EF .理由如下:因为CD是直线,所以∠CHG+∠DHG=180°,又∠CHG=∠DHG,所以∠CHG=∠DHG=90°,所以CD⊥EF.(2)由(1)知∠CHG=∠DHG=90°,因为∠CHG=∠DHG=34∠AGE,所以∠AGE=120°,所以∠CHG的同位角∠AGE=120°,内错角∠BGF=∠AGE=120°,同旁内角∠AGF=180°-∠AGE=60°.【点拨】本题考查了垂直的定义,邻补角的定义,同位角、内错角、同旁内角的定义,以及对顶角和邻补角的性质的计算,是基础知识,比较简单.【变式1】如图,下列判断正确的是()A.有2对同位角,2对内错角,2对同旁内角B.有2对同位角,2对内错角,3对同旁内角C.有4对同位角,2对内错角,4对同旁内角D.以上判断均不正确【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.解:观察图形可知,有2对同位角,2对内错角,3对同旁内角.故选B.【点拨】本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.注意按顺序一个点一个点的数,不要重复,不要遗漏.【变式2】如图两条直线被第三条直线所截,2∠是3∠的同旁内角,1∠是3∠的内错角,若243∠=∠,321∠=∠,则1∠的度数是.【答案】20︒/20度【分析】设1x ∠=︒,则32x ∠=︒,28x ∠=︒,根据邻补角互补可得方程,求解即可.解:如图,设1x ∠=︒,则32x ∠=︒,28x ∠=︒,∵12180∠+∠=︒,∴8180x x ︒+︒=︒,解得:20x =,∴120∠=︒.故答案为:20︒.【点拨】本题考查了内错角、同旁内角、邻补角互补、角的计算,解本题的关键是掌握内错角的边构成“Z ”形,同旁内角的边构成“U ”。

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。

北师大版七年级数学下册第二章平行线与相交线汇总

北师大版七年级数学下册第二章平行线与相交线汇总

北师大版七年级数学下册第二章平行线与相交线汇总1. 什么是平行线平行线指在同一平面上两条不相交且方向相同的直线。

平行线在数学、物理学、几何学等领域都有广泛的应用,是基础中的基础。

2. 如何判断两条直线是否平行有多种方法可以判断两条直线是否平行,以下为其中两种:•角度判定法:若两条直线的夹角为90度,则两条直线平行。

反之,若夹角不为90度,则两条直线不平行。

•转换法:两直线在同一平面上,若它们的任意一点所形成的角的大小相等,则这两条直线是平行线。

3. 相交线的性质相交线指在同一平面内相交的两条直线。

以下为相交线的性质:•两个非垂直的交叉线形成的夹角相等。

这一性质通常被用于计算角度。

•在两个相交的直线中,如果一个角是内角并且位于两条直线的异侧,那么它所对的相邻角也是内角,位于同一侧。

4. 平行线的性质平行线也具有很多重要的性质,包括:•平行线的夹角相等;•平行线切割同一交线时,交线上的对应角相等;•平行线切割同一交线时,与交线同侧内角互补,与交线异侧内角相等。

5. 平行线的应用平行线的应用非常广泛,以下为其中的几个例子:•平行线在建筑设计和绘图中起着重要的作用,如钢结构建筑的构造和设计建筑图。

•在物理学中,平行线的概念可以用于描述电场线,在流体力学中可以用于描述流线。

•在地理学中,平行线可以用于表示longitude(经度)和latitude(纬度)等概念。

6.本文介绍了什么是平行线、如何判断两条直线是否平行、相交线的性质和平行线的性质和应用。

希望能够对读者了解平行线和相交其他的相关概念有所帮助。

北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件

北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件
量一量:图中是对顶角量角器,你能说出用它测量 角的度数的原理吗?
对顶角相等
探究新知
素养考点 1利用对顶角的性质求角的度数
例 如图,直线a,b相交,∠1=40°,求 ∠2,∠3,∠4的度数.
解:由平角的定义可知, ∠2=180°-∠1
=180°-40°=140°;
b
1( 2
a
4 )3
由对顶角相等可得,
12 43
58 67
所以∠2的补角有∠1,∠3,∠6和∠8.
连接中考
1.(2020•金昌)若α=70°,则α的补角的度数是( B ) A.130° B.110° C.30° D.20° 2.(2020•陕西)若∠A=23°,则∠A余角的大小是( B ) A.57° B.67° C.77° D.157°
DO
C
12 34
AN B
图2
图3
探究新知
将图2简化为图3,ON 与 DC 相交所成的 ∠ DON和∠CON
都等于90° ,且∠1=∠2.在图 3 中: (1)有哪些角互为补角?有哪些角互为余角? 互补的角: ∠1与∠AOC, ∠1与∠BOD,
DO
C
12
34
∠互2余与的∠角B:OD∠,1与∠∠2与3,∠∠AO1C与,∠∠4,D∠ON2与与∠∠4N,O∠C.2与∠A3,N图3 B (2) ∠3与∠4有什么关系?为什么?
第一课时垂线的定义及性质 核心要点 1垂线的有关概念:两条直线相交成四个角,如果有一个角是 直角 ,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线 的 垂线 ,它们的交点叫做 垂足 。 2.垂线的性质: (1)平面内,过一点有且 只有一条 直线与已知直线垂直。 (2)直线外一点与直线上各点连接的所有线段中,垂线段 最短。 3.点到直线的距离:过点A作直线L的垂线,垂足为B,线段 AB 的长度叫做点A到直线L的距离。

(完整版)初一数学下册《相交线与平行线》知识点归纳

(完整版)初一数学下册《相交线与平行线》知识点归纳

相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。

三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。

四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:判断一件事情的语句叫命题。

12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13.假命题:条件和结果相矛盾的命题是假命题。

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(全章知识梳理与考点分类讲解)【知识点一】平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.特别提醒:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.【知识点二】平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.特别提醒:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.【知识点三】两直线平行的判定方法1判定方法1:同位角相等,两直线平行.如图1,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)图1【知识点二】两直线平行的判定方法2判定方法2:内错角相等,两直线平行.如图2,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)图2【知识点三】两直线平行的判定方法3判定方法3:同旁内角互补,两直线平行.如图3,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)图3特别提醒:平行线的判定是由角相等或互补,得出平行,即由数推形.【考点目录】【考点1】平行线的画法;【考点2】平行公理及推论的应用;【考点3】同位角相等,两直线平行;【考点4】内错角相等,两直线平行;【考点5】同旁内角互补,两直线平行;【考点6】垂直于同一直线的两直线平行;【考点7】判定两直线平行综合应用.【考点目录】【考点1】平行线的画法;【答案】(1)见分析;(2)见分析;(3)见分析【分析】本题考查了射线、线段的作法,画平行线,掌握平行线画法是解题关键.(1)根据射线及线段的定义作图即可;(2)过点B作AC的垂线BD,垂足为D即可;(3)将C点向右移3个单位得到点E,作直线BE即可;(1)解:射线AC,线段AB即为所求;(2)解:垂线段BD即为所求;(3)解:直线BE即为所求.【变式1】(2022下·辽宁辽阳·七年级统考期末)下列说法正确的是()A.相等的角是对顶角B.在同一平面内,两直线的位置关系有三种:平行,垂直,相交C.过一点有且只有一条直线与已知直线平行D.平面内,过一点有且只有一条直线与已知直线垂直【答案】D【分析】由对顶角的概念可判断A,由平面内直线与直线的位置关系可判断B,由过直线外一点画已知直线的平行线可判断C,由过一点画已知直线的垂线可判断D,从而可得答案.解:相等的角不一定是对顶角,故A不符合题意;在同一平面内,两直线的位置关系有二种:平行,相交,故B不符合题意;过直线外一点有且只有一条直线与已知直线平行,故C不符合题意;平面内,过一点有且只有一条直线与已知直线垂直,描述正确,故D符合题意;故选D【点拨】本题考查的是对顶角的性质,平面内,直线与直线的位置关系,平行线的含义,垂直的性质,掌握以上基础的概念是解本题的关键.【变式2】(2020·四川达州·校考一模)如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:.【答案】③②④①【分析】根据同位角相等两直线平行判断即可.解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.【考点2】平行公理及推论的应用;【例2】(2022上·河南南阳·七年级校考期末)【操作】在如图的方格纸中(网格线的交点叫格点),按要求画图、填空.(1)过点A 作BC 的垂线,垂足为点D ,该垂线经过的一个格点记为点E .(2)过点E 作AC 的平行线EF ,该平行线经过的一个格点记为F ;过点B 作AC 的平行线BG ,该平行线经过的一个格点记为G .【发现】EF 与BG 的位置关系为______.【概括】根据你的发现,概括一条事实或结论:______.【答案】(1)画图见分析;(2)画图见分析;发现:平行;概括:平行于同一条直线的两条直线平行.【分析】(1)根据网格结构作出BC 的垂线AD 即可;(2)根据网格结构的特征构造相等的同位角再画图,然后标注即可.再根据平行线的判定可得EF 与BG 的位置关系以及结论.解:(1)如图,AD BC ,D 为垂足;(2)如图,EF AC ∥,BG AC ∥,EF 与BG 的位置关系为平行;结论:平行于同一条直线的两条直线平行.【点拨】本题考查了这题-应用与设计作图,利用网格结构作垂线,作平行线,熟练掌握网格结构的特征,准确找出对应点的位置是解题的关键.【变式1】(2022下·湖南长沙·七年级校考阶段练习)下列说法错误的是()A .在同一平面内,没有公共点的两条直线是平行线B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .经过直线外一点有且只有一条直线与该直线平行D .在同一平面内,不相交的两条线段是平行线【答案】D【分析】根据平行公理等即可逐一进行判断.解:A 、在同一平面内,没有公共点的两条直线是平行线.正确,本选项不符合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行线具有“传递性”,正确,本选项不符合题意;C 、经过直线外一点有且只有一条直线与该直线平行.正确,本选项不符合题意;D 、在同一平面内,不相交的两条直线是平行线.原说法错误,本选项符合题意.故选:D .【点拨】本题考查了平行公理等知识点.掌握相关结论是解题的关键.【变式2】(2022上·上海·九年级开学考试)如图,点E 、F 分别是梯形ABCD 两腰的中点,联结EF 、DE ,如果图中DEF △的面积为1.5,那么梯形ABCD 的面积等于.【答案】6【分析】过点A 作AH BC ⊥于H ,交EF 于G ,根据梯形中位线定理得到AD BC ∥EF ∥,根据三角形的面积公式、梯形的面积公式计算,得到答案.解:过点A 作AH BC ⊥于H ,交EF 于G ,如图,∵点E 、F 分别是梯形ABCD 两腰的中点,∴EF 是梯形ABCD 的中位线,∴AD BC ∥EF ∥,∴AG EF ⊥,AG GH =,∵ 1.5DEF S = ,∴1 1.52EF AG ⋅=,∴• 1.546EF AH =⨯=,∴•6ABCD S EFAH 梯形==,故答案为:6.【点拨】本题考查的是梯形的中位线、三角形的面积计算,掌握梯形中位线定理是解题的关键.【考点3】同位角相等,两直线平行;【例3】(2022上·黑龙江绥化·七年级统考期末)AB BC ⊥,12=90∠+∠︒,23∠∠=.BE 与DF 平行吗?为什么?解:BE DF ∥.AB BC ⊥ ,ABC \Ð=︒,即34∠+∠=︒.又1290∠+∠=︒ ,且23∠∠=,∴=.理由是:.BE DF ∴∥.理由是:.【答案】90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行【分析】由AB 垂直于BC ,利用垂直的定义得到ABC ∠为直角,进而得到3∠与4∠互余,再由1∠与2∠互余,根据23∠∠=,利用等角的余角相等得到14∠=∠,利用同位角相等两直线平行即可得证.解:BE DF ∥.AB BC ⊥ ,90ABC ∴∠=︒,即3490∠+∠=°.又1290∠+∠=︒ ,且23∠∠=,14∴∠=∠.理由是:等角的余角相等.BE DF ∴∥.理由是:同位角相等,两直线平行.故答案为:90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行.【点拨】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键【变式1】(2022下·福建宁德·七年级校联考期中)如图,若12∠=∠,则下列选项中,能直接利用“同位角相等,两直线平行”判定a b )A .B .C .D .【答案】B【分析】先判断出1∠与2∠是同位角,然后根据平行线的判定即可得出答案.解:A 、1∠与2∠是内错角,故该选项错误;B 、1∠与2∠是同位角,∵12∠=∠,∴a b ,故该选项正确;C 、1∠与2∠不是内错角、同位角,同旁内角,故该选项错误;D 、1∠与2∠是对顶角,故该选项错误;故选:B .【点拨】本题考查了平行线的判定,内错角相等、同位角相等,同旁内角互补两直线平行,是需要同学们熟练记忆的内容.【变式2】(2023上·七年级课时练习)如图,若12∠=∠,则 ;若23∠∠=,则 .【答案】AB DE BC EF【分析】根据12∠=∠,利用同位角相等两直线平行推出AB DE ∥;由23∠∠=,利用同位角相等两直线平行推出BC EF ∥.解:∵12∠=∠,∴AB DE ∥,∵23∠∠=,∴BC EF ∥,故答案为:AB ,DE ,BC ,EF .【点拨】此题考查平行线的判定定理,熟练掌握同位角相等两直线平行是解题的关键.【考点4【例4】(2023上·七年级课时练习)如图,已知CD AD ⊥于点,D DA AB ⊥于点,12A ∠=∠.试说明:DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(__________).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(__________),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=_______(___________).∴_____∥_____(____________).【答案】垂直的定义,等量代换,4∠,等量代换,DF ,AE ,内错角相等,两直线平行【分析】根据垂直的定义得到90CDA DAB ∠=∠=︒,推出132490∠+∠=∠+∠=︒,得到3=4∠∠,由此证得DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(垂直的定义).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(等量代换),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=4∠(等量代换).∴DF AE ∥(内错角相等,两直线平行).【点拨】此题考查了垂直的定义,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2022·广东深圳·蛇口育才二中校考三模)如图,能判定EB AC ∥的条件是()A .C ABE∠∠=B .A EBD ∠∠=C .C ABC ∠∠=D .A ABE∠∠=【答案】D 【分析】通过角相等判定两直线平行,则判断两角是否能推出同位角或内错角相等即可.解:∵只有同位角相等,内错角相等,同旁内角互补才能判断两直线平行,选项D 中A ABE ∠∠=是内错角相等,故能判定两直线平行,其他选项不符合判定定理,无法判断.故选:D .【点拨】本题考查了平行线的判定,掌握平行线的判定是解题的关键.【变式2】(2023下·陕西宝鸡·七年级统考期中)三个完全相同的含30︒角的三角板如图摆放,可以判断AB 与EC 平行的理由是.【答案】BAC ACE =∠∠,内错角相等,两直线平行(答案不唯一)【分析】根据平行线的判定定理求解.解:由题意知90BAC ACE ∠=∠=︒,由内错角相等,两直线平行,可判断AB 与EC 平行.故答案为:BAC ACE =∠∠,内错角相等,两直线平行.【点拨】本题考查平行线的判定,解题的关键是掌握平行线的判定定理,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【考点5】同旁内角互补,两直线平行;【例5】(2023下·山东青岛·七年级统考期中)如图,EF BC ∥,CE 平分BCF ∠,111DAC ∠=︒,23ACF FEC ∠=∠=︒,则AD 与BC 平行吗?请说明理由.【答案】AD 与BC 平行.理由见分析【分析】根据角平分线的定义可得246BCF FEC ∠=∠=︒,进而得出69ACB ∠=︒,结合题意可得69111180ACB DAC ∠+∠=︒+︒=︒,即可得证.解:AD 与BC 平行.理由如下:∵CE 平分BCF ∠,23ACF FEC ∠=∠=︒,∴246BCF FEC ∠=∠=︒,∴462369ACB BCF ACF ∠=∠+∠=︒+︒=︒,又∵111DAC ∠=︒,∴69111180ACB DAC ∠+∠=︒+︒=︒,∴AD BC ∥.【点拨】本题考查了平行线的判定,角平分线的定义,熟练掌握平行线的判定定是解题的关键.【变式1】(2023下·山东济南·七年级统考期末)如图,将一纸条ABCD 沿折痕MG 折叠,MA 时对应线段MA '与CD 相交于点N 则下列条件中,不足以证明AB CD ∥的是()A .180BMN CNM ∠+∠=︒B .2AMN MGN ∠=∠C .MN NG=D .MN MG=【答案】D 【分析】根据翻折的性质和平行线的判定逐一进行判断即可.解:A.180BMN CNM ∠+∠=︒ ,∴AB CD ∥;B .由翻折可知:2AMN AMG ∠=∠,2AMN MGN ∠=∠ ,AMG MGN ∴∠=∠,∴AB CD ∥,故B 选项不符合题意;C .由翻折可知:AMG NMG ∠=∠,MN NG = ,NMG MGN ∴∠=∠,AMG MGN ∴∠=∠,∴AB CD ∥,故C 选项不符合题意;MN MG = ,MGN MNG ∴∠=∠,AMG MGN ∴∠≠∠,AB ∴不平行CD ,故D 选项符合题意;故选:D .【点拨】本题考查了折叠的性质,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式2】(2019下·七年级课时练习)如图,某工件要求AB ∥ED ,质检员小李量得∠ABC =146°,∠BCD =60°,∠EDC =154°,则此工件.(填“合格”或“不合格”)【答案】合格【分析】作CF ∥AB ,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF ∥ED ,证出AB ∥ED ,即可得出结论.解:作CF ∥AB ,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF ∥ED ,∴AB ∥ED ;故答案为合格.【点拨】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键【考点6】垂直于同一直线的两直线平行.【例6】(2023下·七年级课时练习)探索与发现(在同一平面内):(1)若直线12a a ⊥,23a a ∥,判断直线1a 与3a 的位置关系,请说明理由;(2)若直线12a a ⊥,23a a ∥,34a a ⊥,则直线1a 与4a 的位置关系是______;(直接填结论,不需要证明)(3)现在有2023条直线1a ,2a ,3a ,…,2023a ,且有12a a ⊥,23a a ∥,34a a ⊥,45a a ∥,…,请你探索直线1a 与2023a 的位置关系.【答案】(1)13⊥a a .理由见分析;(2)14a a ∥;(3)直线1a 与2023a 的位置关系是12023a a ⊥【分析】(1)根据垂直定义和平行线的性质求解即可;(2)根据垂直定义和平行线的性质求解即可;(3)根据垂直定义和平行线的性质,找到变化规律即可求解.(1)解:13⊥a a .理由如下:如图,∵12a a ⊥,∴190∠=︒,∵23a a ∥,∴2190∠=∠=︒,∴13⊥a a .(2)解:由(1)知13⊥a a ,又34a a ⊥,根据垂直于同一条直线的两条直线平行可得14a a ∥,故答案为:14a a ∥;(3)解:直线1a 与2a ,3a 的位置关系分别是12a a ⊥,13⊥a a ,直线1a 与4a ,5a 的位置关系分别是14a a ∥,15a a ∥,从2a 开始,直线2a ,3a ,…,2023a 与直线1a 的位置关系以⊥,⊥,∥,∥为一次循环,∴12022a a ⊥,12023a a ⊥,∴直线1a 与2023a 的位置关系是12023a a ⊥.【点拨】本题考查垂直定义和平行线的性质,熟练掌握平行线的性质,得到变化规律是解答的关键.【变式1】(2018下·七年级单元测试)在同一平面内,a 、b 、c 是直线,下列说法正确的是()A .若a b ∥,b c ∥则a c∥B .若a b ⊥r r ,b c ⊥,则a c ⊥C .若a b ∥,b c ⊥,则a c∥D .若a b ∥,b c ∥,则a c ⊥【答案】A【分析】根据平行公理、平行线的性质对各选项分析判断即可解答.解:A.在同一平面内,若a b ∥,b c ∥则a c ∥正确,故本选项正确;B.在同一平面内,若a b ⊥r r ,b c ⊥则a c ∥,故本选项错误;C.在同一平面内,若a b ∥,b c ⊥则a c ⊥,故本选项错误;D.在同一平面内,若a b ∥,b c ∥则a c ∥,故本选项错误.故选:A .【点拨】本题主要考查了平行公理、平行线的性质等知识点,灵活运用相关性质是解答本题的关键.【变式2】(2018下·七年级课时练习)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线.(1)它的理由如下:(如图1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c(2)如图2是木工师傅使用角尺画平行线,有什么道理?.【答案】平行同位角相等,两条直线平行垂直于同一条直线的两条直线平行解:∵在同一平面内,两条直线都垂直于同一条直线,∴这两条直线互相平行.故答案为平行;(1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c (同位角相等,两条直线平行).故答案为同位角相等,两条直线平行;(2)垂直于同一条直线的两条直线平行,故答案为垂直于同一条直线的两条直线平行.【考点7】判定两直线平行的综合应用.【例7】(2024下·七年级课时练习)如图,AK 与BC 相交于点B ,BC 与CD 相交于点C ,如果160∠=︒,2120∠=︒,60D ∠=︒,那么AB 与CD 平行吗?BC 与DE 呢?并说明理由.【答案】AB CD ∥,BC DE ∥.理由见分析【分析】根据对顶角相等得出60ABC ∠=︒,进而可得2180ABC ∠+∠=︒,则AB CD ∥,进而得出BCD D ∠=∠,即可得证.解:AB CD ∥,BC DE ∥.理由如下:∵160∠=︒,1ABC ∠=∠∴60ABC ∠=︒.又∵2120∠=︒,∴2180ABC ∠+∠=︒.∴AB CD ∥.又∵2180BCD ∠+∠=︒,∴60BCD ∠=︒.∵60D ∠=︒,∴BCD D ∠=∠.∴BC DE ∥.【点拨】本题考查了对顶角相等,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2024下·全国·七年级假期作业)如图,将一副三角尺如图放置,DE 、BC 交于点F ,(45C ∠=︒,30D ∠=︒)则下列结论不正确...的是()A .13∠=∠B .2180CAD ∠+∠=︒C .若230∠=︒,则BC AD∥D .若230∠=︒,则AC DF∥【答案】C 【分析】由余角的性质,得到13∠=∠,由 3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠,得到2180CAD ∠+∠=︒,因为3B ∠≠∠,故BC 和DA 不平行,由160E ∠=∠=︒,得到AC DF ∥.解:1∠ +23∠=∠+290∠=︒,13∴∠=∠,故A 正确;3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠ ,2180CAD ∴∠+∠=︒,故B 正确;230∠=︒ ,390260∴∠=︒-∠=︒,45B ∠=︒ ,3B ∴∠≠∠,BC ∴和DA 不平行,故C 错误;230∠=︒ ,190260∴∠=︒-∠=︒,60E ∠=︒ ,1E ∴∠=∠,∴AC DF ∥,故D 正确.故选:C .【点拨】本题考查平行线的判定,关键是掌握平行线的判定方法.【变式2】(2024下·全国·七年级假期作业)如图,有下列说法:①若12∠=∠,则AB CD ∥;②若3=4∠∠,则AD BC ∥;③若180ABC BCD ∠+∠=︒,则AD BC ∥;④若13180ABC ∠+∠+∠=︒,则AD BC ∥.其中说法正确的有个.【答案】1【解析】略。

新北师大版2013-2014七年级数学下册第二章相交线与平行线知识点总结

新北师大版2013-2014七年级数学下册第二章相交线与平行线知识点总结

87654321FED C B A图1F E DCBA4321图2cba 87654321图3ED CBA 第二章 相交线与平行线一、知识提要:1、两条直线的位置关系:平行、相交(垂直).2、两条直线相交:对顶角,余角和补角,三线八角,内错角,同位角,同旁内角. 和为度的两个角互为余角;和为度的两个角互为补角;余角和补角都是角.对顶角是 形成的角;同位角、内错角、同旁内角是 角. 定理:①对顶角 ;② 余角相等;③ 补角相等. 3、两直线垂直:同一平面内直线外一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点的所有线段中,垂线段最短.4、平行线的判定:① ,两直线平行;② ,两直线平行;③ ,两直线平行.5、平行线的性质:①两直线平行, ;②两直线平行, ;③两直线平行, . 6、尺规作图:作一个角等于已知角,作两个角的和或者差,或者一个角的平分线.二、试题精讲:1. 下列说法正确的个数是( )①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2; ③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°A .0 B .1 C .2 D .32. 如右图,直线AB 、CD 与直线EF 相交,∠5和 是同位角,和 是内错角,与 是同旁内角.( )A .∠1;∠4;∠2B .∠1;∠3;∠2C .∠2;∠4;∠1D .∠2;∠3;∠13. 如图1,∠1=∠A ,则下列结论一定成立的是( )A .AB ∥FD B .ED ∥ACC .∠B =∠1D .∠3=∠14. 如图2,直线a 、b 被c 所截,则下列式子:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,能说明a ∥b 的条件是( ) A .①② B .①②③ C .②④ D .①②③④5. 如图3,AB ∥CD ,∠BAE =120°,∠DCE =30°,则∠AEC =( )A .90°B .150°C .75°D .60° 作业:FE DCBA 图4图1nm21GF E DC BA321图3图21FEDCB AFEDCBA21E D CBACB A1. 如图1,若m ∥n ,∠1=105°,则∠2 = .2. 如图2,若∠1= ,那么AB ∥EF ,若∠1= ,那么DF ∥AC ,若∠DEC + =180°,那么DE ∥BC .3. 如图3,EF ∥AD ,∠1=∠2,∠BAC =70°.将求∠AGD 的过程填写完整:因为EF ∥AD ,所以∠2= .又因为∠1=∠2,所以∠1=∠3.所以AB ∥ .所以∠BAC +___=180°.又因为∠BAC =70°,所以∠AGD = .4. 填空并在括号内加注理由. 如图4,已知DE ∥BC ,DF 、BE 分别平分∠ADE 和∠ABC求证:∠FDE =∠DEB . 证明:∵DE ∥BC∴∠ADE = ( ) ∵DF 、BE 分别平分∠ADE 、∠ABC∴∠ADF =12∴∠ABE =12( )∴∠ADF =∠ABE ( )∴ ∥ ( ) ∴∠FDE =∠ ( )5. 如图,AB ∥CD ,∠B =40°,∠E =30°,求∠D 的度数.6. 如图,已知DE ∥BC ,∠1=∠2,求证:∠B =∠C .7. 如图:已知∠B =25°,∠BCD =45°,∠CDE =30°,∠E =10°,求证:AB ∥EF .HG CB A FED 21FEDB C A 3A 12B C D E F G 8. 已知:如图∠1=∠2,∠C =∠D ,请问∠A 与∠F 相等吗?试说明理由.解题过程训练1. 已知如图,AB ∥CD ,∠AEB=∠B ,∠CED=∠D ,试说明BE ⊥DE . 解:作射线EF ,使∠AEB =∠BEF (作辅助线)∵∠AEB =∠B (已知)∴∠ =∠ ( ) ∴ ∥ ( ) ∵AB ∥CD (已知)∴ ∥ ( ) ∴∠DEF=∠D ( )∵∠CED=∠D ( ) ∴∠ =∠ ( )∴∠AEB+∠CED=∠BEF+∠DEF ( ) ∵∠AEC =180°( )∴∠BED=∠BEF+∠DEF =90°( )∴BE ⊥DE ( ).2. 如图,已知BD ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2.判断∠AGD 和∠ABC 的数量关系?并说明你的理由.解:∠______ =∠______, 理由如下: ∵______⊥_______,______⊥_______,( )∴______//______( ) ∴∠_____=∠_____( ) 又 ∵∠_____=∠_____( ),∴∠_____=∠_____( ) ∴______//______(_______________________________)12A BCD E F 354∴∠_____=∠_____(______________________________).3. 如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的关系.平行线常见模型4. 如图,a ∥b ,∠1=120°,∠2=100°,则∠3= .5. 如图,AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 .6. 探究:(1)如图(1),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(2)如图(2),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)如图(3),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)(2)(1)OO OACDBACDBACD Bba 321EDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学下册《相交线与平行
线》知识点汇总
第二章相交线与平行线
一、平行线与相交线
平行线:在同一平面内,不相交的两条直线叫做平行线。

若两条直线只有一个公共点,我们称这两条直线为相交线。

二、余角与补角
如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。

互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。

余角和补角的性质用数学语言可表示为:
∠1+∠2=900,∠1+∠3=900,则∠2∠3【同角的余角相等】。

∠1+∠2=900,∠3+∠4=900,且∠1=∠4则∠2∠3【等角的余角相等】。

余角和补角的性质是证明两角相等的一个重要方法。

三、对顶角
两条直线相交成四个角,其中不相邻的两个角是对顶角。

一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

对顶角的性质:对顶角相等。

对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。

对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

四、垂线及其性质
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

五、同位角、内错角、同旁内角
两条直线被第三条直线所截,形成了8个角。

同位角:两个角都在两条直线的同侧,并且在第三条直线的同旁,这样的一对角叫做同位角。

内错角:两个角都在两条直线之间,并且在第三条直线的两旁,这样的一对角叫做内错角。

同旁内角:两个角都在两条直线之间,并且在第三条直线的同旁,这样的一对角叫同旁内角。

这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。

六、六类角
补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。

余角、补角只有数量上的关系,与其位置无关。

同位角、内错角、同旁内角只有位置上的关系,与其数量无关。

对顶角既有数量关系,又有位置关系。

第二章相交线与平行线
七、平行线的判定方法
同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。

在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。

八、平行线的性质
两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补。

平行线的判定与性质具备互逆的特征,其关系如下:
在应用时要正确区分积极向上的题设和结论。

九、尺规作线段和角
在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。

尺规作图是最基本、最常见的作图方法,通常叫基本作图。

尺规作图中直尺的功能是:
在两点间连接一条线段;
将线段向两方延长。

尺规作图中圆规的功能是:
以任意一点为圆心,任意长为半径作一个圆;
以任意一点为圆心,任意长为半径画一段弧;
熟练掌握以下作图语言:
作射线××;
在射线上截取××=××;
在射线××上依次截取××=××=××;
以点×为圆心,××为半径画弧,交××于点×;
分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
过点×和点×画直线××;
在∠×××的外部画∠×××=∠×××;
在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。

画线段××=××;
画∠×××=∠×××;。

相关文档
最新文档