高二数学选修不等式的基本性质课件

合集下载

《不等式的性质》课件

《不等式的性质》课件

不等式的可乘性
总结词
如果a>b>0,且c>0,则ac>bc。
详细描述
这是不等式的另一个重要性质,称为可乘性。它表明当两个正数a和b之间存在一个正数c时,如果已 知a大于b,并且c也大于0,那么在两边同时乘以c后,得到的结果仍然是ac大于bc。
不等式的可除性
总结词
如果a>b>0,且c>0,则a/c>b/c。
详细描述
这是不等式的另一个重要性质,称为可除性。它表明当两个正数a和b之间存在一个正数c时,如果已知a大于b, 并且c也大于0,那么在两边同时除以c后,得到的结果仍然是a/c大于b/c。
PART 03
不等式的解法
代数法解不等式
代数法是解不等式最常用的方法 之一,通过移项、合并同类项、 化简等步骤,将不等式转化为容
总结词
如果a>b且b>c,则a>c。
详细描述
这是不等式的基本性质之一,称为传递性。它表明当两个数a和c之间存在一个 中间数b,且已知a大于b且b大于c时,那么a必然大于c。
不等式的可加性
总结词
如果a>b,那么a+c>b+c。
详细描述
这是不等式的另一个重要性质,称为可加性。它表明当两个数a和b之间存在一个 差值c时,如果已知a大于b,那么在两边同时加上c后,得到的结果仍然是a+c大 于b+c。
在经济中的应用
资源配置
市场分析
不等式可以用来描述资源配置问题, 例如在生产过程中如何分配资源以达 到最大效益。
在市场分析中,可以利用不等式性质 来分析市场供需关系,例如分析商品 价格与需求量之间的关系。
决策分析

不等式的性质 ppt课件

不等式的性质 ppt课件
< 0;
(1) a + 2 ____
a

> 0;
(3) 4 ____
< 0;
(5) a3 ____
> 0;
(4) a2 ____
例:利用不等式的性质将下列不等式化成
“x>a”或“x<a”的形式:
(1)x-5>‒1;
(2)‒2x>3;
解: (1)根据不等式 解:(2)根据不等式
的性质1两边都加上5,的性质3两边都除以‒2,
得:
得:
x-5+5 > ‒1+5
-2x÷(‒2)< 3÷(‒2)
3
即x > 4;
即x <- ;
2
巩固练习
将下列不等式化成 x > a或 x < a
的形式.
(1)2x>-10

(2)- >5
3
(3)7x<6x-6
提升练习
比较2a与5a的大小
对于不知道正负的字母,不能默认为正数,
应考虑到正负不同情况,也有可能为0
不等式基本性质2:不等式的两边都乘以(或
除以)同一个正数,不等号的方向不变。
归纳:

如果a>b,c>0,那么ac>bc,

>


不等式基本性质3:不等式的两边都乘以(或
Байду номын сангаас除以)同一个负数,不等号的方向改变。

如果a>b ,c<0,那么ac<bc,

不等式的基本性质2、3有什么不同?
<


练一练
1. 设 a>b,用“<”“>”填空,并回答是根据不
等式基本性质1:在等式两边同时加

人教版高中数学选修4-5课件:1.1不等式.1

人教版高中数学选修4-5课件:1.1不等式.1

【解析】(1)因为a>b>0,所以a>b两边同乘以1
ab
得 a
1
>b得1
> ,
,1故正1 确.
(2)因ab为c-aab>0,c-bb>0a ,且c-a<c-b
所以
>0,
又a>bc 1>a0>,所c 1以b
,正确.
a>b ca cb
(3)由 a >,所b 以 >a0,b
cd
cd
即即aaddcd>bcb>c0且,c所d以>0ac或dd>a0bd,c><0b,或c且accddd<<0b.c0<, 0,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
3.不等式的单向性和双向性 性质(1)和(3)是双向的,其余的在一般情况下是不可逆 的.
4.注意不等式成立的前提条件 不可强化或弱化成立的条件.要克服“想当然”“显然 成立”的思维定式.如传递性是有条件的;可乘性中c的 正负,乘方、开方性质中的“正数”及“n∈N,且n≥2” 都需要注意.
类型一 作差法比较大小 【典例】设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小. 【解题探究】比较两个多项式的大小常用的方法是什 么? 提示:常用作差比较法.

1.1.1不等式的基本性质课件人教新课标4

1.1.1不等式的基本性质课件人教新课标4

堂 双


导 学
所以xx-2yx2+x+1y>0.
达 标
所以A2>B2,又A>0,B>0,故有A>B.


互 动 探 究
课 时 作 业
菜单
不等式的基本性质
新课标 ·数学 选修4-5
判断下列命题是否正确,并说明理由.


前 自
(1)若a>b,则ac2>bc2;
堂 双


导 学
(2)若ca2>cb2,则a>b;
自 主
A.3a>2a
B.a2<2a
双 基



1
C.a<a

D.3-2a>1-2a

堂 互
【答案】 D



课 时 作 业
菜单
新课标 ·数学 选修4-5
2.已知m,n∈R,则m1 >1n成立的一个充要条件是
课 前
A.m>0>n

主 导
C.m<n<0

B.n>m>0 D.mn(m-n)<0
()
当 堂 双 基 达 标

堂 方面,严格依据不等式的性质和运算法则进行运算,是解答
互 动
探 此类问题的基础.

课 时 作 业
菜单
新课标 ·数学 选修4-5
课 前 自
已知-6<a<8,2<b<3,分别求a-b,ab的取值范围.
当 堂 双





【解】 ∵-6<a<8,2<b<3.

∴-3<-b<-2,∴-9<a-b<6,

《不等式的基本性质》PPT

《不等式的基本性质》PPT
不等式的基本性质1: 如果a >b,那么a±c>b±c.就是说,不等式两边都加上 (或减去)同一个数(或式子),不等号方向不变。
不等式基本性质2:如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

解:根据题意得,m-1<0
即:m<1
5.把下列不等式化为“x>a”或”x<a”的形式:
解:
6.已知-m+5>-n+5,试比较10m+8与10n+8的大小。
解:
∵ -m+5>-n+5
∴ -m>-n
∴ m<n
∴ 10m+8<10n+8
这节课你记忆最深刻的(或最感兴趣的)是什么?
四、总结归纳:
如果 7 > 3
那么 7+5 ____ 3+ 5 , 7 -5____3-5
你能总结一下规律吗?


如果-1< 3,那么-1+2____3+2, -1- 4____3 - 4
<
<
+ C
-C
如果 a>b,
那么a±c>b±c
不等式基本性质1:不等式的两边都加上(或减去)同一数或同一个整式,
2、已知x < y,下列哪些不等式成立? (1) x – 3 < y – 3 (2)- 5 x < - 5 y (3) - 3 x +2 < - 3 y + 2 (4)- 3 x + 2 > - 3y + 2
3、已知a>b,若a<0,则a2 ab;若a>0,则a2 ab.

高二数学不等式的性质1-P

高二数学不等式的性质1-P
要条件是:a b a b 0 a b a b 0
ab ab0
2.不等式的定义:用不等号连接两个解析式所 得的式子,叫做不等式.
3. 同向不等式与异向不等式 同向不等式:两个不等号方向相同的不等式,例如: a>b,c>d,是同向不等式. 异向不等式:两个不等号方向相反的不等式.例如: a>b,c<d,是异向不等式.
例5 已知函数f(x)=ax2-c, -4≤f(1)≤-1, -1≤f(2)≤5, 求f(3)的取值范围。
不等式的基本性质总结
作业: 习题6.1 4~6.
补充:1.如果a>b>0,c>d>0,则下列不等式中不正确的是
A.a-d>b-c
B.da
b c
C.a+d>b+c
D.ac>bd
2. 如果a、b为非0实数,则不等式
3.1.2 不等式的性质 课件
不等式的性质(1)
世界上所有的事物不等是绝对的, 相等是相对的。过去我们已经接 触过许多不等式的问题,本章我 们将较系统地研究有关不等式的 性质、证明、解法和应用.一、不等式的几个基本概念
1.判断两个实数大小的充要条件 对于任意两个实数a、b,在a>b,a= b,a<b三种 关系中有且仅有一种成立.判断两个实数大小的充
性质3:如果a>b,那么a+c>b+c. 即a>b ⇒ a+c>b+c
点评:(1)性质3的逆命题也成立; (2)利用性质3可以得出:如果a+b>c,那么a>c-b,也 就是说,不等式中任何一项改变符号后,可以把它 从—边移到另一边.
推论:如果a>b,且c>d,那么a+c>b+d.(相 加法则)

不等式的基本性质PPT课件

不等式的基本性质PPT课件

从以上能发现什么?可以得到什么结论?
-
3
不等式的基本性质 2 : 不等式的两边都乘以(或除以)同一个
正数,不等号的方向 不变.
不等式的基本性质 3 : 不等式的两边都乘以(或除以)同一个
负数,不等号的方向 改变.
-
4
例题
将下列不等式化成“x>a” 或“x<a”的形式:
(1)x – 5 > -1 ; (2) -2x > 3 解: (1)根据不等式的基本性质1,两边都加上5,得
; https:///huanshoulv/ 换手率 ;
代化の口吻是陆羽教她の,林师兄和导师们全是研习古文学の精英,万万不能被他们看出端倪.婷玉の存在,陆羽对谁都不敢说.既诧异对方の行礼姿势标准,林师兄礼貌而客套地颔首回礼.“你好,陆陆呢?”没有自我介绍,没有和善友好,闺蜜与邻居朋友の分量不同,作为熊孩子家长代表の林师兄对亭 飞の态度比对邻居の严肃多了,跟挑女婿差不多挑剔.毕竟,好闺蜜千金难觅,坏闺蜜随时变小蜜,不得不看仔细.“在楼上收拾书籍.”婷玉并无不悦.林师兄点点头,“你也抓紧收拾收拾,明天一早离开.”恰巧陆羽听见动静赶紧从二楼下来,“这么快?不看日出了?”“没时间了,老师传了一些资料回 来,妙妙搞不定.”唉,如果是她在办公室就好了,他爱什么时候回就什么时候回.“哦,这样,”陆羽想了想,“要不师兄先走?我今晚通知房东明早过来办理钥匙交接,就怕他迟迟不来耽误你の时间.你不用担心我,我跟亭飞自己坐车就好.”卓文鼎师徒没开车来,问问他们要不要一起走,正好有伴.“也 行.”林师兄の确没时间等.不过,他在晚上搬书籍和大件行李去休闲居の时候,拜托大家伙明早帮忙看着以免陆羽又被人刁难.幸运の是,第二天一早,周定康如约前来接收房子,拿过钥匙便兴冲冲地去了何玲家.陆羽无暇理会他去哪儿,她牵着四只汪抱着小

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质

探究四
探究一不等式的基本性质
对于考查不等式的基本性质的选择题,解答时,一是利用不等式的相关
性质,其中,特别要注意不等号变号的影响因素,如数乘、取倒数、开方、平
方等;二是对所含字母取特殊值,结合排除法去选正确的选项,这种方法一般
要注意选取的值应具有某个方面的代表性,如选取 0、正数、负数等.
J 基础知识 Z 重点难点
几乎都有类似的前提条件,但结论会根据不同的要求有所不同,因而这需要
根据本题的四个选项来进行判断.选项 A,还需有 ab>0 这个前提条件;选项
B,当 a,b 都为负数时不成立,或一正一负时可能也不成立,如 2>-3,但 22>(-3)2
1
a
b
不正确;选项 C,c2+1>0,由 a>b 就可知c2+1 > c2 +1,故正确;选项 D,当 c=0 时不
A.P≥Q
B.P>Q
C.P≤Q
1

a+1+ a
解析:P-Q=( a + 1 − a)-( a − a-1)=
a-1- a+1
=
D.P<Q
.
( a+1+ a)( a+ a-1)
∵a≥1,∴ a-1 < a + 1,即 a-1 − a + 1<0.
又∵ a + 1 + a>0, a + a-1>0,
a-1- a+1
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.在使用
不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档