高压单芯电缆护层过电压保护原理与方式
110kV高压单芯电缆金属护套接地方式探讨

110kV高压单芯电缆金属护套接地方式探讨摘要:我国现行《电力安全规程》当中有明确规定:电气设备非带电金属外壳均需要做接地处理,高压电缆金属屏蔽层需正常接地。
目前,110kV高压电缆线路多采用单芯电缆,其线芯部分与金属屏蔽层的关系可以视作“变压器初级绕组装置”,即在高压单芯电缆线芯有电流通过时,会产生磁力线交链金属屏蔽层,线芯两端出现感应电压。
高压电缆长度与感应电压大小有正相关关系,即在高压电缆线路较长的情况下,金属护套感应电压叠加后所会对人身安全产生危害。
在这一背景下,围绕110kV高压单芯电缆金属护套的接地方式进行探讨,以保证高压电缆运行的安全性。
关键词:高压单芯电缆;金属护套;接地方式一、110kV高压单芯电缆金属护套接地问题在我国现行《电力工程电缆设计规程》的要求下,对于电压等级在35kV及以下水平的电缆线路,多设置为三芯电缆形式。
电缆线路的运行过程中,流经三个现行的电流综合为零,因此,在金属屏蔽层两端均未检测有感应电压的存在。
这意味着对此类电缆线路而言,在对两端进行直接接地的条件下,不会有感应电流流经金属屏蔽层。
但在电压等级高于35kV的情况下,电缆线路多采取单芯形式。
当单芯电缆线芯通过电流时,就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比。
当高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障,遭受操作过电压或雷电冲击时,屏蔽形成很高的感应电压,甚至可能击穿护套绝缘。
在这一情况下,若仍然按照常规方法将金属屏蔽层两端做三相互联式接地处理,则金属屏蔽层上将会产生非常大的环流,换流值可以达到电缆线芯电流的50%~95%,导致明显的电缆损耗。
同时,还会致使金属屏蔽层表面发热,影响电缆线路运行过程中的载流量水平,加速单芯电缆的绝缘老化。
即对于35kV电压等级以上高压单芯电缆而言,不能采取电缆两端直接接地的接地方式。
110kV电力电缆感应电压分析及控制

110kV电力电缆感应电压分析及控制城市要发展,电力要先行。
随着生产力的发展、城市化进程的加快,生产生活对供电可靠性的要求越来越高。
电力电缆由于其占地省、供电可靠、有利于美化城市等诸多优点,在电力系统中占比越来越大,很多城市电缆化率越来越高,有些城市甚至实现了全电缆线路供,电力电缆的可靠运行直接影响整个电网的可靠供电。
110kV电力电缆由于其电压等级较高,且为了便于运输和现场施工,一般采用单芯电缆,单芯电缆由于其结构特点,投入运行后其金属护套上会产生感应电压,本文主要就110kV电缆感应电压产生的原理及金属护套的接地方式进行分析讨论。
标签:110kV电缆;感应电压;接地方式单芯是指在一个绝缘层内只有一路导体。
当电压超过35kV时,大多数采用单芯电缆,它的线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组中线圈与铁芯的关系。
当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。
因单芯电缆金属护层与芯线中交流电流产生的磁力线相铰链,使其两端出现较高的感应电压,因此要求护层有良好的绝缘,同时要求电缆金属护套接地可靠。
当单芯电缆过马路或者是过墙时应穿管保护,应用的这种保护管应该是非磁性材料的金属管或非金属管。
一、110kV电力电缆在运行中的感应电压110kV电力电缆在三相交流电网中运行时,当电缆导体中有电流通过时,导体电流产生的一部分磁通与金属护套相交链,与导体平行的金属护套中必然产生纵向感应电压,产生的感应电压数值与电缆排列中心距离和金属护套平均半径之比的对数成正比,并且与导体负荷电流,频率以及电缆的长度成正比。
在等边三角形排列的线路中,三相感应电压相等;在水平排列线路中,边相的感应电压较中相感应电压高。
在实际的运行过程中,如果把110kV电力电缆两端金属护套直接接地,护套中的感应电压将产生以大地为回路的循环电流,此电流大小与电缆线芯中负荷电流大小密切相关,同时,还与间距等因素有关。
110kV高压单芯电缆线路金属护套接地方式

110kV高压单芯电缆线路金属护套接地方式110kV高压电缆线路护套必须接地运行,并且考虑限制其护套感应电压,文章讲解其不同的接地方式和原理,以便运行人员更好地巡查、维护和消缺,以免造成高压电缆过电压导致电缆外护层击穿,从而形成环流和腐蚀,最终影响电缆线路物载流量、运行寿命及人身安全。
标签:电缆护套不接地危害;护套接地方式;中点接地方式;交叉互联接地方式近年来,随着城市改造建设的加快,110kV高压电缆线路大量投入运行,并且大量110kV高压电缆线路敷设在人群密集区,其运行的安全性倍感重要。
《电力安全规程》规定:电气设备非带电的金属外壳都要接地,因此电缆的金属屏蔽层都要接地。
通常35kV及以下电压等级的电缆都采用两端接地方式,按照GB50217-1994《电力工程电缆设计规程》的要求,35kV及以下电压等级的电缆基本上为三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在金属屏蔽层两端基本上没有感应电压,所以采用两端接地不会有感应电流流过金属屏蔽层,两端就基本上没有感应电压,所以两端接地后不会有感应电流流过金属屏蔽层。
但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链金属屏蔽层,使它的两端出现感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,高压电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%~95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
电缆护层保护器原理及应用

电缆护层保护器原理及应用王培雄【摘要】在10~35kV电力系统中,电缆都为三芯结构,而在高速铁路10KV电力系统中,电缆都为单芯结构,本文分析了单芯电缆金属护层产生的感应电压过高及形成环流的原理,并采用一端金属护层直接接地,另一端金属护层经护层保护器接地的方法避免了电压过高及形成环流.单芯电缆各相之间相互不干扰,能提高供电可靠性,缩短电缆检修时间,方便电缆检修维护.%In power system of 10 ~ 35kV, cables are three core structure, while in the power system of 10KV of high-speed railway, cables are the single core structure. This paper analyzed inductive voltage which was too high generated by metal protective layer of single core cable and the theory of forming circulation. The paper provided a method which metal protective layer of one end directly grounded, and another end grounded after sheath protector, which avoided the voltage which was too high and the formation of circulation. The single core cable does not interfere with each other, which can improve reliability of the power supply, shorten time of repairing cable and conveniently maintain cable.【期刊名称】《价值工程》【年(卷),期】2011(030)002【总页数】2页(P200-201)【关键词】单芯电缆;护层保护器;环流;过电压【作者】王培雄【作者单位】中铁建电气化局集团南方工程有限公司,武汉,430071【正文语种】中文【中图分类】TM7单芯高压电缆常因金属护套过电压引起电缆外护层击穿损坏,为了降低护套对地过电压,避免外护层击穿,使用限压装置,即护层保护器,保证电缆可靠运行。
电缆护层保护器在高压开关设备中的应用

措施对单 芯 电缆 的保护 原理及 电缆护层 保护器 应用于高压 电缆馈 电开关设备 时应注意 的各 种 问题 ,并提 出其一次 系统接线 图的正确接法 。为高压开关
设备制造企业在解 决此 问题 时提 供一定帮助 。
关键词: 电缆护层保护器 ;电缆 ;高压开关设备
数 是三 芯 电缆 ,在 正常运 行 中 ,流过 三个 线芯 的 电
投 资 ,保 证 安全可 靠供 电的重 要条件 。在城 市配 电
网络 中 , 1 V 电力 电缆 一 般 是 交 联 聚 乙烯 铠 装 0 的 k 三 芯 电缆 ,这 种 电缆金 属护 套一 般只 需直 接接 地 即 可 。 而3 V 5 电力 电缆 基 本 都 是 交 联 聚 乙烯 铠 装 单 k
电缆护甚保 护器在高压开关设备 中的应 用
江苏 电器 (0 8 o1) 20 . N 0
电缆护 层保 护器在 高压 开关设 备 中的应用
贾宏兴 ( 天水长城 开关厂有 限公 司,甘 肃 天水 7 1 1 ) 408
摘
要: 从 单芯 电缆 的结构原理 入手 ,介绍 了单芯 电缆在 使用 时若没有 相应 的单芯 电缆护层 保护
芯 电缆 ,金 属护 套 的接地 和三 芯 电缆 不 同 ,其 金属
流 总和 为零 ,在 金属 屏 蔽层 外基本 上 没有磁 链 ,这
样 ,在 金属 屏蔽 层两 端就 基本 上没 有 感应 电压 ,所
以两 端 接地 后不 会有 感应 电流 流过 金属 屏 蔽层 。但
是 当 电压 达 到或 超 过 3 V时 ,大 多数 都 用单 芯 电 5 k
J A n — i g 1 Ho g x n
( ̄ n h i e t a l wi h e rC .L d Ta s u 4 0 8 C ia 7a s u Gra W lS t g a o, t in h i 1 1 , h n ) c 7
高压单芯电缆护层的感应电压的分析与应用

随着十一五工程的相继竣工,使我厂管辖范围内的高压单芯电缆数目增多,发生护层接 地的故障隐患几率增大。在今后的工作中,定期对35-110KV单芯电缆护层的电压、电流的测 试,结合理论上的计算,判别电缆的护层是否存在非正常的接地。
参考文献 1、 欧景茹。高压单芯电缆金属护套感应电压的计算及其保护方式。吉林电力。2001
1、引言
近几年有关电缆护层接地的故障及隐患时有发生,六降压厚板一线 3107 在投运 6 小时 后由于护层接地,导致电缆爆炸;五降压 3215 由于护层接地,接地点的发热温度高达 105℃, 发现及时,避免了电缆爆炸事故的发生;110KV 韩钢线由于护层接地,电缆发热,随时有爆 炸的可能。事故隐患的接连发生,引起了厂领导的高度关注,由于此前未对电缆护层有深入 的了解,所以开始对高压单芯电缆护层的感应电压和感应电流进行研究。
三降压
3 2 1
下火杆
i0:14A
3.7A
19A
1.3A
2.5A 4.4A
45A
I048A
根据以上电缆资料,可得此电缆每米的感应电动势
=2ωiln(2S/Ds)X10-7V/M=2 整根电缆的感应电压 M 整根电缆地电阻、接地电阻、地阻共为2Ω
-7=0.018V/M
所以整根电缆的感应电流i= M =22.275A 故障现象:韩钢线投运带上负荷后(负荷电流为240A)测得各点的数据如下:
9 月 22 日,我们对 110KV 韩钢线电缆故障进行处理,利用查找电缆故障的闪洛法进行 查找,最后在落地新隧道距 1650m 交叉互联箱大约 80m 处发现一点非正常接地。因电缆施工 时,接地极铁片没有处理好,在铺设电缆时由于电缆自身质量较大,直接导致电缆插入接地
5.1.4 高压电缆的护套环流(2)

5.1 单芯电缆护套的工频电压
5.2 单芯电缆护层的冲击过电压
5.3 电缆外护层的保护及其保护器
5.1.4 高压电缆金属护套环流及其影响因素
(1)金属护套环流的的计算
金属护套交叉互联两端接地或两端直接接地的接地方式存在 护套环流。
导体 金属护套
图
两端直接接地
C相环流(A) 148 153.8 144.2
交叉互联两端接地方式下环流计算与试验的比较
【算例3】区庄—东堤线采用日本古河500mm2交联聚乙烯单芯 电缆,护套交叉互联两端接地。三小段长度分为别 0.738km 、 0.651km、 0.777km。负荷电流为 175A时,用钳表在实际线路 上测得的三相护套环流与编程计算的护套环流的有效值见表。 A相环流(A) B相环流(A) 试验值 计算1 计算2 11.2 8.6 10.1 13.8 9.9 11.6 C相环流(A) 4.5 5.8 6.8
► 由于其它相护套环流在三相护套上感应的电压Ea’,Eb’,Ec’ 与护套环流成正比。可以对方程( 1)进行整理,并写成矩阵形 式,得到:
RRA RR12 RR13 I sa E a RR21 RRB RR23 I E sb b RR31 RR32 RRC I sc Ec
(3)金属护套环流的影响因素
负荷电流对环流的影响
在两端直接接地方式的基础上,讨论负荷电流对电缆载流量 的影响: 工作电流 100 A相环流 B相环流 C相环流 97.4 比例
80.34 120.5
160.0 200.9 241
80.5 120.8
161.1 241.7
110kV电缆线路护层接地方式及护层保护的一些措施

经非 线性 电阻保 护 器 间接 接 地 的连 接 方 式 。 由于 金
—
d sr cu e 1 0 k l c tu t r , 1 V ee —
d s se 。 l 0 lcrc c b e h sS n d a tg s l n y tm KV ee t a l a O ma y a v na e : g 1 i o
tr l ei n ma n u n e f m au a n io me t l te d l o k a o te a n n e ar n n u n e t i em i t f me mi i lif e c ' r l , o n t r le v r n n i l a y w r b u x mi e a d r p i、 o if e c o ct t i l y
s e ey B t 1 0 k a l o mal a i g e c r a l y e i a y mitk b u a l at y tm c u s d rn h c n r 。 u , V c b e n r l y h s sn l o e c be t p ,f n s e a o t c b e e r s se o c r u g t e 1 a h i c u s fc b e d sg 、 r d cn 、 n t lt n、 x mi e a d r p i n ,n u e v r ot g i e d o trs e t r a d wn O o r eo a l e i n p o u i g i sa a i e a n n e a r g i d c d o e v l e w l la u e h ah b e k o 、 C l o i a l c r o h ic i c re t C rO i n e e t a tr d c o d c p c t n h re h a l i t 。 S h n u e v r ot u ft e cr u t u r n 、 O SO , v n a s e u e la a a i a d s o n t e c e l ei l y t b f me o t e id c d o e v l — a e mu tb o told。 T i t x n l s st e n r l w y o n rme a s e t a t i g a d s me me s r f h ah d ma e g s e c n rle h s e ta ay e h oma a fi e t h a h e r n n o a u e o e t a g n l h s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 非金属护套层做直流耐压,10kV, 1min
3) 作为替代(1)的选择,施加3U0直流电压15min —— 破坏 性试验,不推荐
Innovation
高压电缆附件的交接和预防性试验
目前试验存在的问题
✓ 直流耐压试验是破坏性试验 ✓ 空载24h的试验效果值得怀疑 ✓ 预防性试验对外护套和主绝缘电阻的定期测量只能发现
Innovation
110kV单芯电缆护层保护
护层保护原理
根据GB50217-1994《电力工程电缆设计规程》 的要求:
•单芯电缆线路的金属护层上任一点的感应电压不得大于100V •(未采取不能任意接触金属护层的安全措施时,不得大于50 V)
金属护层必须接地!
Innovation
110kV单芯电缆护层保护
110kV单芯电缆护层保护
护层接地及保护方式
按照经济合理的原则采用不同的接地方式 (110kV及以上)
✓一端直接接地,另一端通过保护器接地----可采用方式 ✓中点直接接地,两端屏蔽通过护层保护接地---常用方式 ✓中点通过护层保护接地,两端直接接地---可采用方式 ✓护层交叉互联----常用方式
护层保护原理
此时,如果两端都直接接地 ——
• 金属护层将会出现很大的环流,其值可达线芯电流的
50%--95%,使金属护层发热,这不仅浪费了大量电能,
而且降低了电缆的载流量,并加速了电缆绝缘老化,因
此单芯电缆不应两端接地。(仅在个别情况使用,护层
<10V或者电缆很短,功率很小的情况下)
需单端接地!
Innovation
Innovation
110kV单芯电缆护层保护
护层接地及保护方式
1.一端直接接地,另一端通过保护器接地
• 电缆长度一般小于500m • 合理选择接地保护箱和保护元件 • 加回流线时,回流线需换位、两端需接地
Innovation
110kV单芯电缆护层保护
护层接地及保护方式
2.中点直接接地,两端通过护层保护接地
护套缺陷
Innovation
高压电缆附件的交接和预防性试验
新试验方法简介
✓ 0.1Hz超低频耐压试验 —— 功率较小,最高只到114kV
Innovation
110kV单芯电缆护层保护
护层保护原理
感应电压的大小还与电缆排列方式、 距离以及屏蔽层的平均直径有关
等边三角形敷设 平行敷设
以对称敷设(正三角形敷设) 时, 电 缆金属护套的感应电动势最小且 相等
平行敷设时, 两边电缆护套上产 生的感应电动势最大,中间相最 小
Innovation
Innovation
110kV单芯电缆护层保护
护层接地及保护方式
4. 护层交叉互联
接地保护
交叉互联
交叉互联:将每大段 电缆分为长度相等的 三小段,每段之间装 绝缘接头,接头处护 层三相之间用同轴电 缆引线经交叉互联箱 及保护器进行换位连 接。
Innovation
换到 B
A
换到 C
A
A
A
B
B
B
C
C
C
B 相与A相通过 交叉互联箱相连
A相与C相通过 交叉互联箱相连
Innovation
交叉互联的连接
C 相与B相通过
交叉互联箱2相连
A
C
C
A 相与C相通过 交叉互联箱1相连
A
C
B
B
Innovation
Innovation
110kV单芯电缆护层保护
护层接地及保护方式
护层交叉互联的目的: 使各大段电缆上的感应电压幅值相
110kV单芯电缆护层保护
护层保护原理
金属护套一端接地情况:
•当雷击或操作过电压波沿线芯流动时,金属护层不接地 端会出现很高的冲击电压;在系统发生短路时,短路电 流流经线芯时,护层不接地端也会出现较高的工频感应 电压。过电压可能会导致出现多点接地,形成环流 。
需特殊接地方式+保护器
Innovation
✓装设护层保护器 —— 有效限制雷电及操作过电压
Innovation
高压电缆交接及预防性试验
标准和方法
Innovation
高压电缆附件的பைடு நூலகம்接和预防性试验
目前的交接试验标准和方法
GB11017-2002《额定电压30kV(Um=36kV)以上 至150kV(Um=170kV)挤出绝缘电力电缆及其 附件试验方法和要求》
110kV单芯电缆护层保护
护层保护原理
与单芯电缆护层感应电压有关的因素为:
1) 电缆线路的长度 2) 线芯电流(负荷) 3) 电缆的排列方式 4) 电缆的中心距离 5) 外屏蔽的平均直径
Innovation
110kV单芯电缆护层保护
护层保护原理
单芯电缆护层感应电压的计算:
也可以通过查护层感应电压曲线得 到相应的护层电压值
等,相位相差120度
总感应电压的向量和为零
不可能产生环形电流 感应电压最高值小于50V
Innovation
110kV单芯电缆护层保护
护层接地及保护方式
交叉
互联
护层交叉互联的作用:
箱
✓通过交叉互联箱换位 —— 限制护层感应电压小于50V ✓两端直接接地 —— 环流很小 ✓不受电缆线路长度限制 —— 可装多个绝缘接头满足要求
• 可看作一端接地线路长度的两倍 • 护套中间接地,两端各加一组保护器 • 注意检查金属护套至少有一点直接接地
Innovation
110kV单芯电缆护层保护
护层接地及保护方式
3.中点通过护层保护接地,两端直接接地
• 电缆线路为两盘电缆 •护套断开,中间装设绝缘头 •绝缘头两侧各加一组保护器 • 电缆线路两端分别接地
Innovation
110kV单芯电缆护层保护
护层保护原理
单芯电缆-----按照经济合理的原
则采用不同的接地方式 (110kV及以上)
• 因为单芯电缆的线芯与金属护层的关系,可看作一个 单匝变压器。当单芯电缆线芯通过电流时,就会有磁 力线交链铝包或金属屏蔽层,使它的两端出现感应电 压。感应电压的大小与电缆线路的长度和流过导体的 电流成正比,电缆很长时,护套上的感应电压叠加起 来可达到危及人身安全的程度
电缆护层过电压保护
原理及方式
Innovation
110kV单芯电缆护层保护
护层保护原理
三芯电缆-----通常都采用两端金
属护层直接接地方式 (35kV以下)
• 因为在正常运行中,流过三个线芯的电流向量总和为 零,在铝包或金属屏蔽层外基本上没有磁链,这样, 在铝包或金属屏蔽层两端就基本上没有感应电压,所 以两端接地后不会有感应电流流过铝包或金属屏蔽层