机械优化设计考试复习
《机械优化设计》试卷及答案 新 全

《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。
A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。
A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。
A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。
A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。
《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2— x 12) 2+(1— x 1) 2的最优解时,设X (0)=[—0。
5,0。
5]T ,第一步迭代的搜索方向为 [—47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解.4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)TGd 1=0,则d 0、d 1之间存在共轭关系.8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素.9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K —T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [—2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X )=x 12+x 22—x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 .15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭. 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。
机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
机械优化设计总复习[超详细]
![机械优化设计总复习[超详细]](https://img.taocdn.com/s3/m/2f5f5c3d5727a5e9856a6110.png)
b
29
*一、黄金分割法 1、在寻找一个区间 [ Xa , Xb ],使函数 f (X)在该区间的极小点 X* ∈ [ Xa , Xb ] 。
2、用黄金分割法在区间[ Xa , Xb ]中寻找 X* 。
X1 X b X b X a X2 Xa Xb Xa
23
K-T条件是多元函数取得约束极值的必 要条件,以用来作为约束极值的判断条件, 又可以来直接求解较简单的约束优化问题。
对于目标函数和约束函数都是凸函数 的情况, 符合K-T条件的点一定是全局最 优点。这种情况K-T条件即为多元函数取
得约束极值的充分必要条件。
24
第三章 一维搜索的最优化方法
试探法 一维搜索方法数值解法分类 插值法
0.618 [ Xa ,X1, X2, Xb ]
• •
如何消去子区间? f (X1) < f (X2) ,消去[X2, Xb],保留[Xa, X2] f (X1) ≥ f (X2) ,消去[Xa, X1],保留[X1, Xb]
30
第三章 一维搜索的最优化方法
一维搜索也称直线搜索。这种方法不仅对 于解决一维最优化本身具有实际意义,而且也 是解多维最优化问题的重要支柱。
机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。
A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。
A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。
A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。
大学期末考试机械优化设计复习题及其答案

1化问题的三要素:设计变量,约束条件, 目标函数。
2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间4数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。
外点;内点的判别7那三种方法不要求海赛矩阵:最速下降法 共轭梯度法 变尺度法 8、那种方法不需要要求一阶或二阶导数: 坐标轮换法 9、拉格朗日乘子法是 升维法 P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种11,.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,同时必须是设计变量的可计算函数 。
13.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。
14.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。
15,.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。
16.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。
17二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定18.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。
19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩20坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题21.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。
~机械优化设计复习试题与答案

机械优化设计复习题则目标函数的极小值为(g(X)=c+x 0的最优化设计问题, 用外点罚函0.186 C (X)在区间[X 1,X 3]上为单峰函数,X 2为区间中一点,X 4为利用二次插值法公式求得的近似极值点。
如X 4- X 2>0,且F(X 4)>F(X 2),那么为求F(X)的极小值,X 4点在下一次搜索区间内将作为 ()。
一. 单项选择题 1.一个多元函数 X * 附近偏导数连续, 则该点位极小值点的充要条件为A . FX 0 B. 0, H X * 为正定 C . HX 0 D. 0, H X * 为负定2. 为克服复合形法容易产生退化的缺点,对于 维问题来说, 复合形的顶点数 K应( ) K n 1 B. K 2n C. K 2n D. n K 2n 13.目标函数 F (x )=4x 12 +5x 22 ,具有等式约束, 其等式约束条件为h(x)=2x 1+3x 2-6=0,A .1B . 19.05C . D.数法求解时,其惩罚函数表达式①A. aX+b+MB. aX+b+M (k){min [0,c+X ]}2, (k){min [0,c+X ]}2,C. aX+b+M (k){maX [c+X,0 ] }2, D. aX+b+M(k){maX [c+X,0 ]}2,10C. 13A 16 DM (k)为递增正数序列M 为递减正数序列 M (k) 为递增正数序列 hn M (k) 为递减正数序列(X,M (k))为()。
4. 对于目标函数 F(X)=ax+b 受约束于14.外点罚函数法的罚因子为()。
8.内点罚函数法的罚因子为续占八、、(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的()。
A. 凸函数B. 凹函数C. 严格凸函数D.严格凹函数10C. 13A 16 D11.在单峰搜索区间[X 1 X 3] (X 1<X 3)内,取一点X 2,用二次插值法计算得 X 4(在[X 1X 3]内),若X 2>X 4,并且其函数值F ( X 4) <F(X 2),则取新区间为( B.[X 2 X 3] C . [X1X 2] D. [X 4 X 3]n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为()7.已知二元二次型函数 F(X)= 1X T AX ,其中 A= 12 2 2,则该二次型是()的。
机械优化设计复习题最新版

机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...)i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接法:复合形法 随机方向法 间接法:惩罚函数法 增广乘子法二元函数在某点处取得极值的充分条件是 该点处的海赛矩阵为正定。
可行搜索方向是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。
黄金分割选点的原则:对称性和新区间三段与原来的区间的三段保持相同的比例。
优化设计迭代满足下降性和收敛性。
凡满足所有约束条件的设计点在设计空间中的变化范围称为可行域。
1优化问题的三要素:设计变量,约束条件, 目标函数。
2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间 4数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。
外点;内点的判别7那三种方法不要求海赛矩阵:最速下降法 共轭梯度法 变尺度法 8、那种方法不需要要求一阶或二阶导数: 坐标轮换法 9、拉格朗日乘子法是 升维法 P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种11,.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。
13.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。
14.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。
15,.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。
16.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。
17,.二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定18.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无约束优化问题,这种方法又被称为 升维 法。
19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩20坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题21.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。
22.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。
23协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。
24.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。
二、解答题1、试述两种一维搜索方法的原理,它们之间有何区别 答:搜索的原理是:区间消去法原理 区别:(1)、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法 (2)、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值。
这种方法称为插值法,又叫函数逼近法。
2、在变尺度法中,为使变尺度矩阵k H 与1-k G 近似,并具有容易计算的特点,k H 必须附加哪些条件?答:(1)必须是对称正定的(2)要求有简单的迭代形式 (3)必须满足拟牛顿条件 3,总结:无约束优化方法 ● 只算函数值方法1,坐标轮换法:小规模,收敛慢(无耦合问题快);2,单形替换法:中小规模,收敛较快, 3,格点法:非凸问题;4,Monte Carlo 法:非凸问题。
● 计算一阶导数方法1, 梯度法:中小规模,开始快;2,共轭梯度法:中大规模,收敛快,程序简单; 2, 变尺度法:中大规模,收敛快;4,Powell 方法:中大规模,收敛快。
● 计算二阶导数方法1, Newton 方法:收敛快,计算难度大;2,共轭方向法:收敛快,计算难度大。
4.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明。
. 对于二次函数,()12TT f X X GX b X c =++,从k X 点出发,沿G 的某一共轭方向kd 作一维搜索,到达1k X +点,则1k X +点处的搜索方向j d 应满足()()10Tj k k d gg +-=,即终点1k X +与始点k X 的梯度之差1k k g g +-与k d 的共轭方向jd 正交。
3.为什么说共轭梯度法实质上是对最速下降法进行的一种改进?.答:共轭梯度法是共轭方向法中的一种,在该方法中每一个共轭向量都依赖于迭代点处的负梯度构造出来的。
共轭梯度法的第一个搜索方向取负梯度方向,这是最速下降法。
其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。
所以共轭梯度法的实质是对最速下降法的一种改进。
4.简述随机方向法的基本思路答:随机方向法的基本思路是在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为可行搜索方向。
从初始点出发,沿搜索方向以一定的步长进行搜索,得到新的X 值,新点应该满足一定的条件,至此完成第一次迭代。
然后将起始点移至X ,重复以上过程,经过若干次迭代计算后,最终取得约束最优解。
5.凸规划:对于约束优化问题 ()min f X ..s t ()0j g X ≤ (1,2,3,,)j m =⋅⋅⋅若()f X 、()jg X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。
6.可行搜索方向是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。
7.设计空间:n 个设计变量为坐标所组成的实空间,它是所有设计方案的组合 8.收敛性:是指某种迭代程序产生的序列(){}0,1,k X k =⋅⋅⋅收敛于1lim k k XX +*→∞=9. 黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。
10.可行域:满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域。
三,计算1、求目标函数f(X)=2x 12+3x 22-x 1x 2-2x 2-9在点X 1 =()1,1处的函数变化率最大的方向及其数值。
解:▽f(x 1)=⎥⎦⎤⎢⎣⎡∂∂∂∂x2f(x)x1f(x)=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡33216142-x -6x x -x 41221 []⎥⎦⎤⎢⎣⎡===+T∇∇2222993,3f(x1)f(x1)p ρ数值232^32^3f(x1)=+=∇ 2、求函数f(X)=x 13+x 22-4x 1-2x 2+72在点X 1(2,1)处的二阶泰勒展开式。
解:[][][][][][]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋯⋯⋯⋯⋯⋯+⎥⎦⎤⎢⎣⎡⋯⋯+=⎥⎦⎤⎢⎣⎡⋯⋯⋯⋯=⎥⎦⎤⎢⎣⎡⋯⋯⋯⋯=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∇=+∇+=1-x 2-x 200121-x 2-x 1-x 2-x 081-72x f 200122006x H 082-x 24-2^x 3x f 1-72x f x -x x H x -x x -x T x f x f x f 21212111211111111121T 21)()()()()()()()(x=6x 12+x 22-16x 1+6+723、用共轭梯度法求函数f(X)=2x1^2-x1x2+3x2^2+5的最优解,初始点(1,2),迭代精度02.0=ε解:[][]⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+--=∇==+-∇=⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡--=∴==+-+---⨯=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+=+=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡+---=-∇==∇∇66168261214)(88309)(1121111221505112311221-212)()(21112211122,1112261214)(,2,1)1()()()0()0()0()1()1()0()0()1()0()(2)0()0()0(2)0()0()1()1()1()0()0()0()0()0()0()1(0)0()0(2)0(2)1()0()0(x x x x x f s x f s x f x f x x x s x x x x x x x f s x x f x f df TTββαααααααααααααα得令)())(()(得代入将初始点[][]⎥⎦⎤⎢⎣⎡-=*⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⨯+⎥⎦⎤⎢⎣⎡==-=+=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡=∇80.1465.780.1465.79720601765500001.0112110001.097206017655011288309661-68)2()()()1()1()1()1()2(1)1()1()1()1()1(x x s x x s s x H s s x f TT最优解为:)(αα4,求函数 的极值。
解 首先,根据极值的必要条件求驻点 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=∇002242)(0021210x x x x x f x f x f 524),(21222121+--+=x x x x xx f得驻点为再根据极值的充分条件,判断此点是否为极值点。
由于 的一阶主子式和二阶主子式分别为故 为正定矩阵 为极小点,相应的极值为 5.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX=。
初始点为()[]01010TX=,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()0100010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααmin 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦()124.4528302f X =,从而完成第一次迭代。