一元二次方程根的判别式ppt课件
一元二次方程根的判别式课件

两个虚根
当判别式 (D) < 0 时,方程没有 实根,只有两个虚根。
辨别方程解的图形表示方法
两个不相等的实根
方程的图像将与x轴交于两个不 同的点。
两个相等的实根
方程的图像将与x轴交于同一个 点。
两个虚根
方程的图像将完全位于x轴上方 或下方,不与x轴交于任何点。
判别式的应用举例
1
物理学
2
判别式在抛体运动和能量守恒定律等物
计算公式
判别式(D) = b²- 4ac,其中a、b和c是一元二次方程的系数。
判别式与方程根的关系
判别式的值可以用来确定方程根的个数和类型。
判别式与方程解的类型
两个不相等的实根
当判别式 (D) > 0 时,方程有两 个不相等的实根。
两个相等的实根
当判别式 (D) = 0 时,方程有两 个相等的实根。
理问题中有广泛应用。
3
房屋销售
判别式可以帮助确定一栋房屋是否能够 被出售,以及价值如何。
金融领域
判别式被用于计算利润和决策分析,帮 助预测市场趋势和投资回报率。
结论和要点
1 判别式是用来判断一 2 判别式的值可以用来 3 判别式的应用广泛,
元二次方程根的特性
确定方程根的个数和
涵盖了房屋销售、物
的数学工具。
一元二次方程根的判别式 ppt课件
欢迎大家来参加本次关于一元二次方程根的判别式的PPT课件。本课件将帮 助你理解判别式的定义、计算公式、与方程根的关系以及解的类型,同时还 会介绍辨别方程解的图形表示方法和判别式的一些应用举例。一起来探索这 个有趣而重要的主题吧!
什么是判别式?
定义
判别式是用来判断一元二次方程的根的特性的一个数学工具。
一元二次方程的根的判别式(教学课件201908)

基于HOG特征和SVM分类器的行人检测研究作者:岳鑫来源:《科技创新与应用》2016年第05期摘 ;要:行人检测目前是机器视觉领域研究中一个热门技术。
文章利用梯度直方图特征和支持向量机对不同场景下的样本图片进行检测。
检测结果表明:在真实的应用场景中,该方法可以满足大部分的行人检测需求,但不同的光照、不同的遮挡和不同的样本复杂度对检测结果有一定影响。
关键词:HOG特征;SVM分类器;行人检测行人检测技术是计算机视觉领域中的一个重要的分支,在智能交通、智能监控、行人行为分析以及智能机器人领域有着广泛的应用,是通过判断图片或视频序列中是否有行人出现,并给出准确位置的一项图像理解技术。
行人检测主要分两大类方法[1]分别为基于背景建模的方法[2]和基于统计学习的方法[3]。
前者主要利用图像差分的思想,分割出前景,提取其中的运动目标,从而达到目标检测的目的。
该方法对背景的要求比较苛刻,在下雨、下雪、背景中树叶的晃动、光线不稳定的场景中该方法的抗干扰能力较差。
基于统计学习的方法,首先对目标进行特征提取,然后训练相应的分类器,再通过滑窗技术,把训练好的分类器应用于图像中,检测用户感兴趣的目标[4]。
文章使用基于统计学习的方法利用HOG特征和SVM分类器进行行人检测。
1 行人检测原理1.1 梯度直方图特征描述梯度直方图特征主要是用来描述图像局部重叠区域的一种描述符,将图像中局部区域像素的梯度方向直方图来做为人体的特征,该特征可以很好的描述出人体的边缘,并且不敏感于光照条件和微小的偏移。
图像中任意一像素点(x,y)的梯度表示为:(1)其中Gx(x,y)、Gy(x,y)和H(x,y)分别表示图像中在(x,y)处的水平方向梯度、垂直方向梯度和像素值。
像素点(x,y)处的梯度幅值和梯度方向分别由下面公式计算可得:(2)在梯度直方图特征-简称HOG的提取过程中,Dalal曾提出:对于一个样本图像,我们可以将它看成若干个像素的单元,图像像素的梯度方向平均可以分割为9个区间,用直方图来统计每个像素单元里面所有像素梯度方向的所有方向区间,这样就可以得到一个比较直观的9维特征向量,块是由每4个相邻的单元构成,再把这个块中4个特征向量连接起来,就可以得到方便理解的36维特征向量,然后以一个单元作为步长用块进行扫描样本图像,最终串联起所有块的特性,人体特征就得到了。
人教版九年级数学上册《解一元二次方程——一元二次方程的根的判别式》教学课件

2 −2 + = 3 − 1;
2
解: 化方程为 2 + 2 − 1 = 0.
= 2, = 2, = −1.
2
2
= − 4 = 2 −4 × 2 × (−1)
= 4 + 8 = 12 > 0.
∴ 此一元二次方程有两个不相等的实数根.
归纳
归纳
不解方程,判断一元二次方程根的情况的一般步骤:
2
当 − 4 < 0 时,方程没有实数根.
例1 不求出一元二次方程的根,判断下列方程根的情况:
2
= − 4
2
1 2 − 5 + 1 = 0;
2
2 −2 + = 3 − 1;
3 + 2 = − 2 2 − 1 +
2
4 + 2 2 + 6 = 0.
9
;
2
2
= − 4 = − 2 + 1
= 2 + 1
2
2
−4××2
− 8
2
= 4 + 4 + 1 − 8
2
= 4 − 4 + 1
= 2 − 1
2
2
≥ 0.
所以 − 2 + 1 + 2 = 0 ≠ 0 有实数根.
例3 在不解方程的情况下,判断下列关于 的方程
2
变式2 如果关于 的一元二次方程 x − 4x + − 5 = 0,
没有实数根,求 的取值范围.
2
变式1 如果关于 的一元二次方程 x − 4x + − 5 = 0,
有两个不相等的实数根,求 的取值范围.
(课件7)22.2一元二次方程根的判别式

4m 4m 1 4m 16m 16 20m 15 (1)要使方程有两个不等实根,只需 3 即 m 20m 15 0
4
所以当m>3/4时,方程Байду номын сангаас两个不等的实根。
2 2m1 x m 22 0 例2 已知关于的方程,x
解:原方程可化为: m2 y2 4mny n2 0 4
b2 4ac 4mn 44m2n2
2
16m2n2 16m2n2
0
所以此方程有两个相等的实数根。
不解方程,判断方程根的情况时: 1.先计算判别式的值; 2.再确定判别式的取值范围,从而判断方程根 的情况,(要注意二次项系数不为0).
系数不为0”.
动手试一试吧!
若关于x的方程x2-2nx+3n+4=0 有两个相等的实数根,则n=____.
1.(2004年· 西宁市)若关于x的一元二次方程mx2-2x+1=0 有实数根,则m的取值范围是 (D ) A.m<1 B. m<1且m≠0 C.m≤1 D. m≤1且m≠0 2.(2004年· 昆明)已知关于x的一元二次方程x2+2x+k=0 有实数根,则k的取值范围是 ( A) A.k≤1 B.k≥1 C.k<1 D.k>1 3.(2004年· 桂林市)如果方程组 y 2 数解,那么m的值为 A. -3/8 B.3/8 C. -1
ax 2 b c x 2 ( b c ) 2 a
2 2 2
有两个等根,试判断△ABC的形状. 解:利用Δ =0,得出a=b=c. ∴△ABC为等边三角形.
【例5】 已知:m、n为整数,关于x的二次方程x2+(7m)x+3+n=0有两个不相等的实数解,x2+(4+m)x+n+6=0 有两个相等的实数根,x2-(m-4)x+n+1=0没有实数根,求 m、n的值. 解:∵方程x2+(4+m)x2+n+6=0有两个相等的实根, ∴(4+m)2-4(n+6)=0,即m2+8m-8=4n. 又方程x2+(7-m)x+3+n=0有两个不等的实根, 方程x2-(m-4)x+n+1=0无实根, ∴(7-m)2-4(3+n)>0,(m-4)2-4(n+1)<0. 把4n=m2+8m-8代入上两式得 ∵m为整数∴m=2,从而n=3.
一元二次方程根的判别式(ppt课件)

练习4:关于x的方程(a-1)x2-2x+1=0有实数根,求a
的取值范围
解:①当原方程是一元一次方程时 则有a-1=0,a=1
②当原方程是一元二次方程时 则有Δ≥0,(a-1)≠0
b2-4ac=(-2)2-4×(a-1)×1≥0,a≠1 解得:a<2且a≠1.
【类型三】运用根的判别式判断三角形的形状
(1)2x2+3x-4=0; 有两个不相等的实数根
(2)x2-x+1=0;
4
有两个相等的实数根
(3)x2-x+1=0.
无实数根
练习 2:不解方程,判断下列方程根 的情况
(1)4(x-3)2-25(x-2)2=0. (2)(x-5)(x-6)=x-5. (3)4x2+4x+10=1-8x.
有两个不相等的实数根 有两个不相等的实数根 有两个相等的实数根
课
有两个不__相__等__的__实数根, (2)b2-4ac=0⇔一元二次方程ax2+bx+c=0(a≠0)
堂
有__俩__个__相__等__的__实数根。 (3)b2 - 4ac<0⇔ 一 元 二 次 方 程 ax2 + bx + c =
小
0(a≠0)解决问题时,如果二次项系数中
(4)由于 a≠0,方程 ax2+bx+c=0
移项,得:ax2+bx=-c
二次项系数划为 1:x2+bx=-c, aa
b
b
配方,得:x2+bx+
2a
2=-
c
+
2a
2,
a
a
b
x+ 2a
2=b2-4ac,
4a2
可以看出
只有当b²-4ac≥0时,方 程才有实数根,这样b²-
4ac就决定着一元二次方
2.3一元二次方程根的判别式++课件 2024—2025学年湘教版数学九年级上册

板书设计
2.3一元二次方程根的判别式
根的判别式∆:
∆>0:
∆=0:
∆<0:
习题讲解书写部分
作业布置
【知识技能类作业】必做题:
1.对于一元二次方程 2 + + = 0 ≠ 0 , 下列说法:①当 =
+ 时,则方程 2 + + = 0一定有一根为 = −1;②若 > 0
B. 2 + 3 + 6 = 0
C. 2 + 8 + 16 = 0
D.( − 1)2 = 9
3.已知关于x 的一元二次方程 2 − = 2 有两个不相等的实数根,
则m的取值范围是( A )
A.m>-1 B.m<-2 C.m ≥0 D.m<0
课堂练习
【知识技能类作业】选做题:
4.已知关于 的方程 2 + (1 − ) − 1 = 0 ,下列说法正确的是( C )
2 − 4 − 2 + 4 = 0
( − 1) 2 − 4 + 4 = 0
∵方程有两个不相等的实数根,
∴k−1≠0,即k≠1,且△>0,即(-4)2−4×(k−1)×4>0,
解得k<2,则k<2且k≠1,
∴k<2且k≠1;
作业布置
【综合拓展类作业】
已知关于x的方程 ( − 4) − 2 + 4 = 0
新知导入
用配方法解二次项系数不为1的一元二次方程的一般步骤:
1.二次项系数化为1:左右俩边同时除以二次项系数;
2.移项:将常数项移至右边,含未知数的项移至左边;
3.配方:左、右两边同时加上一次项系数一半的平方;
一元二次方程根的判别式PPT课件(北师大版)

4
∴方程有两个相等的实数根
(2)原方程化为:
x2 2x 1 0, 2 2 41 1 = 2 0,
3
33
∴方程有两个不相等的实数根
感悟新知
归纳
知2-讲
判断方程根的情况的方法: ①若一元二次方程ax2+bx+c=0(a≠0)中的左边是一个完全平
方式,则该方程有两个相等的实数根; ②若方程中a,c异号,或b≠0且c=0时,则该方程有两 个不相
b 2a
2
,
x
b 2a
2
=b2
4ac
a2
.
即
知1-讲
因为a≠0,所以4a2>0. 式子b2-4ac的值有以下三种情
b2 4ac 0
况:
b2 4ac 0
(1)
b2 新知
归纳
知1-讲
一般地,式子b2-4ac叫做一元二次方程ax2+
bx+c=0根的判别式,通常用希腊字母“Δ”表示它,
课堂小结
一元一次方程
(1)今天我们是在一元二次方程解法的基础上,学习了根的判 别式的应用,它在整个中学数学中占有重要地位,是中 考命题的重要知识点,所以必须坚固掌握好它。
(2)注意根的判别式定理与逆定理的使用区分:一般当已知△ 值的符号时,使用定理;当已知方程根的情况时,使用 逆定理。
课堂小结
一元一次方程
感悟新知
例11:不解方程,判断下列方程根的情况.
(1) - 1 x2 x 1;
4
(2) x2
2x 1 3
知2-讲
导引:根的判别式是在一般情势下确定的,
因此应先将方程化成一般情势,然后
算出判别式的值.
感悟新知
解:(1)原方程化为:
1一元二次方程根的判别式课件

x1
x2
. 2
适时小结:
1.根据方程根的情况,可得到判别式的取值 范围;
2. 求根的判别式的前提是一元二次方程的一 般式;在求方程的根时,可以把已确定的字 母系数的值代入原方程,再求不含字母系数 的方程的根.
自主探究:
怎样的条件才能得到 有实数根?
当k 为何值时,关于x的方程 x2 4kx (2k 1)2 0 有实数根?并求出这时方程的根.(用含k 的代数 式表示)
当x2m取(m何值2时)x,关1 于m2x的1方程0
解:
(m
2)2
4
(
1
4
m2
1)
4
4m 8
(1)当 4m 8 0,即m 2时,方程有两个不相等的实数根.
(2)当 4m 8 0,即m 2时, 方程有两个相等的实数根.
(3)当 4m 8 0,即m 2时, 方程没有实数根.
适时小结:由方程根的情况得到判别式的取值范围, 进而求出方程中一个字母系数的取值范围.
上述结论反过来也能成立,所以可以得到:
0
方程有两个不相等的实数根.
0
方程有两个相等的实数根.
0
方程没有实数根.
判别式的符号
根的情况
新知学习
当m取何值时,关于x的方程
x2 (m 2)x 1 m2 1 0 4
怎样的条件才能 得到相应的根的 情况?
(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?
答: (b2 +c2 a2 )2 4b2c2
(b c a)(b c a) (b c a)(b c a)
由三角形的三边关系得:b c a, a b c, a c b 即b c a 0,b c a 0,b c a 0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
(3)∵ m 为整数,且方程的两个根均为正整数
3
∴ x1 2 m 必为整数
∴ m 1 或 m 3
当 m 1时 , x1 1 ;当 m 1时, x1 5; 当 m 3时, x1 1 ; 当 m 3 时, x1 3. ∴ m 1 或 m 3
.
(5) 若关于x的方程 (1-2k)x2- 2 k+1 x=1有两个不等
16
个相等的实数根;
(3)当
V16m10,即
m
1 16
时,方程没有
实数根.
.
问题三:解含有字母系数的方程。
解方程: ax2 5x 5 0 。
提示:分类讨论:当 a=0 时,方程变为:
5x50
当 a≠0 时,方程为一元二次方程,再利用△确
定方程的根的个数,用求根公式求出解。
.
解: 当a=1时,x=1.
等式(方程)
∴k≥-9/8
求出参数范围
.
(2) m为何值时,关于x的方程
4x2-mx =2x+1-m有两个相等实根?
解:方程整理为:
4x2-(m+2)x+m-1=0 ∴ △=(m+2)2-16(m –1)
=m2-12m+20
若方程有两个相等实根,则△= 0
m2-12m+20=0
∴m1=2 m2=10
当a≠0时,方程为一元二次方程.
△=25-20a.
当△>0,即
a<
5 4
时,
x
5
25 20a
2a
;
5
当△=0,即 a= 4 时,x=2;
当△<0,即
a>
5 4
时,方程无解。
.
(4) 若方程kx2-6x+1=0有实根,求k的取 值范围?
解:△=(-6)2-4k ≥ 0
且k≠0 ∴k≤9 且 k≠0
(3) x2 4kx 2k 3。
提示:步骤:第一步:写出判别式△;第二步 根据△的正负写结论。
.
解:(1)因为△=b2-4ac=52-4×2×7=-31<0, 所以原方程无解。
(2)因为△ = b24ac=10,所以原方 程有两个不等的实根。
(3)因为△= b24ac= (4k+ 1)2110, 所以原方程有两个不等的实根。
.
(4) 若方程kx2-6x+1=0有实根,求k的取 值范围?
解:当方程时一元二次方程时:
△=(-6)2-4k ≥ 0 且k≠0
∴k≤9 且 k≠0 当方程时一元一次方程时:
k= 0 方程-6x+1=0也有实根
综上:k ≤9 方程有实根
.
已知:关于 x 的一元二次方程 mx2 3(m 1)x 2m 3 0
.
b2 4ac 叫做一元二次方程 ax2+bx+c=0 的根的 判别式,通常用“△”表示。 当△>0 时,方程有两个不等的实数根; 当△=0 时,方程有两个相等的实数根; 当△<0 时,方程没有实数根。
.
问题一:不解方程,判断下列方程是否有解?
(1) 2x2 5x 7 0 ; (2) 3x2 x 0 ;
∴ △ > 0方程有两个不等实根
含有字母系数时,将△配方后判断
.
2.根据方程根的情况判断参数取
值范围
(1)k为何值时,关于x的方程 2x2-(4k+1)x+2k2 –1 =0有实根?
解:△=(4k+1)2-8(2k2 –1) 准确找到a,b,c
=8k+9
求△
若方程有实根,则△≥ 0根据题意列不
∴8k+9 ≥ 0
.
对于一元二次方程 ax2bxc0(a0) 一定
有解吗?
.
一元二次方程的根的情况:
1.当 b24ac0时,方程有两个不相等的实数根 2.当 b24ac0时,方程有两个相等的实数根 3.当 b24ac0时,方程没有实数根 反过来: 1.当方程有两个不相等的实数根时,b24ac0 2.当方程有两个相等的实数根时, b24ac0 3.当方程没有实数根时,b24ac0
时,(1) 方程有两个不相等的实数根; (2) 有两个相等的实数根; (3) 没有实数根。
提示:先把方程变形:2mx2 (8m 1)x 8m 0 ,再看△。
.
解:因为 V =b24ac16m1,所以
(1)当 V16m10,即 m 1 时,方程有两
16
个不等的实数根;
(2)当 V16m10,即 m 1 时,方程有两
∴ (m 3)2 0 且 m 0 ∴ m 3且 m 0 ∴ m 的取值范围是 m 3且 m 0
.
(2)证明:由求根公式 x b
b2 4ac 3(m 1) (m 3)
2a
2m
3m 3 m 3 2m 3 3
∴ x1
2m
2
m
m
3m 3 m 3
x2
2m
1
∴无论 m 为何值,方程总有一个固定的根是 1。
.
1.不解方程判断方程根的情况:
(4) x2-2kx+4(k-1)=0 (k为常数) 解:△=4 k2-16k+16
=4( k2-4k+4) =4( k-2) 2
∴ △≥ 0方程有实根
(5) x2-(2+m)x+2m-1=0 (m为常数)
解:△=m2-4m+8 =m2-4m+4+4 =(m-2) 2 +4
.
(3) m为何值时,关于x的一元二次方程 m2x2+(2m+1)x+1=0有两个不等实根?
解:△=(2m+1)2-4m2
=4m+1 若方程有两个不等实根,则△ > 0
∴4m+1 > 0 ∴m >-1/4 ∴m >- 1/4 且m≠0
.
注对意吗二?
次项系 数
二 次 方 程 2mx2 8m(x 1) x , 当 m 为 何 值
实根,求k的取值范围?
.
提升 3:若方程 3x2 4x k 1 0 无实数根,化简:
k2
2 3
k
1 9
1 2k 3
。.
3k 2 3
.
.
(m为实数)
(1) 若方程有两个不相等的实根,求 m 的取值范围; (2)求证:无论 m 为何值,方程总有一个固定的根;
(3)若 m 为整数,且方程的两个根均为正整数,求 m 的
值.
.
(1)解: b2 4ac 3(m 1)2 4m(2m 3) (m 3)2
∵方程有两个不相等的实数根,