初三数学上册知识点总结
九年级上册数学总结知识点

九年级上册数学总结知识点一、集合的概念与运算1. 集合的定义和表示方法2. 集合间的包含关系3. 集合的运算:并集、交集、差集、补集4. 集合的性质:全集、空集、互斥集、互不相交集二、函数与方程1. 函数的定义和性质2. 函数图像的基本性质3. 一次函数与二次函数4. 方程的基本概念:根、解、方程的种类5. 方程的解法:代入法、消元法、配方法、因式分解法三、三角形与相似1. 三角形的分类与性质:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形2. 直角三角形的勾股定理和斜边定理3. 相似三角形的判定条件4. 相似三角形的性质:比例关系、类比比例、全等定理四、函数的图像与性质1. 函数图像的基本变换:平移、伸缩、翻转2. 二次函数的图像特征:顶点、对称轴、开口方向3. 绝对值函数和分段函数的图像特征4. 函数的单调性与极值点的求解五、平面坐标系与图形1. 平面直角坐标系的建立与使用2. 线段的长度计算3. 点和直线的位置关系:同一直线、垂直、平行、相交等4. 常见图形的性质与计算:矩形、正方形、三角形、圆六、数据的处理与统计1. 数据的收集和整理2. 统计量的计算:平均数、中位数、众数、极差3. 数据的图表展示:条形图、折线图、散点图4. 概率的基本概念与计算七、圆的性质与计算1. 圆的基本概念与性质:圆心、半径、直径、弧长、扇形面积2. 圆的相关角和切线的性质3. 弧度制与度数制的换算4. 圆的计算问题:弧长问题、扇形面积问题八、空间图形与几何体1. 空间图形的投影与视图2. 空间中的点、线、面的性质与判定3. 空间中的几何体:正方体、长方体、圆柱体、圆锥体、球体4. 空间几何体的计算:体积、表面积等以上是九年级上册数学的主要知识点总结,通过掌握这些知识,可以帮助学生更好地理解和应用数学知识,提升数学解题能力。
通过反复练习和思考,相信学生们能够更加熟练地掌握这些知识,取得更好的成绩。
人教版九年级上册数学知识点汇总

一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。
九年级上册数学知识点总结

九年级上册数学知识点总结九年级上册数学知识点总结总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以提升我们发现问题的能力,为此要我们写一份总结。
那么总结应该包括什么内容呢?以下是小编为大家收集的九年级上册数学知识点总结,欢迎阅读,希望大家能够喜欢。
九年级上册数学知识点总结1aa(a0,b0)bb5、二次根式混合运算二次根式的混合运算与实数中的`运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二单元一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式ax2bxc0(a0),它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如(xa)2b的一元二次方程。
根据平方根的定义可知,xa是b的平方根,当b0时,xab,xab,当b 一元二次方程ax2bxc0(a0)中,b4ac叫做一元二次方程2ax2bxc0(a0)的根的判别式,通常用“”来表示,即b24ac四、一元二次方程根与系数的关系如果方程ax2bxc0(a0)的两个实数根是x1,x2,那么x1x2b,ax1x2c。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次a项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
九年级上册数学知识点总结2第一单元二次根式1、二次根式式子a(a0)叫做二次根式,二次根式必须满足:含有二次根号“必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
九年级上册数学知识点总结

九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。
有理数是整数和分数的集合,分数是整数和整数的比值。
整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。
二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。
2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。
不等式是不等号连接的两个代数表达式,表示两个量大小关系。
3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。
可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。
4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。
可以使用消元法或代入法解方程组。
三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。
通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。
2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。
平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。
四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。
利息是利率乘以本金得到的收益。
五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。
2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。
频率是指某事件发生的概率或某数据出现的概率。
六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。
2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。
七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。
八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。
数学初三上册知识点归纳

数学初三上册知识点归纳【第一章实数】一、重要概念1.数的分类及概念数系表:说明:"分类"的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义("三要素")②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数-自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号"││"是"非负数"的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。
三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
九年级上册数学知识点全总结

九年级上册数学知识点全总结在九年级上册的数学学习中,我们接触到了许多重要的数学知识点,涉及了数与代数、几何与图形、函数与方程、统计与概率等多个方面。
下面,我们将对这些知识点进行全面总结。
一、数与代数1. 整数运算:整数加减乘除的规则及性质,同时学习了负数的概念和运算。
2. 分数与小数:分数与小数的相互转换,分数的四则运算以及分数的化简、约分等方法。
3. 实数运算:实数的运算律和性质,在此基础上学习了绝对值的概念和运算法则,了解了实数轴的相关知识。
4. 幂与指数:幂的定义和性质,指数与幂的关系及规律,学习了幂的乘除法则以及零次幂和一次幂的特殊性质。
5. 根式与整式:根式的定义和性质,整式的运算法则,熟悉了多项式的加减法规则。
二、几何与图形1. 角与直线:学习了角的类型和度量,认识了同位角、对顶角、余角等概念,同时也掌握了平行线与垂直线的性质。
2. 三角形:三角形的分类与性质,熟悉了角平分线、中位线、高线等重要线段与特殊点。
3. 平面镶嵌:学习了平面上的镶嵌图形,通过分析规律解决镶嵌问题,提高了观察和推理能力。
4. 圆与圆内接四边形:圆的相关概念与性质,学习了圆的弧长、扇形面积等计算方法,深入理解了圆与四边形的关系。
5. 空间几何体:学习了立体图形的名称与性质,掌握了棱、面和顶点的概念,了解了棱柱、棱锥、球等重要几何体。
三、函数与方程1. 平移、伸缩与反转:学习了函数图像的平移、伸缩与反转规律,掌握了二次函数、绝对值函数的特性。
2. 一次函数与二次函数:学习了一次函数和二次函数的表达式、图像与性质,了解了它们的特点与应用。
3. 一元一次方程:方程与等式的关系,解一元一次方程的基本方法,熟悉了方程解的概念和解集的表示方法。
4. 一元二次方程:学习了解一元二次方程的基本方法,熟悉了二次方程的根与判别式等概念,同时也了解了二次函数与二次方程的关系。
四、统计与概率1. 数据分析与统计:学习了数据的整理、统计和表示方法,掌握了众数、中位数和平均数等重要概念。
九年级数学上册重要知识点总结
九年级数学上册重要知识点总结九年级数学上册重要知识点总结「篇一」圆的面积s=π×r×r其中,π是周围率,约等于3.14r是圆的半径。
圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。
圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。
椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的`差。
椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
九年级数学上册重要知识点总结「篇二」1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab九年级数学上册重要知识点总结「篇三」1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
九年级上册数学知识点归纳
九年级上册数学知识点归纳一、实数1. 有理数与无理数的定义- 有理数:可以表示为两个整数的比的数,如分数、整数。
- 无理数:不能表示为两个整数的比的数,如√2、π。
2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算3. 实数的性质- 相反数、倒数- 有理数和无理数的性质4. 科学记数法- 表示非常大或非常小的数5. 实数的比较- 大小比较的方法- 不等式的表示和性质二、代数表达式1. 单项式- 单项式的定义- 系数、次数2. 多项式- 多项式的定义- 项、次数、系数- 多项式的加减法3. 代数式的简化- 合并同类项- 分配律、结合律、交换律4. 因式分解- 提公因式法- 公式法(平方差、完全平方等) - 十字相乘法三、方程与不等式1. 一元一次方程- 方程的建立- 解方程的步骤2. 二元一次方程组- 代入法- 消元法(加减消元、代数消元)3. 不等式- 不等式的性质- 解一元一次不等式- 解一元一次不等式组4. 绝对值不等式- 绝对值的性质- 解绝对值不等式四、平面图形1. 平行线与线段- 平行线的性质- 线段的中点、平行线之间的距离2. 角- 角的分类- 角的度量- 角的和差3. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质 - 三角形的内角和外角4. 四边形- 四边形的分类- 矩形、菱形、正方形的性质- 四边形的面积计算5. 圆- 圆的基本性质- 圆的面积和周长- 切线的性质五、立体图形1. 立体图形的基本概念- 点、线、面、体- 立体图形的分类2. 棱柱和棱锥- 棱柱和棱锥的性质- 棱柱和棱锥的体积计算3. 圆柱和圆锥- 圆柱和圆锥的性质- 圆柱和圆锥的体积和表面积计算4. 球- 球的性质- 球的体积和表面积计算六、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 条件概率和独立事件请注意,以上内容仅为九年级上册数学知识点的一个概括性归纳,具体的教学内容和深度可能会根据不同地区的教学大纲和教材有所差异。
数学九年级上册知识点必看
数学九年级上册知识点必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学九年级上册知识点的学习资料,希望对大家有所帮助。
九年级上册数学知识点总结第一章二次根式1 二次根式:形如 ( )的式子为二次根式;性质: ( )是一个非负数;2 二次根式的乘除:3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式:,S是三角形的面积,p为。
第二章一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的次是2的方程。
2 一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法:因式分解法:左边是两个因式的乘积,右边为零。
3 一元二次方程在实际问题中的应用4 韦达定理:设是方程的两个根,那么有第三章旋转1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;3 关于原点对称的点的坐标第四章圆1 圆、圆心、半径、直径、圆弧、弦、半圆的定义2 垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系点在圆外点在圆上 d=r点在圆内 d 定理:不在同一条直线上的三个点确定一个圆。
九年级上册所有数学知识点
九年级上册所有数学知识点九年级上册数学知识点概览在九年级上册的数学学习中,我们将会接触到许多重要的数学知识点,这些知识点将为我们构建数学思维提供基石。
本文将从代数、几何、概率与统计等多个角度来探讨这些知识点。
一、代数知识点代数是数学中的一门重要学科,它涉及到符号、变量、方程和函数等概念。
在九年级上册,我们将会学习到如下代数知识点。
1.1 代数基本概念代数学习的第一步是了解代数中的基本概念,如变量、常数、系数、多项式等。
这些概念为我们理解和描述代数表达式提供了基础。
1.2 一元二次方程一元二次方程是九年级上册代数学习的重点之一。
我们将学习如何解一元二次方程、寻找方程的根以及利用因式分解、配方法等方法来化简和变形。
1.3 比例与比例方程比例是数学中非常重要的概念,它在日常生活和实际问题中经常出现。
我们将学习比例的定义、性质,以及如何解决比例方程和应用比例解决实际问题。
二、几何知识点几何是研究图形、空间和形状的学科,它涉及到点、线、面、体等概念。
在九年级上册,我们将学习到如下几何知识点。
2.1 尺规作图尺规作图是一种重要的几何应用技巧,它使用直尺和圆规来绘制几何图形。
我们将学习尺规作图的基本原理、方法和常见的作图技巧。
2.2 三角形与四边形在九年级上册,我们将深入研究各种类型的三角形和四边形。
我们将学习它们的性质、分类以及如何计算三角形和四边形的面积、周长和角度。
2.3 相似与全等三角形相似和全等是关于几何图形的重要概念。
我们将研究相似三角形和全等三角形的性质,学习如何判断它们的相似性和全等性,并应用于解决实际问题。
三、概率与统计知识点概率与统计是数学中关于随机事件和数据分析的学科。
在九年级上册,我们将学习到如下概率与统计知识点。
3.1 随机事件与概率了解随机事件的概率有助于我们判断事物发生的可能性。
我们将学习随机事件的定义、性质,以及如何计算概率,如频率法、几何法等。
3.2 数据的收集与整理在实际生活中,我们常常需要收集和整理数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册知识点总结第二十一章 一元二次方程 22.1 一元二次方程知识点一 一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二 一元二次方程的一般形式一般形式:)0(02≠=++a c bx ax 其中,2ax 是二次项,a 是二次项系数; bx 是一次项,b 是一次项系数;c 是常数项。
知识点三 一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
22.2 降次——解一元二次方程 22.2.1 配方法知识点一 直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如)0(2≥=a a x 的方程,根据平方根的定义可解得a x a x -=+=21 .(2) 直接开平方法适用于解形如p x =2或)0(2≠=+m p a mx )(形式的方程,如果 p≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4) 直接开平方法解一元二次方程的步骤是:移项;使二次项系数或含有未知数的式子的平方项的系数为 1;两边直接开平方,使原方程变为两个一元二次方程;解一元一次方程,求出原方程的根。
知识点二 配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1) 把常数项移到等号的右边; (2) 方程两边都除以二次项系数;(3) 方程两边都加上一次项系数一半的平方,把左边配成完全平方式; (4) 若等号右边为非负数,直接开平方求出方程的解。
22.2.2 公式法知识点一 公式法解一元二次方程(1) 一般地,对于一元二次方程 )0(02≠=++a c bx ax ,如果 042≥-ac b ,那么方程的两个根为 aacb b x 242-±-=,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c 的值直接求得方程的解,这种解方程的方法叫做公式法。
(2) 一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程)0(02≠=++a c bx ax 的过程。
(3) 公式法解一元二次方程的具体步骤:① 方程化为一般形式:)0(02≠=++a c bx ax ,一般a 化为正值 ② 确定公式中a,b,c 的值,注意符号; ③ 求出ac b 42-的值;④ 若042≥-ac b 则把a ,b,c 和b-4ac 的值代入公式即可求解,042<-ac b ,则方程无实数根。
知识点二 一元二次方程根的判别式式子ac b 42-叫做方程)0(02≠=++a c bx ax 根的判别式,通常用希腊字母△表示它,即ac b 42-=∆,22.2.3 因式分解法知识点一 因式分解法解一元二次方程(1) 把一元二次方程的一边化为 0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解,这种解方程的方法叫做因式分解法。
(2) 因式分解法的详细步骤:① 移项,将所有的项都移到左边,右边化为0;② 把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;③ 令每一个因式分别为零,得到一元一次方程; ④ 解一元一次方程即可得到原方程的解。
知识点二 用合适的方法解一元一次方程22.2.4 一元二次方程的根与系数的关系(了解)若一元二次方程02=++q px x 的两个根为1x , 2x 则有 q x x p x x =-=+2121, 若一元二次方程)0(02≠=++a c bx ax 有两个实数根1x ,2x 则有ac x x a b x x =-=+2121, 22.3 实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:(1) 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。
(2) 设:是指设元,也就是设出未知数。
(3) 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。
(4) 解:就是解方程,求出未知数的值。
(5) 验:是指检验方程的解是否保证实际问题有意义,符合题意。
(6) 答:写出答案。
知识点二 列一元二次方程解应用题的几种常见类型 (1) 数字问题三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1。
三个连续偶数(奇数):若中间的一个数为x,则另两个数分别为x -2,x+2。
三位数的表示方法:设百位、十位、个位上的数字分别为a,b ,c ,则这个三位数是100a+10b+c .(2) 增长率问题设初始量为a ,终止量为b ,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为b x a =±2)1((3)利润问题利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率 (4)图形的面积问题 根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
第二十二章 二次函数知识点一:二次函数的定义 1.二次函数的定义:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数.其中a是二次项系数,b是一次项系数,c是常数项.知识点二:二次函数的图象与性质⇒⇒抛物线的三要素:开口、对称轴、顶点2.二次函数()2y a x h k=-+的图象与性质(1)二次函数基本形式2=的图象与性质:a的绝对值越大,抛物线的开口越小y ax(2)2y ax c=+的图象与性质:上加下减(3)()2y a x h =-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.(2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与x轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax y =经过适当的平移得到。
具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对)(y x ,,的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式:.已知图象与轴的交点坐标、,通常选择交点式.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.(5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.②b 和a 共同决定抛物线对称轴的位置由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.的图象的解方程有两个不等实数解方程有两个相等实数解ﻫ方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.23.1 图形的旋转知识点一旋转的定义在平面内,把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转中心, 转动的角叫做旋转角。