小学追及相遇流水火车过桥工程类应用题

合集下载

火车过桥、流水行船解程

火车过桥、流水行船解程
一、火车过桥常见题型及解题方法 1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度, 解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间; 2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度, 解法:火车车长(总路程)=火车速度×通过时间; 2、火车+人:一个有长度、有速度,一个没长度、但有速度, (1)、火车+迎面行走的人:相当于相遇问题, 解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间; (2)火车+同向行走的人:相当于追及问题, 解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间; (3)火车+坐在火车上的人:火车与人(速度为所在火车速度)的相遇和追及问题 解法:火车车长(总路程) =(火车速度?人的速度) ×迎面错过的时间(追及的时间); 4、火车+火车:一个有长度、有速度,一个也有长度、有速度, (1)错车问题:Байду номын сангаас当于相遇问题, 解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间; (2)超车问题:相当于追及问题, 解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间; 二、流水行船知识要点 在流水行船问题中,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为: ① 水速度=船速+水速;②逆水速度=船速-水速。(可理解为和差问题) 由上述两个式子我们不难得出一个有用的结论: 船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2 此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。 流水行船问题中的相遇与追及 ①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速 也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.

小学三年级数学行程问题应用题

小学三年级数学行程问题应用题

【导语】⾏程问题是⼩学奥数中的⼀⼤基本问题。

⾏程问题有相遇问题、追及问题等近⼗种,是问题类型较多的题型之⼀。

⾏程问题包含多⼈⾏程、⼆次相遇、多次相遇、⽕车过桥、流⽔⾏船、环形跑道、钟⾯⾏程、⾛⾛停停、接送问题等。

以下是⽆忧考整理的《⼩学三年级数学⾏程问题应⽤题》相关资料,希望帮助到您。

【篇⼀】⼩学三年级数学⾏程问题应⽤题 1、甲⼄两列⽕车同时从相距700千⽶的'两地相向⽽⾏,甲列车每⼩时⾏85千⽶,⼄列车每⼩时⾏90千⽶,⼏⼩时两列⽕车相遇? 2、甲⼄两车从两地同时出发相向⽽⾏,甲车每⼩时⾏40千⽶,⼄车每⼩时⾏60千⽶,经过3⼩时相遇。

两地相距多少千⽶? 3、甲⼄两艘轮船从相距654千⽶的两地相对开出,8⼩时两船还相距22千⽶。

已知⼄船每⼩时⾏42千⽶,甲船每⼩时⾏多少千⽶? 4、甲⼄两艘轮船同时从相距126千⽶的两个码头相对开出,3⼩时相遇,甲船每⼩时航⾏22千⽶,⼄船每⼩时航⾏多少千⽶? 5、甲、⼄两车同时从相距480千⽶的两地相对⽽⾏,甲车每⼩时⾏45千⽶,途中因汽车故障甲车停了1⼩时,5⼩时后两车相遇。

⼄车每⼩时⾏多少千⽶? 6、甲、⼄两地相距280千⽶,⼀辆汽车和⼀辆拖拉机同时分别从两地相对开出,经过4⼩时两车相遇。

已知汽车的速度是拖拉机速度的4倍,相遇时,汽车⽐拖拉机多⾏多少千⽶? 7、甲、⼄两车同时从相距960千⽶的A、B两地相向开出,8⼩时后相遇。

已知甲车每⼩时⽐⼄车快4千⽶,求甲车的速度是多少?相遇时⼄车⾏驶了多少千⽶? 8、某零件加⼯⼚要加⼯零件1200个。

第⼀车间每天能加⼯190个,⽐⼆车间每天少加⼯20个。

现在两个车间共同加⼯这批零件,要加⼯多少天?完成时每个车间各加⼯了多少个? 9、⾃⾏车商店要装配2380辆⾃⾏车,甲组每天装配120辆,⼄组每天装配140辆。

两个组共同装配7天后,由⼄组单独装配。

⼄组还要多少天才能完成任务? 10、甲⼄两列⽕车同时从A、B两地相对开出,甲车每⼩时⾏90千⽶,⼄车每⼩时⾏84千⽶,相遇时甲车⽐⼄车多⾏了78千⽶,A、B两地相距多少千⽶?【篇⼆】⼩学三年级数学⾏程问题应⽤题 1、⽺跑5步的时间马跑3步,马跑4步的距离⽺跑7步,现在⽺已跑出30⽶,马开始追它。

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。

行程问题是物体匀速运动的应用题。

不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。

要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。

以下是总结的10种经典行程问题的相关解法。

一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

4年级-行程问题(相遇、追及、火车过桥)【8】

4年级-行程问题(相遇、追及、火车过桥)【8】

火车过桥例1:火车长180米,每秒行15米,经过120米长的大桥,需要多少秒?①一列火车车长190米,每秒行10米,要通过720米的大桥,需要多少秒?②一列火车长160米,以每秒20米的速度穿过一条长400米的隧道,问火车穿过隧道需要多少秒?③一列火车经过一个路标要5秒,通过一座300米的山洞要20秒。

经过800米的大桥要多少秒?例2:小明站在铁路边,一列火车从他身边开过用了3分钟,已知火车长480米,用同样的速度通过一座大桥用了8分钟,这座大桥的长度是多少?①一列火车长800米从路边一棵大树旁通过用了1.6分钟,以同样的速度通过一座大桥,共用了5分钟,求大桥长多少米?②一列火车经过一根电线杆用了15秒,通过一座长300米的大桥用45秒,求这列火车的长度?例3:一列火车通过一条长1400米的大桥用了55秒,火车穿过2100米的隧道用了80秒,问这列火车的速度是多少?车长是多少?①一列火车以同样的速度通过第一座长600米的大桥用40秒,通过第二座长900米的大桥用了50秒,这列火车的长度?②铁路桥长1000米,一列火车从桥上通过测得火车从开始上桥到完全下桥用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度和长度?例4:有两列客车,车长分别为206米和284米,两列火车分别以每秒24米和每秒25米的速度相向而行在双轨铁路上,交会时以车头相遇到车尾相离共需多少时间?①一列慢车车长120米,车速每秒15米,一列快车车长160米,车速每秒20米,两车相向而行从车头相遇到车尾相离共需多少时间?②一列慢车车长125米,车速每秒17米,一列快车车长140米,车速每秒22米,慢车在前面行驶,快车在后面追上到完全超过需要多少秒?例5:小明有一天沿铁路边的便道步行,这时一列火车从身旁通过的时间是18秒,货车的长为270米,如果小明的速度是每秒2米,求火车的速度?①小强以每分60米的速度沿铁路边散步,一列长144米的客车从后面追上他,并超过他用了8秒,求火车的速度?②师范附小五年级1222名同学排队春游,他们排成二路纵队通过公路大桥,前后两名同学间相距1米,他们通过大桥共用去20分钟,如果队伍的前进速度是每分钟50米,求桥长是多少米?③一列客车长120米,每秒行30米,一列货车长200米,每秒行20米。

小学五年级奥数行程问题应用题及答案

小学五年级奥数行程问题应用题及答案

【导语】⾏程问题是⼩学奥数中的⼀⼤基本问题。

⾏程问题有相遇问题、追及问题等近⼗种,是问题类型较多的题型之⼀。

⾏程问题包含多⼈⾏程、⼆次相遇、多次相遇、⽕车过桥、流⽔⾏船、环形跑道、钟⾯⾏程、⾛⾛停停、接送问题等。

以下是整理的《⼩学五年级奥数⾏程问题应⽤题及答案》相关资料,希望帮助到您。

1.⼩学五年级奥数⾏程问题应⽤题及答案 1、甲、⼄两地相距100千⽶,张⼭骑摩托车从甲地出发,1⼩时后李强驾驶汽车也从甲地出发,⼆⼈同时到达⼄地。

已知摩托车开始的速度是每⼩时50千⽶,中途减为每⼩时40千⽶;汽车的速度是每⼩时80千⽶,并在途中停留10分钟。

那么,张⼭骑摩托车在出发分钟后减速。

答案与解析: 汽车⾏驶了100÷80×60=75(分) 摩托车⾏驶了75+60+10=145(分) 设摩托车减速前⾏驶了x分,则减速后⾏驶了(145-x)分。

5x+580-4x=600 x=20(分) 2、甲、⼄两车分别从a b两地开出甲车每⼩时⾏50千⽶⼄车每⼩时⾏40千⽶甲车⽐⼄车早1⼩时到两地相距多少? 解:甲车到达终点时,⼄车距离终点40×1=40千⽶ 甲车⽐⼄车多⾏40千⽶ 那么甲车到达终点⽤的时间=40/(50-40)=4⼩时 两地距离=40×5=200千⽶ 2.⼩学五年级奥数⾏程问题应⽤题及答案 1、汽车往返于A,B两地,去时速度为40千⽶/时,要想来回的平均速度为48千⽶/时,回来时的。

速度应为多少? 解答:假设AB两地之间的距离为480÷2=240(千⽶),那么总时间=480÷48=10(⼩时),回来时的速度为240÷(10-240÷4)=60(千⽶/时). 2、赵伯伯为锻炼⾝体,每天步⾏3⼩时,他先⾛平路,然后上⼭,最后⼜沿原路返回.假设赵伯伯在平路上每⼩时⾏4千⽶,上⼭每⼩时⾏3千⽶,下⼭每⼩时⾏6千⽶,在每天锻炼中,他共⾏⾛多少⽶? 解答:设赵伯伯每天上⼭的路程为12千⽶,那么下⼭⾛的路程也是12千⽶,上⼭时间为12÷3=4⼩时,下⼭时间为12÷6=2⼩时,上⼭、下⼭的平均速度为:12×2÷(4+2)=4(千⽶/时),由于赵伯伯在平路上的速度也是4千⽶/时,所以,在每天锻炼中,赵伯伯的平均速度为4千⽶/时,每天锻炼3⼩时,共⾏⾛了4×3=12(千⽶)=12000(⽶).3.⼩学五年级奥数⾏程问题应⽤题及答案 1、A、B两地之间是⼭路,相距60千⽶,其中⼀部分是上坡路,其余是下坡路,某⼈骑电动车从A地到B地,再沿原路返回,去时⽤了4.5⼩时,返回时⽤了3.5⼩时。

小升初行程问题专项训练之火车过桥问题流水行船问题

小升初行程问题专项训练之火车过桥问题流水行船问题

小升初行程问题专项训练之火车过桥问题流水行船问题火车过桥问题【基本公式】过桥的时间=(桥长+车长)÷车速过桥的路程=桥长+车长车速=(桥长+车长)÷过桥时间【典型例题】1、一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多长时间?2、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?3一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?4、一列火车通过530米的桥需要40秒钟,以同样的速度穿过380米的山洞需要30秒钟。

求这列火车的速度是每秒多少米?车长多少米?5某人沿着铁路边的便道步行,一列火车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米。

求步行人每小时行多少千米?6.铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民,问军人与农民何时相遇?【课堂演练】1、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从火车头进入隧道到车尾离开隧道共需多少秒?2、一支队伍1200米长,以每分钟80米的速度行进。

队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。

问联络员每分钟行多少米?3、一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是锋线秒多少米?4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒,这列火车的速度和车身长各是多少?5、一人以每分钟60米的速度沿铁路边步行,一列长144米的客车从他身后开来,从他身边通过用了8秒钟,求列车的速度。

【课后演练】1、一座铁路桥全长1200米,一列火车开过大桥需花费75秒,火车开过路旁电杆,只需花费15秒,那么火车全长是多少米?2、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15秒,两车相向而行,从车头相遇到车尾离开需要几秒钟?3、有两列火车,一列长102米,每秒行20主;一列长120米,每秒行17米,两车同向而行,从第一列车追及第二列车到两车离开需要几秒?4、快车长182米,每秒行20米;慢车长1034米,每秒行18米。

(完整版)流水行船+火车过桥问题

(完整版)流水行船+火车过桥问题

流水行船问题顺水速度=船速+水速逆水速度=船速—水速(顺水速度+逆水速度)÷2=船速(顺水速度—逆水速度)÷2=水速例1:甲乙两港间的水路长208千米,某船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

练习1:1、甲乙两地相距180千米,某运动员在进行骑车训练,她从甲地到乙地顺风,需要5小时,从乙地返回甲地逆风,需要6小时,这个运动员在无风时的骑车速度是多少?2、两个码头相距352千米,一艘轮船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这水流速度。

例2:一艘船在静水中的速度为每小时15千米,它从上游的甲地开往下游的乙地共花去8小时,已知水速为每小时3千米,那么从乙地返回甲地需要多少小时?练习2:1、某船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这时原路返回,要行多少小时?2、一艘船在静水中的速度为每小时20千米,它从下游的甲地开往上游的乙地共用去9小时,已知水速为每小时5千米,那么从乙地返回甲地需要多少小时?例3:为了参加省里的运动会,体育老师给一位运动员进行了短跑测试,顺风10秒跑了95米,在同样的风速下,逆风10秒跑了65米,在无风的时候,他跑100米要用多少秒?练习3:1、水流速度是每小时15千米,现在有船顺水而行,8小时行了320千米,若逆水行320千米需几小时?2、有艘大木船在河中航行,逆流而上5小时行5千米,顺流而下5小时醒25千米,如果在静水中,行5小时可行多少千米?例4:一艘轮船用同一速度往返于两码头之间,它顺流而下,行了8小时,逆流而上,行了10小时,如果水流速度是每小时3千米,两码头之间的距离是多少千米?练习4:1、轮船以同一速度往返于两港之间,它逆流而上用了12小时,顺流而下少用2小时,如果水流速度是每小时4千米,两港之间的距离是多少千米?2、甲乙两艘游艇速度相同,顺流时速度为7千米,逆流时速度为5千米,它们同时从同一地点出发,甲顺流而下,然后返回,乙逆流而上,然后返回,结果1小时后它们回到原来出发点,在这1小时内有几分钟这两艘游艇的行驶方向相同?例5:甲乙两港相距360千米,一艘轮船往返两港需35小时,逆流航行比顺流航行多花5小时,现在有一艘帆船,静水中速度是每小时12千米,这艘帆船往返两港要多少小时?练习5:1、甲乙两港相距210千米,一艘帆船往返两港共用45小时,逆流而上所用的时间是顺流而下所用的时间的2倍,现在另一艘轮船的静水速度是每小时24.5千米,这艘轮船往返两港共需多少小时?2、一只小船顺流航行32千米,逆流航行16千米,共用8小时,顺流航行24千米,逆流航行20千米,也用了同样多的时间,这只小船顺流航行24千米然后返回要用多少时间?例6:长江水流速度某月1日是每小时1千米,该月2日是每小时2千米,有人在这两天里,每天都从甲码头到乙码头乘同一艘船往返一次,用的时间相等吗?练习6:1、一条河里有一漂流物,河的上下游分别各有一人与这一漂流物距离相等,并且这两人的游泳速度相同,那么谁先拿到漂流物?2、某河有相距300千米的上下两个码头,每天定时有甲乙两艘船速相同的客轮分别从两码头同时出发相向而行。

五年级奥数行程问题(追及相遇+火车过桥)

五年级奥数行程问题(追及相遇+火车过桥)

(一)行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

①追击及相遇问题一、例题与方法指导例1. 甲、乙、两人同时同地出发,绕一个花圃行走,甲与乙背向而行。

甲每分钟走40米,乙每分钟走38米。

在途中,甲和乙行走5分钟之后相遇。

问:这个花圃的周长是多少米?例2. 东、西两地间有一条公路长230千米,甲车以每小时25千米的速度从东到西地,2小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

哥哥刚到学校就立即返回来在途中与妹妹相遇。

从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?二、巩固训练1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?2. 两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,乙车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?三、拓展提升1. 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,行驶5小时后两车相遇。

求甲乙两地相距多少千米?3.甲、乙、丙三辆车同时从A地出发到B地去,丙第一个出发,乙第二,甲最后出发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一、相遇问题与追及问题
【例题1】甲、乙两人从A地到B地,丙从B地到A地。

他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。

求乙的速度?
【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?
变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离西侧20米处,求东西两地相距多远?
【例题3】甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发。

乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。

这只狗共奔跑了多少路程?
【例题4】甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米。

已知甲每小时比乙多行4千米。

甲、乙两人每小时各行多少千米?
【例题5】甲、乙、丙三人每分钟的速度分别是30米、40米、50米,甲、乙在A地同时同向出发,丙从B地同时出发去追赶甲、乙,丙追上甲以后又经过10分钟才追上乙。

求A、B两地的距离?
题型二、航船问题
【例题1】甲、乙两港相距360千米,一艘轮船从甲港到乙港,顺水航行15小时到达,从乙港返回甲港,逆水航行20小时到达。

现在有一艘机帆船,船速是每小时12千米,它往返两港需要多少小时?
【例题2】有一条船行驶于120千米长的河中,逆行需要10小时,顺水航行需要6小时,求船速和水速。

题型三、火车过桥问题
【例题1】一列火车经过长6700米的大桥,火车长140米,每分钟行400米,这列火车通过这座桥需要多少分钟?
【例题2】某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时64.8千米的火车错车需要多少秒?
错车即是两列火车的车头相遇到两列火车的车尾相离的过程.
题型四、工程问题
【例题1】单独做某项工程,甲队单独完成需要100天,乙队单独完成需要150天。

甲、乙两队合作50天后,剩下的由乙队单独完成还需要多少天?
【例题2】某项工程,甲单独做需要36天完成,乙单独做需要45天完成,如果开工时甲乙两人合作,中途甲队退出转做新的工程,乙又做了18天才完成任务,问:甲做了多少天?
课堂练习
1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。

已知慢车每小时行45小时,甲、乙两站相距多少千米?
2、两辆卡车为农场送化肥,第一辆车以每小时30千米的速度由县城开往农场,第二辆车晚开了2小时,结果两车同时到达。

已知县城到农场的距离是180千米,第二辆车每小时行多少千米?
3、一支队伍长450米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队伍的最前面,然后再返回队尾,一共用了多少分钟?
4、一列火车长150米,每秒行19米。

全车通过420米的大桥,需要多少分钟?
5、船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米。

船速每小时多少千米?水速每小时多少千米?
6、一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?
7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?
8、一列火车通过一座1000米的大桥要65秒,如果用同样的速度通过一座730米的隧道则要50秒。

求这列火车前进的速度和火车的长度?
9、一只轮船在静水中的速度是每小时21千米,船从甲城开出逆水航行了8小时,到达相距144千米的乙城。

这只轮船从乙城返回甲城需多少小时?
10、相邻两根电线杆之间的距离是45米,从少年宫起到育英小学门口有36根电线杆,再往前585米是书店,求从少年宫到书店一共有多少根电线杆?
11、解放军某部出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧道。

如果每辆汽车的长为10米,相邻两辆汽车相隔20米,那么,车队以每分钟500米的速度通过隧道,需要多少分钟?。

相关文档
最新文档