初中数学一题多变一题多解
浅谈初中《几何》习题一题多解与多变

浅谈初中《几何》习题一题多解与多变当前学校教育改革的重点之一,就是实施素质教育,让学生具备更强的科学素养,着重发展学生的独立思考、分析和解决问题的能力,使其不断地拓宽认知,进行创造性思维的培养。
而学科数学,更是教育改革必不可少的学科,针对不同年级的学生,设计合适的、有效的教学内容与形式,是一项重要的工作。
本文就以学科数学几何中的一个典型习题“一题多解与多变”为研究对象,探讨这一习题的学习价值,与初中学生学习几何数学的深入性、逻辑性和创新性。
一、一题多解及其学习意义一题多解是指,某一问题接受着不同的解决方式,这样的习题有可能会有许多不同的结果,但这些结果依然正确无误。
学习数学的关键是搞清楚问题本身是什么这里,也就是在一个特定的几何图形中,求解某个特定的元素。
如果能够发现一个问题有多种解法,意味着学生正在思考、联想,它们有可能想出新的解法,这样的习题就有助于培养学生的创新能力。
二、一题多变及其学习意义一题多变指的是一道数学习题有多种变形,不只是改变原有问题的内容,而是根据原题的各个环节的条件变化,将该题的变化体现在这个新的习题上,新的习题和原题拥有同样的解法,但是有不同的答案。
如果学生能在解题过程中发现一题有多变,并能灵活运用多种方法把握不同情况、不同条件下的答案,这将有助于学生在解题中学习数学的逻辑性及深度,从而更好的处理复杂的数学问题。
三、适应初中学生的教学模式要想培养学生的独立思考、分析和解决问题的能力,应采取针对性的教学模式。
在几何习题中,能给学生更多的探究机会,鼓励他们更主动地发现规律,解题思路更加清晰。
教师在提问、引导学生探究过程中,可以发挥出归纳、说明、示范等方式,对学生异思维技能,如设计思维、模式匹配、解决冲突等的培养,具有重要的作用。
本文再次强调,一题多解与多变的几何习题,有助于培养学生的独立思考、分析和解决问题的能力,提高学生的科学素养,是改革初中数学教学的重要内容之一。
通过改进教学方式,让学生发现习题的多样性和多变,对于学生的学习有很大的帮助,以此来激发学生进行更多创新性和分析性的思维、解题,从而提高学生的学习能力。
利用一题多解、一题多变来提高初中学生的数学解题能力

利用一题多解、一题多变来提高初中学生的数学解题能力作者:苏淑妮来源:《中学课程辅导·教师教育(中)》2017年第04期(广东省惠州市惠阳区崇雅中学广东惠州 516000)【摘要】数学课程标准中,要求使学生站在不同角度,探索分析和解决问题的方法,此外,教育心理学也指出:问题解决有两种类型:一是常规性问题解决;二是创造性问题解决。
通过一题多解、一题多变训练,使学生能够体验到解决问题的多样性方式,能够掌握分析及解决问题的基本技巧和方法,使所学的知识得到活化,融会贯通,开阔思路,培养学生的发散、创新思维能力。
【关键词】一题多解一题多变初中数学发散思维【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2017)04-173-01先观察以下4个例题,是初中数学练习过程经常碰到的,具体的解答过程后文有详细的描述,以此四个例题用以论述本文的观点。
例1:相切两圆半径分别是4和6,求圆心距。
例2:在几何题型中:直角三角形两边长3和4,求第三边。
例3:一道求证题:顺次连接平行四边形各边中点所得的四边形是平行四边形变式1:顺次连接矩形各边中点所得的四边形是菱形变式2:顺次连接菱形各边中点所得的四边形是矩形变式3:顺次连接正方形各边中点所得的四边形变式4:顺次连接什么四边形各边中点可以得到平行四边变式5:顺次连接什么四边形各边中点可以得到矩形变式6:顺次连接什么四边形各边中点可以得到菱形例4:在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.一、一题多解、一题多变帮助学生循坏往复调动所学知识,强化记忆在学习生涯中,知识点是解题的基础和灵魂,千千万万的题目是从知识点出发延伸设计出来问题考察学生的。
由于时间和空间有限,学生不可能做完所有的题目,对于教师也不可能讲解完所有的题目。
而对于数学,单是一道题目中也不可能只有一个知识点的考察,例题1这道题中涉及的知识点有:相切圆、半径、圆心距,最终的问题虽然是求圆心距,但是如果没有正确的对于圆、半径以及相切的概念,那么也就无从下手。
圆的一题多解一题多变

亲爱的同学们:数学常常一题多解,在多解的探索过程中,犹如一次历险记,本期我们将通过答案的展示再次一起去感受题目的构造美、图形美、因果美、推理美、创造美、对称美!已知在圆O中,A为优弧BC的中点,且AB=BC,E为弧BC上的一点,求AE=BE+CE.【分析】本题知识点(1)等边三角形和全等的相关知识;(2)利用截长补短的解题方法.1.一题多解(1)利用截长方法的方法解题解析:在AE上取点F,使得AF=BE,(AFC BECAF BEFAC EBCAC BC∆∆=⎧⎪∠=∠⎨⎪=⎩在和中作法可得)(同弧所对的圆周角相等)(等边三角形边相等)AFC∆≌BEC∆(SAS)∴CF=CE60AEC ABC∠=∠=︒∴ECF∆是等边三角形∴EF=ECAE=AF+EF∴AE=BE+CE(2)利用补短的方法解题解析:延长EB至点F,使BF=EC,BF ACEB C(ABF ACE ABEB AAF EA C∆∆=⎧⎪∠=∠∠⎨⎪=⎩在和中作法可得)(同角的补角相等)(等边三角形边相等)ABF∆≌ACE∆(SAS)FE∴BAF=CAE ∠∠ AE=AFCAE+EAB=60∠∠︒∴+EAB=60BAF ∠∠︒ ∴AFE ∆是等边三角形 ∴AE=EF=BE+BF 即AE=BE+CE(3)利用旋转的方法解题解析:将ACE ∆顺时针旋转60︒,则ABF ∆≌ACE ∆∴AEF ∆是等边三角形,ACE ABF ∠=∠+ABE=180ACE ∠∠︒(圆内接四边形对角互补)∴BF+ABE=180A ∠∠︒ 即点F 、B 、E 三点共线 ∴AE=EB+BF 即:AE=EB+EC(4)利用平行的方法解题解析:过点C 作AE 的平行线CF 交圆于点F ,连接AF.(5)利用托勒密定理解题解析:利用托勒密定理可得+EC AB=AE BC BE AC ⋅⋅⋅ ABC ∆是等边三角形∴AB=AC=BC ∴BE+EC=AE九年级版ECF//AEFCE+18060+CFB=180CE//FGCEGF BEG AFG BE=EG,CF=GF=AG BF+CF=GE+AG=AECEA BFC CEA FCE ∴∠∠=︒∠==︒∴∠∠︒∴∴∆∆∴∴即四边形是平行四边形和是等边三角形F。
一题多解与一题多变在数学中的应用

一题多解与一题多变在数学中的应用摘要:数学这门学科在当代素质教育和学术教育统一的义务教育中占有重要地位,它是一门自由学科,但同时也是既复杂困难又富有逻辑的学科。
也许对大部分学生来说,数学这门学科是一道难题。
因此,数学学科的教育传授者在教学中如何传授这门学科的方法、方式,就显得尤为重要。
关键词:一题多解;一题多变;数学一、一题多解与一题多变在数学中的应用的重要性数学学习最重要的是逻辑性问题,并且经过对比分析,发散思维,一题多解与一题多变的方法的应用恰恰能达到这个目标和目的,他们能够不断提高学生们的逻辑思维能力,数学分析能力。
一题多解指的是面对一道数学题,因为有不同的角度进行思考,在脑海中搜寻不相同的解决方法,多种多样的思路,从而有多种多样的可用的解决方案,这样能够提高学生们的数学分析和解决能力。
在解决实际问题的过程中需要我们进一步掌握分析的方法,能用多种的方法思考问题,从中找到不同的解决策略。
下面我将用具体的习题,更好地解释一题多解。
一题多解案例分析例题:已知:f(某)=某3+a某2+(a-1)某+1,若在区间[1,4]单调递减,求a范围?方法一:解题思路问题转化为导函数f"(某)≤0在区间[1,4]恒成立,f"(某)≤0解集为A,只需[1,4]是集合A的子集解:f"(某)=某2+a某+(a-1)因为f(某)在区间[1,4]单调递减所以f"(某)≤0在区间[1,4]恒成立某2+a某+(a-1)≤0(某+1)[某+(a-1)]≤01.当a<2时,f"(某)≤0解集为[-1,1-a]所以[1,4]是[-1,1-a]的子集4≤1-a解得a≤–32.当a≥2时,f"(某)≤0解集为[1-a,-1]不满足[1,4]是[1-a,-1]的子集所以解集是空集综上所述:a≤-3方法二:解题思路问题转化为导函数f"(某)≤0在区间[1,4]恒成立,导函数y=f"(某)为开口向上的二次函数,只需f"(4)≤0,f"(1)≤0同时成立即可解:f"(某)=某2+a某+(a-1)因为f(某)在区间[1,4]单调递减所以f"(某)≤0在区间[1,4]恒成立由二次函数图像可知,只需即解得所以a≤–3一题多变例题例题:已知椭圆标准方程+=1,A(0,3),直线l:y=k某-3与椭圆相交于C,D两点,若|AC|=|AD|,求k的值?解题思路:直线与椭圆联立,消元,设C(某1,y1)D(某2,y2),韦达定理:因为|AC|=|AD|,取C,D中点M,则AM垂直CD,即KAMKCD=-1解:消y得:(9+25k2)某2-150k某=0,Δ>0设C(某1,y1)D(某2,y2),由韦达定理得:某1+某2=某1某2=0y1+y2=k(某1+某2)-6=k2-6=设M(某0,y0)为CD中点,则某0=(某1+某2)=,y0=(y1+y2)=因为|AC|=|AD|,所以AM垂直CD,即KAMKCD=-1k=-1整理得:=-,k2=,k=在一题多变的思维下,我们可以将|AC|=|AD|改成以下两种形式:1.以AC,AD为邻边做平行四边形为菱形2.(AC+AD)CD=0这两种已知虽然与原例题有很大区别,但通过转化最终都能转化为AM垂直CD,解题思路与过程非常相似,结果一样。
初中几何的习题一题多解与一题多变-最新文档(可编辑修改word版)

初中几何的习题一题多解与一题多变数学课程标准中,要求使学生经历站在不同角度,探索分析和解决问题的方法这一重要过程。
使学生能够体验到解决问题的多样性方式,能够掌握分析及解决问题的基本技巧和方法。
数学中“一题多解”和“一题多变”,被普遍看作是培养学生能力,以及开发学生智力,最佳途径之一,能够培养出学生的发散性思维,以及创造性思维,提高学生对几何的学习兴趣。
一、初中几何“一题多解”和“一题多变”的相关问题初中生在学习几何的过程中,鉴于其概念和定理繁多,又要求学生需要具有较强的综合性能力,且巧妙多变的解题方法,导致学生学习的时候,有一种困难的感觉,提高了教师实施教学的难度。
在教学过程中,不仅要帮助学生理清概念和定理的条件、结论,而且有效将其系统化、条理化,进而建立较为完整的、独立的知识结构体系。
其中,为之重要的是要牢固掌握课本习题灵活多变的解题方法,比较各种方法,更深刻的领悟相关的概念与定理,归纳各种习题的解决方法,灵动的掌握各种题型,以至于可以轻巧熟练地运用相关的概念和定理来推理论证,提升学生的解题能力。
通过课本习题,多角度思考问题,寻求解题的一般规律,从而引领学生入门。
二、“一题多解”和“一题多变”需注重学生“猜测”能力“一题多解”和“一题多变”在教学之中,往往能起到一座桥的作用,在最近发展区之中,将学生从已知的彼岸,渡到未知的彼岸。
教师在教学生平面几何的过程中,不仅要教会学生怎么证明,而且重点是教会学生猜测和思考。
因为猜测可以导致发现,所有证题者在解决数学问题时,都要猜测,都是先猜测后证明的。
这就要求教师教学时要创立一个激发学生积极性思维、主动猜测的意境,提高学生自主探索的能力。
为了调动学生思维的主动性,形成有益的思维方式,教师要鼓励和引导学生去猜,千万不要制止,哪怕是不合理的猜测,更不要把全部的秘密立即说出来,由学生自己猜测出来不仅可以开阔他们的证题的思路,而且对培养学生探究以及深究问题能力有很大的帮助。
《一题多解与一题多变在中学数学中的应用开题报告2000字》

[4] 黄跃惠. 一题多解与一题多变在初中数学教学中的运用[J]. 试题与研究:高考版, 2019(28):1.
[5] 宫代印. 浅谈"一题多解"和"一题多变"在高中数学教学中的应用[J]. 试题与研究:教学论坛, 2019(2):1.
[6] 王菊香. 一题多变和多解成就智慧课堂[J]. 考试周刊, 2019(87):2.
[13] 江猷敏. "一题多解和一题多变"在培养学生数学思维能力的应用策略探析[J]. 考试周刊, 2020(66).
[14] 章勇. "一题多解"与"一题多变"在培养学生思维能力中的应用[J]. 新教育时代电子杂志(学生版), 2020(24):2.
八.指导教师意见
指导教师签字:
年 月 日
九.系意见
系主任签字:
年 月 日
十.学院毕业论文(设计)工作领导小组意见
负责人签字:
年 月 日
[7] 颜天伦. 初中数学教学中"一题多变","一题多解"渗透[J]. 中学课程辅导:教学研究, 2019.
[8] 张海玲. 谈利用"一题多解与一题多变"培养学生的思维能力[J]. 新智慧, 2021(6):2.
初中数学教学中“一题多变一题多问”实践策略

初中数学教学中“一题多变一题多问”实践策略摘要:数学是一门注重学生思维能力发展的学科,与此同时也更加考查学生综合运用知识和解决问题的能力,因此对于中学数学来说,对学生的思维进行发展,是目前教学中较为重要的内容。
通过一题多变一题多解的练习,老师可以更好地培养学生的思维,从而提升学生的学习能力。
还要求学生善于从多个角度和多个层次进行题目的分析,用不同的方法进行问题的解答。
对于老师来说也需要适当的引导学生从不同的方法、角度、思维方式去进行一些解题思路的探索,激发学生学习的兴趣和欲望,从而加深学生对所学知识的深刻理解,从而培养学生的思维品质和创造性思维。
鉴于此,本文对初中数学教学中“一题多变一题多问”的实践策略进行了探索。
关键词:初中数学;“一题多变一题多问”;实践策略一、现如今初中数学教学中的问题1、知识点较多,学生有畏难情绪初中数学与小学数学相比,知识点更密集,对学生理解和灵活运用数学知识的能力要求也更高。
但是对于初中生而言,他们还没有转换过来自己的学习方式,教师一味的灌输给学生知识,只能是增加学生的负担,不能帮助学生更好的吸收与理解教师所传授的知识。
随着学习的深入,学生对于数学学习感到越来越无力,由此产生抵触情绪,不愿进行数学的学习。
2、学生没有良好的数学学习品质数学的学习除了认真听教师讲课之外,还要有善于发现问题的眼睛,和努力解决问题的性格。
良好的学习品质是帮助学生进行高效学习的保障。
拥有良好的数学学习品质能够让学生在遇到数学难题时迎难而上,越战越勇,直到将难题拿下。
但是通过教学发现,学生对于数学知识的学习,没有认真钻研的态度一知半解,缺少良好的学习品质,这是阻碍学生进行高效数学学习的关键所在。
3、缺乏学习兴趣由于缺少对学生学习兴趣的培养,部分学生会由于难以学懂而自暴自弃,甚至对数学产生厌弃心理。
由于教师在课堂上主要是针对课本内容进行讲解,学生在这个过程中只是被动接受的一方,而导致学生难以培养独立思维能力和自主探索能力,在面对问题时不能对知识进行灵活运用,这都不利于学生数学核心素养的发展。
一道数学题的解决策略------通过一题多解,一题多变培养学生思维

一道数学题的解决策略------通过一题多解,一题多变培养学生思维发布时间:2021-09-28T05:30:57.540Z 来源:《中小学教育》2021年15期作者:薛发楷[导读] 九年级的数学复习每年都面临时间紧,任务重的状况,几乎所有的数学老师都在寻求一种复习的最佳方法和途径,以便在中考中能取得满意的成绩。
尤其是现在国家又颁布了双减政策之后,提高老师在课堂教学的高效性尤为重要,不能在就题论题,追求做题的数量而陷入题海战术。
薛发楷四川省成都市双流区胜利初级中学 610200九年级的数学复习每年都面临时间紧,任务重的状况,几乎所有的数学老师都在寻求一种复习的最佳方法和途径,以便在中考中能取得满意的成绩。
尤其是现在国家又颁布了双减政策之后,提高老师在课堂教学的高效性尤为重要,不能在就题论题,追求做题的数量而陷入题海战术。
不管哪一年级的数学复习,每次考试下来之后常常听到老师在抱怨,这些题都做了千遍万遍了,学生还是做不起,没有达到老师预设的效果,尤其是几何题的复习,收效更是甚微,只要遇到辅助线的添法,无论上课怎么讲,课下刷了多少题,一到考试学生拿到这样的题还是束手无策,于是我就在反思,导致这样的结果到底是什么,我想无非就是老师为了赶进度,在讲解几何题的辅助线的添法时,往往是按照老师预设的方法去引导学生,学生说出了辅助线的添法,但不能举一反三。
我们不得不承认理科学习一定要刷一定数量的题,但知识没有理性化,没有悟出其中的数学方法,学生永远是门外汉,并没有真正掌握理解,如果每做一道题都让学生探索其解题的思想方法,拓展其外延,总结其规律,这样学生的复习就会融会贯通,达到事半功倍的效果。
在现代数学教学中,教师应按照数学思维的规律和方式方法,去启发引导学生思考,让学生的一些重要想法、符合情理的思维过程都展现出来,还学生一个真实而科学的思维过程并究其原因。
注重学生一题多解,一题多变,培养学生思维的深刻性,拓展学生的思路,发展学生的思维,有利于学生创造性的发挥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
A
S 2
S 3
S 1
C
B
A
S 3
S 2
S 1
S 3
S 2S 1
C
B
A
一题多解、一题多变
原题条件或结论的变化
所谓条件或结论的变化,就是对某一问题的条件或结论进行变化探讨,并针对问题的内涵与外延进行深入与拓展,从而得到一类变式题组。
通过对问题的分析解决,使我们掌握某类问题的题型结构,深入认识问题的本质,提高解题能力。
例1 求证:顺次连接平行四边形各边中点所得的四边形是平行四边形。
变式1 求证:顺次连接矩形各边中点所得的四边形是菱形。
变式2 求证:顺次连接菱形各边中点所得的四边形是矩形。
变式3 求证:顺次连接正方形各边中点所得的四边形是正方形。
变式4 顺次连接什么四边形各边中点可以得到平行四边形? 变式5 顺次连接什么四边形各边中点可以得到矩形? 变式6 顺次连接什么四边形各边中点可以得到菱形? ……
通过这样一系列变式训练,使学生充分掌握了四边形这一章节所有基础知识和基本概念,强化沟通了常见特殊四边形的性质定理、判定定理、三角形中位线定理等,极大地拓展了学生的解题思路,活跃了思维,激发了兴趣。
一、几何图形形状的变化
如图1,分别以Rt ABC 的三边为边向外作三个正方形,其面积分别为321S S S 、、,则
321S S S 、、之间的关系是
图1 图2 图3
E S 3
S 2
S 1
D
C
B
A
S 3S 2
S 1
A
B
C
D
A
B
C
D S 3S 2
S 1
变式1:如图2,如果以Rt ∆ABC 的三边为直径向外作三个半圆,其面积分别为321S S S 、、,则321S S S 、、之间的关系是
变式2:如图3,如果以Rt ∆ABC 的三边为边向外作三个正三角形,其面积分别为
321S S S 、、,则321S S S 、、之间的关系是
变式3:如果以Rt ∆ABC 的三边为边向外作三个一般三角形,其面积分别为321S S S 、、,为使321S S S 、、之间仍具有上述这种关系,所作三角形应满足什么条件?证明你的结论。
,2,90,//,44321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为边向梯形外作正方形、、分别以且中,梯形:如图变式=︒=∠+∠之间的关系是
图4 图5 图6
,2,90,//,55321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、形,其面积分别为为边向梯形外作正三角、、分别以
且中,梯形:如图变式=︒=∠+∠之间的关系是
,2,90,//,66321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为直径向梯形外作半圆、、分别以且中,梯形:如图变式=︒=∠+∠之间的关系是
上述题组设置由易到难,层次分明,把学生的思维逐渐引向深入。
这样的安排不仅使学生复习了勾股定理,又在逐渐深入的问题中品尝到成功的喜悦;既掌握了基础知识,也充分认识了问题的本质,可谓是一举两得。
二、图形内部结构的变化
例2.已知:如图7,点C 为线段AB 上一点,∆ACM 、∆CBN 是等边三角形。
求证:AN=BM
图7 图8
MCB
ACN CB CN AC MC CBN ACM ∠=∠==∴∆∆,,是等边三角形
和证明:
ACN ∆∴≌MCB ∆
BM AN =∴
变式1:在例2中,连接DE ,求证:(1)∆DCE 是等边三角形(2)DE//AB
分析:(1)可证ADC ∆≌MEC ∆,则DC=EC,因为∠DCE=︒60,所以∆DCE 是等边三角形。
(2)由(1)易证∠EDC =∠ACM=︒60,所以DE//AB 变式2:例2中,连接CF ,求证:CF 平分∠AFB
分析:过点C 作C G ⊥AN 于G,CH ⊥BM 于H,由ACN ∆≌MCB ∆,可得到CG=CH, 所以CF 平分∠AFB
变式3:如图8,点C 为线段AB 上一点,∆ACM 、∆CBN 是等边三角形,P 是AN 的中点,Q 是BM 的中点,求证:CPQ ∆是等边三角形 证明:ACN ∆ ≌MCB ∆
BM AN =∴,ANC ABM ∠=∠
的中点、分别是、又BM AN Q P
BCQ ∆∴≌P N C ∆
是等边三角形
CPQ 60NCB NCQ BCQ NCQ NCP PCQ NCP
BCQ CP,CQ ∆∴︒=∠=∠+∠=∠+∠=∠∴∠=∠=∴
图7是一个很常见的图形,其中蕴含着很多的关系式,此题还可 适当引导学生探索当点C 不在线段AB 上时所产生的图形中的一些结论,通过该题的变式训练,让学生利用自己已有的知识去探索、猜想,进而培养了学生思维的创造性。
三、因某一基本问题迁移的变化
例4如图9,要在燃气管道L 上修建一个泵站,分别向A 、B 两镇
供气,问泵站修在什么地方使所用的输气管线最短? 图9
分析:设泵站应建在P 处。
取点B 关于L 的对称点B ’,如图1,PB ’=PB,要使PA+PB 最小只要PB ’+PA 最小,而两点之间距离最短,连接AB ’与L 的交点P 即是泵站所建的位置。
本题特点:一直线同旁有两定点,关键要在直线上确定动点的位置,使动点到定 点的距离之和最短,我们常常把这类问题称作“泵站问题”。
变式1:如图2,在∆ABC 中,AC=BC=2,∠ACB=︒90,D 是BC 的中点,E 是AB 边上一动点,则EC+ED 的最小值是
图2
解:C 、D 是两定点,E 是在直线AB 上移动的一动点,以CA 、CB 为边作正方形ACBF ,则C 关于AB 的对称点一定是F,连接DF 交AB 于E,这时EC+ED 最小。
因为D 是BC 的中点,在直角三角形FBD 中,
5122222=+=+==+=+BF BD DF EF ED ED EC .
变式2:如图3,点P 是边长为1的菱形ABCD 对角线AC 上一动点,M 、N 分别是AB 、BC 边上的中点,则PM+PN 的最小值
分析:M 、N 是两定点,P 是在直线AC 上移动的一动点,作N 关于AC 的对称点G ,由于四边形ABCD 是菱形,所以G 一定在DC 上,且为DC 的中点,连接MG 交AC 于P,四边形AMGD 为平行四边形,连接PM 、
P
L
B'
B
A
G
N
M
P
D
C
B A
F
E
D
C
B
A
PN ,则PM+PN 最小,PM+PN=PM+PG=MG=BC=1
变式3:如图,梯形ABCD 中,AD//BC,AB=CD=AD=1, ∠B=︒60,直
线MN 为梯形的对称轴,P 为MN 上一点,那么PC+PD 的最小值为
解:C 、D 是两定点,P 是直线MN 上一动点,因为图形ABCD 中,
AD//BC,AB=CD=AD=1,所以四边形ABCD 为等腰梯形,而直线MN 为梯形ABCD 的对称轴,则D 关于MN 的对称点是A 点,连接AC 交MN 于点P,
连接PD,则有PA=PD,要使PC+PD 的值最小,就要使PA+PC 最小,所以PC+PD=PA+PC=AC,因为∠B=︒60,可证得AB C ∆为直角三角形,AC=ABtan ∠B=1⨯tan ︒60=3,则PC+PD 的最小值为3.
变式4:如图,已知⊙O 的半径为r , C 、D 是直径AB 同侧圆周上的两点,弧 AC 的度数为︒96,弧 BD 的度数为︒36,动点P 在AB 上,则CP+PD 的最小值为 解:如图,设D ’是D 关于直径AB 的对称点,连接CD ’交AB 于P ,则P 点使CP+PD 最小。
弧CD 的度数为︒=︒-︒-︒483696180,弧CD ’的度数为︒120, 所以∠COD ’=︒120,从而易求CP+PD=CD ’=r 3,所以CP+PD 的最小值为r 3.
本例利用“泵站问题”进行迁移变式,逐步探究了几种常见的图形中两条线段之和最短问题,这样有利于学生解题思想方法的形成、巩固,达到了透彻理解该基本问题的目的。
O
P
D'D C
B
A。