北师大版八年级数学下册:5.3《分式的加减法》习题
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(有答案解析)(3)

一、选择题1.若关于x 的分式方程3111m x x-=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠ B .4m ≥-且3m ≠- C .2m ≥且3m ≠D .4m >-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( ) A .1010302x x -= B .102010602x x += C .1010302x x+= D .102010602x x-= 3.已知113x y -=,则代数式21422x xy y x xy y----的值( ) A .4B .9C .-4D .-84.若关于x 的一元一次不等式组312(2)213x x x a +≤-⎧⎪-⎨<⎪⎩的解集为x≤-5,且关于x 的分式方程24233ax x x ++=--有非负整数解,则符合条件的所有整数a 的和为( ) A .-6 B .-4 C .-2 D .05.若关于x 的方程2033x a x x ++=++有增根,则 a 的值为( ) A .1 B .3 C .4 D .56.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 7.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.若分式293x x -+的值为0,则x 的值为( )A .4B .4-C .3或-3D .39.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -111.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .2,3D .1,312.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1-B .1C .3D .3-二、填空题13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.已知2a b=,则a b a b +-=_____.15.若x 2-x -1=0,则232x x x--=___.16.x 的取值范围是______. 17.要使分式3x 2-有意义,则x 的取值范围是___________.18.如果2y =,那么y x =_______________________. 19.计算22111m m m---,的正确结果为_____________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______.三、解答题21.先化简2222121a a a a ⎛⎫-- ⎪-+⎝⎭÷221a aa +-,然后从0,1,2中选一个合适的数作为a 的值代入求值.22.计算:2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 23.先化简,再求值:221b a a b a b ⎛⎫÷- ⎪--⎝⎭,其中12a =,13b =-. 24.为应对新冠疫情,某药店到厂家选购A B 、两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.8元,若用7000元购进A 品牌数量是用4900元购进B 品牌数量的2倍.(1)求A B 、两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2.2元,B 品牌口罩每个售价为3.3元,药店老板决定一次性购进A B 、两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个? 25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.(1)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭(2)先化简再求值:22224221121a aa a a a --⎛⎫-+÷ ⎪+--+⎝⎭,其中2=a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m+3=x﹣1,再由整式方程的解为非负数得到m+4≥0,由整式方程的解不能使分式方程的分母为0得到m+4≠1,然后求出不等式的公共部分得到m的取值范围.【详解】解:去分母得m+3=x﹣1,整理得x=m+4,因为关于x的分式方程311mx x-=--1的解是非负数,所以m+4≥0且m+4≠1,解得m≥﹣4且m≠﹣3,故选:B.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.D解析:D【分析】设骑车学生每小时走x千米,则设乘车学生每小时走2x千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x千米,则设乘车学生每小时走2x千米,由题意得:102010602x x-=,故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.A解析:A【分析】由11x y=3,变形得y-x=3xy,然后整体代入代数式,计算化简,即可得到结论.【详解】解:由11x y=3,得y xxy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.4.D解析:D 【分析】先解不等式组,根据不等式组的解集得到a 的范围,再解分式方程,根据分式方程的解为非负数得到a 的值,即可求解. 【详解】解:不等式组整理得:523x x a -⎧⎨<+⎩,由解集为5x -,得到235a +>-,即4a >-, 分式方程去分母得:()2234ax x --+-=, 整理得:(2)12a x -=, 解得:122x a=-, 由x 为非负整数,且3x ≠,得到21a -=,2,3,6,12, 解得1a =或0或1-或4-或10-4a >-,1a 或0或1-,符合条件的所有整数a 的和为1010+-=. 故选:D . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a =故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.6.A解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.D解析:D 【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得. 【详解】由题意得:2903x x -=+,则290x ,即29x =,由平方根解方程得:3x =±, 分式的分母不能为0, 30x ∴+≠,解得3x≠-,则x的值为3,故选:D.【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明11.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m , 解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数, ∴4-m >0,4-m≠2 ∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3, 故选: D. 【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.12.D解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键解析:92【分析】 解方程得到2ab=,代入代数式即可得到结论. 【详解】 解:44a b b a+=,两边同时乘以a b得:2()44a a b b +=⨯,∴2ab=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】本题考查了分式的化简求值,求得ab的值是解题的关键. 14.3【分析】首先由可设a =2kb =k 然后将其代入即可求得答案【详解】解:∵∴设a =2kb =k ∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k 法设出未知数解析:3 【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案.【详解】解:∵2ab=, ∴设a =2k ,b =k ,∴a b a b +-=22k kk k +-=3. 故答案为:3. 【点睛】本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.2【分析】把x2-x-1=0变形得x2-1=x 然后对分式进行化简再代入求值【详解】∵x2-x-1=0∴x2-1=x ∵故答案是:2【点睛】本题主要考查分式的化简求值掌握分式的减法运算是解题的关键解析:2 【分析】把x 2-x -1=0变形得x 2 -1=x ,然后对分式进行化简,再代入求值. 【详解】 ∵x 2-x -1=0, ∴x 2 -1=x ,∵232x x x --=()222221322222x x x x x x x x x----====,故答案是:2. 【点睛】本题主要考查分式的化简求值,掌握分式的减法运算是解题的关键.16.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键解析:3x ≤且2x ≠- 【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得. 【详解】 由题意得:2030x x +≠⎧⎨-≥⎩,解得3x ≤且2x ≠-, 故答案为:3x ≤且2x ≠-. 【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.17.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2 【分析】根据分式有意义得到分母不为0,即可求出x 的范围. 【详解】 解:要使分式3x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2. 【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0.18.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可. 【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式=11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 三、解答题21.1a a +,32【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案.【详解】解:原式=[22(1)(1)a a a --﹣1]÷(1)(1)(1)a a a a ++- =(2111a a a a ----)÷1a a - =111a a a a +-⋅- =1a a+, ∵a≠1且a≠0,∴a =2,当a =2时, 原式=21322+=. 【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.33m - 【分析】根据分式的性质化简即可;【详解】原式()()()2333333m m m m m m m +⎛⎫+=- ⎪+++-⎝⎭, ()()()233333m m m m +=++-, 33m =-; 【点睛】本题主要考查了分式的化简,准确计算是解题的关键.23.1a b+,6 【分析】 根据分式的性质将分式进行化简,再将a 和b 的值代入即可求解.【详解】原式()()()b b a b a b a b =÷+-- ()()()b a b a b a b b -=⨯+- 1a b=+ 将12a =,13b =-代入上式,得:原式6= 【点睛】 本题考查了分式的化简求值,解题关键是熟练掌握分式的性质,在计算除法时,要注意除以一个数等于乘以这个数的倒数.24.(1)A 品牌口罩每个进价为2元,B 品牌口罩每个进价为2.8元;(2)最少购进B 品牌口罩2000个.【分析】(1)设A 品牌口罩每个进价为x 元,则B 品牌口罩每个进价为(0.8)x +元,根据用7000元购进 A 品牌数量是用4900元购进B 品牌数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进B 品牌口罩m 个,则购进A 品牌口罩(6000)m -个,根据总利润 =每个的利润⨯销售数量(购进数量)结合这批口罩全部出售后所获利润不低于1800元,即可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:(1)设A 品牌口罩每个进价为x 元,则B 品牌口罩每个进价为(0.8)x +元, 依题意,得:7000490020.8x x =⨯+, 解得:2x =,经检验,2x =是所列方程的解,且符合题意,0.820.8 2.8x ∴+=+=,答:A 品牌口罩每个进价为2元,B 品牌口罩每个进价为2.8元.(2)设购进B 品牌口罩m 个,则购进A 品牌口罩(6000)m -个,依题意,得:(2.22)(6000)(3.3 2.8)1800m m --+-≥,解得:2000m ≥.答:最少购进B 品牌口罩2000个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,理解题目的意思列出方程和不等式是解题的关键.25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)21x -,(2)21a +,2- 【分析】(1)先计算括号内的分式减法,再算除法即可;(2)先依据分式运算法则和顺序化简,再代入求值即可.【详解】解:(1)221111x x x ⎛⎫÷- ⎪-+⎝⎭,2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x+=-, ()()21·11x x x x x +=+-,21x =-; (2)22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭, ()()()()22212·1112a a a a a a a--=++-+-, 22(1)11a a a a -=-++, 21a =+, ∵2=a ,∴a=2(不符合题意,舍去)或a=-2,把a=-2代入,原式2221-+==-. 【点睛】本题考查了分式的运算和分式化简求值,解题关键是熟练运用分式的运算法则和运算顺序解题.。
北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)

3
m
m3
3m
3
2m (m 3)
m 3m 3
m
m3
3m
3
从 1,-3,3 中任 选一个你喜欢的 m 值代入求值.
1. m3
当
m
=
1
时,原式
1 1
3
1 2
做一做
先化简,再求值: 1 x 1
x
2 2
,其中 1
x
2.
解:
1 x 1
2 x2 1
1 x 1
2 (x 1)(x 1)
(x 1)
2
(x 1)(x 1) (x 1)(x 1)
计算结果要化为最简分式或整式.
例解4:原计式算: (m1)2m22
2m
5 2m
m
5 ••232m3mm4mm;41
2
(m
或
2)(2 2m
m)
9 m2 • 2m 2
先算括号里的
2m 3m
加法,再算括
3 m3 m 22 m
•
号外的乘法
2m
3m
2m 3 2m 6.
注:当式子中出现整式时,把整式看成整体,并把
第五章 分 式
5.3 分式的加减法
第3课时 异分母分式的加减(2)
复习引入 1. 分式的乘除法则是什么?用字母表示出来:
b d bd a c ac
b d b c bc a c a d ad
2. 分式的加减法则是什么?用字母表示出来:
b d bc ad bc ad a c ac ac ac
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子 (整式) 相加减
2. 分式的混合运算法则 先算乘除,再算加减;如果有括号先算括号内的.
北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法

整1数)+,其1结+果为1__+____+_____1____. 1 3 2 4 3 5 n(n+2)
3n2+5n 4(n+1)(n+2)
知1-练
感悟新知
知识点 2 分式加减的应用及分式混合运算
知2-练
例2 小刚家和小丽家到学校的路程都是3km,其中小丽走的是 平路,骑车速度是2vkm/h.小刚需要走1km的上坡路、 2km的下坡路,在上坡路上的骑车速度为vkm/h,在下 坡路上的骑车速度为3vkm/h.那么 (1)小刚从家到学校需要多长时间? (2)小刚和小丽谁在路上花费的时间少?少用多长时间?
知1-讲
特别解读: 通分的关键是确定最简公分母,分式与分式相加减时的最简 公分母是各分母的所有因式的最高次幂的积.
感悟新知
例1 计算:
(1) (32) (3a) 15 ; a 5a
1 1; x3 x3
知1-练
2a 1
a2
4
a
. 2
解:(1) 3 a 15 15 a 15 15 a 15 a 1 ;
(2)分式加减运算的结果要约分,化为最简分式(或整式).
课堂小结
异分母分式的加减 法
某学生化简分式出1现了+错误1 ,解答过程如下:
原式
x+1 x2-1
=(x+1)1(x-1)+(x+1)2(x-1)(第一步)
=(x+1)1+(2 x-1)(第二步)
=
3 x2-1
.(第三步)
课堂小结
异分母分式的加减 法
C.D.
-x x+2
x x- 2
知1-练
感悟新知
3. 计算的结a2+果2是ab(+b2 -) b
A
a2-b2 a-b
北师大八年级数学下册《分式的加减法》习题.docx

初中数学试卷 桑水出品《分式的加减法》习题一、填空题1.计算:242+-x = .2.计算:aba b b a +=++________.3.分式25,34c abc a 的最简公分母是_________..4.计算:23124xy x +=________.5. 计算213122xx x ---- 的结果是____________..6.计算:abc ac ab 433265+-= .7.若222222m xy y x yx y x y x y --=+--+,则m =________.8.当分式2121111y y y ---+-的值等于零时,则x =_________.二、选择题:1.下若x x 1=,则分式36224+-+x x x 的值为( )A .0B . 1C .-1D .-22.分式x-y +22y x y +的值为( ) A. 22x y y x y -++ B .x+y C. 22x yx y ++D.以上都不对3. 如果分式b a b a +=+111,那么a bb a+的值( )A .1B .-1C .2D .-24.化简11(m )(n )n m -÷-的结果是( )A .1B .m nC .nm D .-15.化简11123x x x ++等于( )A .12xB .32xC .116xD .56x6.计算37444a a b b a b b a a b ++----得( ) A .264a b a b +-- B .264a b a b+- C .2- D .2 三、解答题1.计算(1)222)3(9)3(x y x y x ----- (2)211x x x --- (3)4412222+----+x x x x x x (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭2.已知21(y 1)(y 2)12y A B y y +=+-+-+,求A 、B 的值. 3.先化简,再求值:26333x x x x x x +-+--,其中32x =. 4. 一项工程,甲工程队单独完成需要m 天,乙工程队单独完成比甲队单独完成多需要n 天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?参考答案一、填空题1. 答案:2x x 2+ 解析:【解答】242+-x =2(x 2)42x 442x x 2x 2x 2x 2x 2++-=-=+++++ 【分析】根据分式加减的运算法则化简即可.2.答案:1;解析:【解答】1a b a b a b a b b a a b a b a b++=+==+++++ 【分析】根据分式加减的运算法则化简即可.3. 答案:15bc 2;解析:【解答】分式24a a 3bc 5c与的最简公分母是15bc 2 【分析】根据最简公分母的定义分析即可.4. 答案:264x y x y+; 解析:【解答】2223162444x y xy x x y x y +=+=264a b a b +【分析】根据分式加减的运算法则化简即可.5. 答案:32-; 解析:【解答】213122x x x ----=2313(1)3121212---=-=----()()x x x x x 【分析】根据分式加减的运算法则化简即可.6. 答案:10c 8b 912abc-+; 解析:【解答】abc ac ab 433265+-=10c 8b 910c 8b 912abc 12ac 12abc 12abc -+-+= 【分析】根据分式加减的运算法则化简即可.7. 答案:2x ;解析:【解答】2222222222222222()----=+=+=--+---m xy y x y xy y x y x x y x y x y x y x y x y,∴m=x 2. 【分析】把2222--+-+xy y x y x y x y化简即可. 8. 答案:23; 解析:【解答】2222212112(y 1)1321111111y y y y y y y y y -+---=--=--+-----,∴3y-2=0,y=23 【分析】把2121111y y y ---+-化简,然后根据给出的条件求出x 的值即可.二、选择题1. 答案:C ;解析:【解答】∵xx 1=即x 2=1,36224+-+x x x =2222(x 3)(x 2)x 2x 3+-=-+=1-2=-1,故选C. 【分析】根据xx 1=求出x 2=1,把分式36224+-+x x x 化简得x 2-2,把x 2=1代人即可. 2. 答案:C ;解析:【解答】原式=222222221x y y x y y x y x y x y x y x y--++=+=++++,故选C. 【分析】把x-y +22y x y+化简即可知答案. 3. 答案:B ;解析:【解答】∵11a b 1a b ab a b ++==+,∴(a+b)2=1即a 2+b 2+2ab=ab ,原式=a b b a +=22a b ab +=ab 1ab -=-,故选B.【分析】根据分式111a b a b +=+得a 2+b 2=-ab ,化简原式代人即可. 4. 答案:B. 解析:【解答】11111(m )(n )1mn mn mn m m n m n m n mn n----÷-=÷=⨯=-,故选B. 【分析】根据分式的混合运算法则把11(m )(n )n m -÷-化简即可. 5. 答案:C ;解析:【解答】11163211236666++=++=,x x x x x x x故选C. 【分析】根据分式加减的运算法则把11123++x x x 化简即可. 6. 答案:D ;解析:【解答】37373728244444444a a b b a a b b a a b b a b a b b a a b a b a y a b a b a b++----+-=--===--------,故选D. 【分析】根据分式加减的运算法则把37444a a b b a b b a a b ++----化简即可. 三、解答题1. 答案:(1)33+-x x ;(2)11x -;(3)2)2(4--x x x ;(4)12y -+; 解析:【解答】(1)222)3(9)3(x y x y x -----222x 9(x 3)(x 3)x 3(x 3)(x 3)x 3-+-+===---; (2)211x x x ---=222(1)(1)11111+---=-----x x x x x x x x x =11x -; (3)4412222+----+x x x x x x =222222x 2x 1x 4x x x 4x(x 2)(x 2)x(x 2)x(x 2)x(x 2)+-----=-=----- (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭=22(y 1)(y 1)32111114y y y y y y y y ⎛⎫-+---÷-=⨯ ⎪-----⎝⎭211(y 2)(y 2)y y y --=⨯-+-=12y -+ 【分析】根据分式加减的运算法则化简即可.2.答案:A=1,B=1;解析:【解答】21)2)(1(12++-=+-+x B x A x x x =()()A(x 2)B(x 1)x 1x 2++--+=()()A B x 2A B x 1x 2++--+(),所以:A+B=2,2A-B=1,解得A=1 ,B=1 【分析】把A B x 1x 2+-+化简得()()A B x 2A B x 1x 2++--+(),根据21)2)(1(12++-=+-+x B x A x x x求出A、B的值即可.3. 答案:13 3解析:【解答】原式=(x2-x-6+3x-9)/x(x-3)=(x2+2x-15)/x(x-3)=(x+5)(x-3)/x(x-3)=(x+5)/x=1+5/x=1+5/(3/2)=1+10/3=13/3【分析】根据分式加减的运算法则化简,然后把x的值代人即可.4. 答案:(m2+mn)/(2m+n)(天)解析:【解答】甲单独需m天完成,所以甲每天做1/m,乙单独完成比甲单独完成多需n天,所以乙每天做1/(m+n),所以二人每天共做:1/m+1/(m+n)=(2m+n)/m*(m+n)所以乙合作1/((2m+n)/m(m+n))=(m2+mn)/(2m+n)(天)完成【分析】根据题意列出相应的分式,然后化简即可.。
53《分式的加减法》习题含解析北师大八年级下初二数学试题试卷.doc

《分式的加减法》习题一. 填空题1 •计算:2——-- _________ ■x + 22. __________________________ 计算:—+ —=a+b b+a 3. 分式出~,亠】的最简公分母是 3bc 5c 2314•计算:二-+ —7 = _________ •2xy 4x 2 l-3x5.计算 ------------- -- 的结果是x — 1 2 — 2x523---------------- 1 ------- 6cib 3ac 4abc二. 选择题:2 .分式x-y+ 2^—的值为 x+ y A 兀_『+2于x+ yD •以上都不对3. 如果分式丄+ - = —!— a b a+ bA. 1B. C. 2 D. -26•计算:7•若in^72小一于 o 2 广-y8.当分式占----- 的值等于零时,则兀=1.下若X =—Xn I八八兀4 +兀__ 6则分式x 2 +3的值为(A. 0B.C. -1D. -2B.x+yc.4. ------------------------------- 化简(m ) -5- (n -------------------------------- )的结果是()n m三、解答题1 •计算A ・1m B ・— nn C-— mD ・一 11 3c.11 A.B ■—2x2x6x6 •计算3° a + b _ + ------------7b -得( )) a-4b 4b 一 aa-4bB. 5•化简P 界等于2a + 6b a-4b D.5 6x A .a-4bC. -2D. 29 —y (3-x)2-------- x-\ x-l(3)x+2 x-l x 2 -2x x 2 -4x + 4(4)y-l-J- y + 1 —2•已知2y+i二丄+丄求A、B的值.(y-l)(y+ 2) y-\ y + 23.先化简,再求值:乞-总+ £,其心|.4.一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?5 2 3 10c 8b 9 10c-8b + 9---------------- 1 -------- - ---------------------- 1 -------- = -------------------6ab 3ac4abc 12abc 12ac 12abc 12abc【分析】根据分式加减的运算法则化简即可.一、填空题答案:2x x + 2解析:参考答案【解答】2一一 二"x + 2) 一_= x+2 x+2x+22x + 4__ _ x + 2 x + 22xx + 2【分析】根据分式加减的运算法则化简即可.2. 答案:1;解析:【解答】厶+上二厶+上_ =旦=1 a + b b + a a + b a + b a + b 【分析】根据分式加减的运算法则化简即可.3・答案:15bc 2;/4 Q g解析:【解答】分式臥与忘的最简公分母是叫?【分析】根据最简公分母的定义分析即可.4.答案:6x + y 4x 2yy 6a + b解析:【解答】詁存花+心S【分析】根据分式加减的运算法则化简即可.35. 答案:—;2解析:【解答】—-一匕竺二 ——=_3(x-l) = _3X —1 2 — 2x x — 1 2(x — 1)2(x — 1) 2【分析】根据分式加减的运算法则化简即可.6.答案:10c —8b + 912abc解析: 【解答】7.答案:x 2;解析:【解答】』^ =耸•[ +xr - y- x" _ y_ x+ y 【分析】把I'」':+匚1化简即可._ y x + y28.答案:-31乂4 + 2 _ §【分析】根据兀=—求出x 2=l,把分式 ----------- - ----- 化简得X 2-2,把xJl 代人即可.x 厂+32.答案:C ;解析:【解答】原式二兰二2+221 =匕_厂+221 =苕+厂,故选C.1 x+ y x+ y x+ y x+y【分析】把x ・y+2Zl 化简即可知答案. x+ y3. 答案:B :解析:【解答】V — 4- — =°» 二—-—,.*.(a+b)2=l BP a 2+b 2+2ab=ab,原式a baba + ba b a 2 + b 2-ab(ba abab 【分析】根据分式-+-=-^—得,+b —Fb,化简原式代人即可.a b a + b4.答案:B.心" …2、 ( 1、 z 1 mn -1 mn-\ mn -1 m m解析: 【解答】(m ——)-(n ---------- ) = ----------- 一 ----- = --------- x ----------- =—, 故选 B.n m n m n mn-l nm 2xy - y 2 x - y 2xy - y 2 (x- y)2 x 2 . 2解析:【解答】2(y —1) y + 1 2 一 2 2 2 一 ^4^,・・・3y ・2=0, y — 1 y + 1 y — 1 y* — 1 y" y — 1 y — 12y= —3【分析】把R2 1- ----- 化简,然后根据给出的条件求岀x 的值即可. y+1 y-l二. 选择题I.答案:C ;解析:【解答1 Vx = - gp x 2=l,X故选C.【分析】根据分式的混合运算法则把(m- -) 一 (n -丄)化简即可. n m5. 答案:C ;解析:【解答】丄+丄+丄」+3+2』,故选C.x 2x 3x 6x 6x 6x 6x【分析】根据分式加减的运算法则把丄+丄+丄化简即可. x 2x 3x6. 答案:D ;3a a + b 7b 3a a + b 7b 3a-a-b-lb 2a-Sb -------------- + --------------- = = ----------- a-4b 4b-a a-4b a-4b a-4y a-4b a _4b a-4b 故选D.【分析】根据分式加减的运算法则把』一+皂巴-一—化简即可. a-4b 4b _ a a- 4b三、解答题“亠 、兀+ 31 x-41 1.答案:(1);(2) ; (3)c * (4)x-3x-lx(x-2)2y+2解析:【解答】(1)x 2 - y9-yx 2-9(x+3)(x-3)x+3 (—3)2(3-x)2(x-3)2-(x-3)2x-3/、(兀 +1)(兀—1)0—1 1(2) -------- x - \ = ------------------------------ = ------------------ = ------- ;x-\x-\ x-\ x-\ x-\ x-\ (3) x + 2—I _ x + 2 x-l 二 x?-4 x? -x = x-4 x 1 - lx x 2 -4x + 4 x(x-2) (x -2)2 x(x -2)2 x(x -2)2 x(x -2)2(4)= 2_. y-1 二__1_y -1 (y+ 2)(y- 2)y + 2【分析】根据分式加减的运算法则化简即可.2.答案:A=l, B= 1 ;解析:【解答】亠・=丄+ ^=A,+ 2):B(T)= (A :B) : + 2A — B(x-l)(x + 2) x-l x + 2(x-l)(x + 2) (x -l)(x + 2)所以:A+B=2, 2A-B=1,解得 A=1 , B 二 1解析: 【解答】yj Iy —i 丿2 — y . ((y+l)(y-l)2一儿 y_i 人-oy-\ 4求出A. B 的值即可.1 33・答案:—3济军析:【解答】原式=(x'-x-6+3x-9)/x(x-3)=(x'+2x-15)/x(x-3)=(x+5)(x-3)/x(x-3)=(x+5)/x= 1 +5/x= 1 +5/(3/2) = 1 + 10/3=13/3【分析】根据分式加减的运算法则化简,然后把x 的值代人即可.4. 答案:(m 2+mn)/ (2m+n)(天)解析:【解答】甲单独需m 天完成,所以甲每天做1/m,乙单独完成比甲单独完成多需n 天,所以 乙每天做 1/ (m+n),所以二人每天共做:1/m+l/ (m+n) = (2m+n) /m* (m+n) 所以乙合作 1/ ( (2m+n) /m (m+n) ) =(m 2+mn)/ (2m+n)(天)完成 【分析】根据题意列出相应的分式,然后化简即可.【分析】把 化简得(A + B) x + 2 A — B (x —l)(x + 2)2兀+1(兀一1)(兀 + 2)。
2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案

2024北师大版数学八年级下册5.3.1《同分母分式的加减法》教案一. 教材分析《同分母分式的加减法》是北师大版数学八年级下册第五章第三节的一部分。
本节内容是在学生已经掌握了分式的基本概念、分式的乘除法运算的基础上进行的,是分式运算的一个重要组成部分。
通过本节的学习,使学生掌握同分母分式的加减法运算法则,进一步提高学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了分式的基本概念,分式的乘除法运算,因此对于同分母分式的加减法有一定的认知基础。
但学生在解决实际问题时,对于如何运用同分母分式的加减法法则还是会存在一定的困难。
因此,在教学过程中,要注重引导学生理解和掌握同分母分式的加减法法则,并能够运用到实际问题中。
三. 教学目标1.理解同分母分式的加减法法则,并能够熟练运用。
2.能够解决实际问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.同分母分式的加减法法则的掌握和运用。
2.解决实际问题,将理论知识运用到实际中。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等,引导学生主动探究,合作学习,提高学生的动手操作能力和解决实际问题的能力。
六. 教学准备1.PPT课件2.教学案例3.分组讨论的准备七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生思考如何解决这些问题。
例如,计算下列分式的和:(1)34+14;(2)25+35。
2.呈现(10分钟)通过PPT课件,展示同分母分式的加减法法则,引导学生理解并掌握。
同分母分式的加减法法则是:同分母分式相加减,分母不变,分子相加减。
3.操练(10分钟)让学生分组进行讨论,每组给出几个同分母分式的加减法问题,并求解。
例如,计算下列分式的和:(1)34+14;(2)25+35;(3)47+27;(4)5 9−19。
4.巩固(5分钟)让每个小组选出一个问题,向全班展示他们的解题过程和结果,教师进行点评,巩固学生对同分母分式的加减法法则的掌握。
2022年北师大版八下《异分母分式的加减》配套练习(附答案)

5.3 分式的加减法第2课时 异分母分式的加减一、判断正误并改正: (每题4分,共16分) 1. ab a b a a b a a b a --+=--+=0〔 〕2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x 〔 〕3.)(2121212222y x y x +=+〔 〕4.222b a c b a c b a c +=-++〔 〕二、认真选一选:(每题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是〔 〕 A.零B.正数C.负数2. 甲、乙两人分别从相距8千米的两地同时出发,假设同向而行,那么t 1小时后,快者追上慢者;假设相向而行,那么t 2小时后,两人相遇,那么快者速度是慢者速度的〔 〕 A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 22y x M -=2222y x y xy --+yx y x +-,那么M=____________. 6. 假设〔3-a 〕2与|b -1|互为相反数,那么ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 假设0≠-=y x xy ,那么分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A. 80° B. 80°或20° C . 80°或50° D. 20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ . 10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF= _________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
数学北师大版八年级下册认识分式

目录Word版习题第一章三角形的证明1.1 等腰三角形第1课时全等三角形和等腰三角形的性质第2课时等边三角形的性质第3课时等腰三角形的判定与反证法第4课时等边三角形的判定1.2 直角三角形第1课时勾股定理及其逆定理第2课时直角三角形全等的判定周周练(1.1~1.2)1.3 线段的垂直平分线第1课时线段垂直平分线的性质与判定第2课时三角形三边的垂直平分线1.4 角平分线第1课时角平分线的性质定理及其逆定理第2课时三角形三个内角的平分线章末复习(一) 三角形的证明单元测试(一) 三角形的证明第二章一元一次不等式与一元一次不等式组2.1 不等关系2.2 不等式的基本性质2.3 不等式的解集2.4 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用周周练(2.1~2.4)2.5 一元一次不等式与一次函数2.6 一元一次不等式组小专题(一) 一元一次不等式(组)的解法章末复习(二) 一元一次不等式与一元一次不等式组单元测试(二) 一元一次不等式与一元一次不等式组第三章图形的平移与旋转3.1 图形的平移第1课时平移的认识第2课时平移与坐标变化3.2 图形的旋转3.3 中心对称周周练(3.1~3.3)3.4 简单的图案设计章末复习(三) 图形的平移与旋转单元测试(三) 图形的平移与旋转期中测试第四章因式分解4.1 因式分解4.2 提公因式法第1课时提单项式因式分解第2课时提多项式因式分解4.3 公式法第1课时运用平方差公式因式分解第2课时运用完全平方公式因式分解小专题(二) 因式分解章末复习(四) 因式分解单元测试(四) 因式分解第五章分式与分式方程5.1 认识分式第1课时认识分式第2课时分式的基本性质及约分5.2 分式的乘除法5.3 分式的加减法第1课时同分母分式的加减法第2课时异分母分式的加减法第3课时分式的加减混合运算小专题(三) 分式的运算周周练(5.1~5.3)5.4 分式方程第1课时分式方程的概念及解法第2课时分式方程的应用章末复习(五) 分式与分式方程单元测试(五) 分式与分式方程第六章平行四边形6.1 平行四边形的性质第1课时平行四边形的边、角的性质第2课时平行四边形的对角线的性质6.2 平行四边形的判定第1课时平行四边形的判定定理1、2第2课时平行四边形的判定定理3及平行线之间的距离小专题(四) 平行四边形的性质与判定6.3 三角形的中位线周周练(6.1~6.3)6.4 多边形的内角和与外角和章末复习(六) 平行四边形单元测试(六) 平行四边形期末测试161期末复习期末复习(一) 三角形的证明期末复习(二) 一元一次不等式与一元一次不等式组期末复习(三) 图形的平移与旋转期末复习(四) 因式分解期末复习(五) 分式与分式方程期末复习(六) 平行四边形电子导学案第一章三角形的证明1.1 等腰三角形第1课时全等三角形和等腰三角形的性质第2课时等边三角形的性质第3课时等腰三角形的判定与反证法第4课时等边三角形的判定1.2 直角三角形第1课时勾股定理及其逆定理第2课时直角三角形全等的判定1.3 线段的垂直平分线第1课时线段垂直平分线的性质与判定第2课时三角形三边的垂直平分线1.4 角平分线第1课时角平分线的性质定理及其逆定理第2课时三角形三个内角的平分线第二章一元一次不等式与一元一次不等式组2.1 不等关系2.2 不等式的基本性质2.3 不等式的解集2.4 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用2.5 一元一次不等式与一次函数第1课时一元一次不等式与一次函数(1)第2课时一元一次不等式与一次函数(2)2.6 一元一次不等式组第1课时一元一次不等式组(1)第2课时一元一次不等式组(2)第三章图形的平移与旋转3.1 图形的平移第1课时平移的认识第2课时平移与坐标变化3.2 图形的旋转3.3 中心对称3.4 简单的图案设计第四章因式分解4.1 因式分解4.2 提公因式法4.3 公式法第1课时运用平方差公式因式分解第2课时运用完全平方公式因式分解第五章分式与分式方程5.1 认识分式第1课时认识分式第2课时分式的基本性质及约分5.2 分式的乘除法5.3 分式的加减法第1课时同分母分式的加减法第2课时异分母分式的加减法第3课时分式的加减混合运算5.4 分式方程第1课时分式方程的概念及解法第2课时分式方程的应用第六章平行四边形6.1 平行四边形的性质第1课时平行四边形的边、角的性质第2课时平行四边形的对角线的性质6.2 平行四边形的判定第1课时平行四边形的判定定理1、2第2课时平行四边形的判定定理3及平行线之间的距离6.3 三角形的中位线6.4 多边形的内角和与外角和第1课时多边形的内角和第2课时多边形的外角和PPT课件第一章三角形的证明1.1 等腰三角形第1课时全等三角形和等腰三角形的性质第2课时等边三角形的性质第3课时等腰三角形的判定与反证法第4课时等边三角形的判定1.2 直角三角形第1课时勾股定理及其逆定理第2课时直角三角形全等的判定1.3 线段的垂直平分线第1课时线段垂直平分线的性质与判定第2课时三角形三边的垂直平分线1.4 角平分线第1课时角平分线的性质定理及其逆定理第2课时三角形三个内角的平分线第二章一元一次不等式与一元一次不等式组2.1 不等关系2.2 不等式的基本性质2.3 不等式的解集2.4 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用2.5 一元一次不等式与一次函数2.6 一元一次不等式组第三章图形的平移与旋转3.1 图形的平移第1课时平移的认识第2课时平移与坐标变化3.2 图形的旋转3.3 中心对称3.4 简单的图案设计第四章因式分解4.1 因式分解4.2 提公因式法4.3 公式法第1课时运用平方差公式因式分解第2课时运用完全平方公式因式分解第五章分式与分式方程5.1 认识分式第1课时认识分式第2课时分式的基本性质及约分5.2 分式的乘除法5.3 分式的加减法第1课时同分母分式的加减法第2课时异分母分式的加减法5.4 分式方程第1课时分式方程的概念第2课时分式方程的解法第3课时分式方程的应用第六章平行四边形6.1 平行四边形的性质第1课时平行四边形的边、角的性质第2课时平行四边形的对角线的性质6.2 平行四边形的判定第1课时平行四边形的判定定理1、2第2课时平行四边形的判定定理3及平行线之间的距离6.3 三角形的中位线6.4 多边形的内角和与外角和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学下册:5.3《分式的加减法》习题 学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:422x -+= .2.计算:aba b b a +=++________.3.分式43abc 与25ac 的最简公分母是_________.4.计算:23124xy x +=________.5.计算213122xx x ---- 的结果是____________.6.计算:523634ab ac abc -+= .7.若222222m xy y x y x y x y x y --=+--+,则m =________.8.当分式2121111y y y ---+-的值等于零时,则y =_________.二、单选题9.若1x x =,则分式42263x x x +-+的值为( )A .0B .1C .-1D .-2 10.分式x-y +22y x y +的值为( )A .22x y y x y -++ B .x+y C .22x y x y ++D .以上都不对 11.如果分式111a b a b +=+,那么abb a +的值( )A .1B .-1C .2D .-2 12.化简11()()m n n m -÷-的结果是( )A .1B .mn C .nmD .-1 13.化简11123x x x ++等于( )A .12xB .32xC .116xD .56x 14.计算37444a a b b a b b a a b++----得( ) A .264a b a b +-- B .264a b a b +- C .2- D .2三、解答题15.计算(1)2229(3)(3)x y y x x ----- (2)211x x x --- (3)2221244x x x x x x +----+ (4)23111y y y y ⎛⎫-÷+- ⎪--⎝⎭ 16.已知21(1)(2)12y A B y y y y +=+-+-+,求A 、B 的值. 17.先化简,再求值:26333x x x x x x +-+--,其中32x =. 18.一项工程,甲工程队单独完成需要m 天,乙工程队单独完成比甲队单独完成多需要n 天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?参考答案1.22x x + 【解析】 试题分析:原式=2(2)422x x x +-++ =24422x x x +-++ =22x x +. 故答案为:22x x +. 点睛:本题考查了整式与分式的减法,计算时可将整式看作是分母为1的分式,然后通分相减即可.2.1【解析】 试题分析:原式=a b a b a b +++ =a b a b++ =1.故答案为:1.3.15bc 2【解析】 试题分析:分式43a bc 与25a c的最简公分母是15bc 2. 故答案为15bc 2.点睛:本题考查了最简公分母的找法,若分母是单项式,一般找最简公分母分三步进行:①找系数,系数取所有分母系数的最小公倍数;②取字母,字母取分母中出现的所有字母;③取指数,指数取同一字母指数的最大值.4.264x y x y+ 【解析】 试题分析:原式=22644x y x y x y+=264x y x y+. 故答案为:264x y x y+. 5.5322x x -- 【解析】 本题考查的是分式的加减先通分,再把分子部分相加减,分母不变。
原式=2134134135312222222222x x x x x x x x x x --+--+=+==------. 6.108912c b abc -+ 【解析】 试题分析:原式=1089121212c b abc ac abc -+ =108912c b abc-+. 故答案为:108912c b abc-+. 7.2x【分析】先将等式右边通分,再比较等式两边的分子即可求解.【详解】()222222222x y m xy y x y x y x y--=+---, 222222222m xy y x xy y x y x y -+-+=--, 即22222m x x y x y=--. 2m x ∴=.故答案为: 2x .【点睛】本题考查了分式的加减运算.解决本题首先将等式右边通分,再比较等式两边的分子即可.8.23【解析】 试题分析:2121111y y y ---+-=22212(1)1111y y y y y -+-----=2321y y ---, ∵分式2121111y y y ---+-的值等于零, ∴3y -2=0,y 2-1≠0,∴y =23. 故答案为23. 点睛:本题考查了分式的加减运算和分式值为零的条件,正确的将分式进行化简是解决此题的关键.9.C【解析】 试题分析:∵1x x=即x 2=1, 42263x x x +-+=222(3)(2)3x x x +-+=x 2-2=1-2=-1, 故选C .点睛:本题考查了分式的值的计算,将已知条件转化为x 2=1是解题的关键.10.C【解析】 试题分析:原式=221x y y x y-++ =2222x y y x y x y-+++ =22x y x y++. 故选C .点睛:本题考查了整式与分式的加法运算,计算时可将整式看作是分母为1的分式,然后通分相加即可.11.B【解析】试题分析:∵111a ba b ab a b++==+,∴(a+b)2=ab,即a2+b2+2ab=ab,a2+b2=-ab,原式=a bb a+=22a bab+=abab-=-1,故选B.点睛:此题考查了分式的化简求值,解题的关键是通过把已知式子进行变形,得到a2+b2=-ab,再以整体的形式代入.12.B【解析】试题分析:11 ()() m nn m-÷-=11 mn mnn m--÷=11 mn m n mn-⨯-=mn.故选B.13.C 【解析】试题分析:11123 x x x ++=632 666 x x x++=116x.故选C.14.D 【解析】试题分析:37444a a b b a b b a a b++---- =37444a a b b a b a b a b+----- =374a a b b a b---- =284a b a b-- =2(4)4a b a b -- =2.故选D .点睛:本题考查了分式的加减运算,解决此题的关键是把4b -a 转化为-(a -4b ). 15.(1)33x x +-;(2)11x -;(3)24(2)x x x --;(4)12y -+. 【解析】试题分析:(1)同分母分式相减,分母不变,把分子相减,最后结果化成最简即可; (2)把整式看成是分母为1的分式,通分后把分子相减即可;(3)把两个分母分解因式后通分,再利用同分母分式减法法则进行计算即可; (4)把括号内的分式通分相减,化成最简后,再把除法转化为乘法,分母分解因式后再进行约分即可.试题解析: 解:(1)原式=229(3)x y y x --+- =229(3)x x -- =2(3)(3)(3)x x x +-- =33x x +-; (2)原式=2(1)(1)11x x x x x +---- =22111x x x x ----=11x -; (3)原式=221(2)(2)x x x x x +---- =22(2)(2)(1)(2)(2)x x x x x x x x +----- =22224(2)(2)x x x x x x x ----- =24(2)x x x --; (4)原式=2(1)(1)3111y y y y y y ⎛⎫-+-÷- ⎪---⎝⎭=22114y y y y --⨯-- =211(2)(2)y y y y y --⨯-+- =12y -+. 点睛:本题考查分式的混合运算,解答本题的关键是明确运算顺序和运算法则. 16.A=1,B=1.【解析】试题分析:已知等式右边两项通分并利用同分母分式的加法法则计算,利用分式相等的条件即可求出A 与B .试题解析: 解:21(1)(2)y y y +-+=12A B y y +-+=(2)(1)(1)(2)A y B y y y ++--+=()2(1)(2)A B y A B y y ++--+, ∴221A B A B +=⎧⎨-=⎩, 解得:11A B =⎧⎨=⎩. 点睛:本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.17.133【解析】试题分析:第二个分母分解因式,找出最简公分母,通分加减,化成最简后代入x 的值计算即可.试题解析: 解:原式=263(3)(3)(3)(3)x x x x x x x x x +--+--- =2639(3)x x x x x --+-- =2215(3)x x x x +-- =(5)(3)(3)x x x x +-- =5x x+, 当x =32时, 原式=35232+ =133. 点睛:本题考查了分式的化简求值,掌握异分母分式加减法法则是解决此题的关键.18.nm mn m ++22 【解析】本题考查的是根据实际问题列分式根据工作时间即可表示出工作效率,从而得到结果。
由题意得,甲的工作效率为m 1,乙的工作效率为nm +1, 则甲、乙工程队合做的时间为=+++=++)(1111n m m m n m n m m .22n m mn m ++。