4×300MW火力发电厂电气部分初步设计
发电厂电气部分课程设计题目

发电厂电气部分课程设计题目题目: 300MW 火力发电厂电气部分设计原始资料:1. 发电厂情况装机四台,容量2 x 100MW ,2x50MW, 发电机额定电压10.5KV ,功率因数分别为cos φ=0.85,cos φ=0.8,机组年利用小时数4800h ,厂用电率7%,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。
2. 接入电力系统情况(1)、 10.5KV 电压等级最大负荷10MW ,最小负荷8MW ,cos φ=0.8,架空线路6回,二级负荷。
通过发电机出口断路器的最大短路电流:''40.2I KA = 238.6S I KA = 438.1S I KA =(2)、 剩余功率送入220KV 电力系统,,架空线路4回,系统容量1800MW ,通过并网断路器的最大短路电流:''17.6I KA = 216.5S I KA = 416.1S I KA = ,题目:400MW 火力发电厂电气部分设计原始资料:1. 发电厂情况装机两台,容量2x200MW ,发电机额定电压15.75KV ,cos φ=0.85,机组年利用小时数5500h ,厂用电率5.5% ,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。
2. 接入电力系统情况发电厂除厂用电外, 剩余功率送入220V 电力系统,架空线路4回,系统容量2500MW ,通过并网断路器的最大短路电流:''26.5I KA = 229.1S I KA = 429.3S I KA =3、厂用电采用6kv 及380/220三级电压题目: 500MW 火力发电厂电气部分设计原始资料:1. 发电厂情况装机四台,容量2 x 50MW ,2x200MW ,发电机额定电压分别为10.5KV 、15.75KV ,功率因数分别为cos φ=0.8,cos φ=0.85,机组年利用小时数5800h ,厂用电率6% 发电机主保护时间0.05s ,后备保护时间3,8s ,环境条件可不考虑。
×300MW发电厂电气部分初步设计doc

引言电力行业是国民经济的重要行业之一,电力自从应用于生产以来,已成为现代化生产、生活的主要能源,它为现代工农业、交通运输业、国防、科技和人民生活等方面都得到了广泛的应用。
如今,电力行业紧跟着经济发展的脚步,随着发电设备容量的不断加大,电力行业的自动化程度越来越高,相应的对电力系统的安全性、稳定性的要求也越来越高。
本次的设计题目是:4*300MW发电厂电气部分初步设计(励磁系统),主要是进行电气主接线设计,通过方案比较确定主接线方案,选择发电机和主变压器;厂用电设计,选择厂用变压器;通过短路电流计算,进行主要电气设备选择及校验,然后是励磁系统设计,发电机主保护设计以及配电装置设计;通过此次设计,使学生对自己所学专业知识在临近毕业前进行一次检验和巩固,同时利用自己所掌握的知识初步的设计出一个符合实际的能够安全运行的电厂。
通过本次设计,对大中型发电厂有一个全方位的了解和认识,将所学的理论知识与实际相结合,在巩固自己的所学的专业知识的同时,也使自己更能胜任今后的工作。
第一章电气主接线设计1.1设计原则和基本要求1 发电厂电气主接线是电力系统接线的重要组成部分。
它表明了发电机、变压器、线路、断路器等其它电气设备的数量和连接方式及可能的运行方式,从而完成发电、变电、输电和配电的任务。
电气主接线的设计直接关系到全厂电气设备的选择、配电装置的布置、继电保护和自动装置安装,关系到电力系统的安全、稳定和经济运行。
2 电气主接线设计的原则依据(1)发电厂电气主接线方案的选择,主要决定发电厂的类型、工作特性、发电厂的容量、发电机和主变压器的台数和容量。
(2)发电厂建设规模应根据电力系统5-10年发展规划进行设计。
(3)供电和负荷关系①对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。
②对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。
发电厂电气部分课程设计

发电厂电气部分课程设计任务书一课程设计目的和要求1 目的发电厂电气部分课程设计是在学生学习《发电厂电气部分》后的一次综合训练,通过这次训练不仅使学生巩固了本课程及其他课程的有关内容,而且增强学生工程观念,培养他们的电气设计能力。
2 要求1)熟悉国家能源开发策略和有关的技术规程,规定,树立供电必须安全,可靠,经济的观念;2)掌握发电厂初步设计的基本方法和主要内容;3)熟悉发电厂初步设计的基本计算;4)学习工程设计说明书的撰写。
二原始资料1 发电厂情况(1)类型:火电厂(2)发电厂容量与台数3×200+1×300MW,发电机电压15.75kv,cosφ=0.85(3)发电厂年利用小时数T max=5500h;(4)发电厂所在地最高温度40 摄氏度,年平均温度20 摄氏度,气象条件一般,所在地海拔高度低于1000m。
2 电力负荷情况1)发电机电压负荷:最大35MW,最小10MW,cosφ=0.85,T max=5300h。
2)110kv 电压负荷:最大45MW,最小20MW,cosφ=0.85,T max=5500h。
3)其余功率送入220kv 系统,系统容量15000MVA。
归算到220kv 母线阻抗为0.02,其中S j=100MVA。
4)自用电10%。
5)供电线路数目。
(1)发电机电压,架空线路6回,每回输送容量5MW,cosφ=0.85 (2)110kv 架空线路6 回,每回输送容量50MW,cosφ=0.85 (3)220kv 架空线路2 回,与系统连接。
三设计成果1 课程设计说明书1 份。
2 发电厂电气主接线图1 张。
3 课程设计计算书1 份。
原始资料分析该电厂为大中型电厂,其容量为3×200+1×300=900MW。
占电力系统容量超过电力系统的检修备用容量8~15%,没有达到事故备用容量10%的限额。
说明该电厂在带那里系统中的作用比较重要,而且年利用小时数5500h>5000h,大于电力系统发电机组的平均最大利用小时数,该电厂为火电厂,在电力系统中将主要承担基荷,从而该电厂的电气主接线可靠性要求比较高。
火力发电厂电气一次部分毕业设计

目录前言 (1)摘要及关键词 (2)第1章主接线的设计 (3)1.1 发电机台数和参数的确定 (3)1.2 变压器台数和参数的确定 (3)1.3 厂用电的设计的确定 (4)1.4 220kV主接线的设计 (6)第2章短路电流计算点的确定和短路计算结果 (9)2.1短路电流计算点的确定 (9)2.2短路电流计算 (9)2.3 短路电流计算结果 (16)第3章主要电气设备的配置和选择 (16)3.1主要电气设备的配置 (16)3.2主要电气设备的选择 (17)第4章所选电气设备的校验 (21)4.1 断路器的校验 (22)4.2 隔离开关的校验 (23)4.3 电流互感器的校验 (23)4.4 母线的校验 (25)第5章继电保护的配置和考虑 (25)5.1概述 (25)5.2发电机保护配置 (27)5.3变压器的保护配置 (29)结论 (30)谢辞 (31)参考文献 (32)附录一所选设备一览表 (33)附录二电气主接线 (35)前言毕业设计是我们在校期间最后一次综合训练,它将从思维、理论以及动手能力方面给予我们严格的要求。
使我们综合能力有一个整体的提高。
它不但使我们巩固了本专业所学的专业知识,还使我们了解、熟悉了国家能源开发策略和有关的技术规程、规定、导则以及各种图形、符号。
它将为我们以后的学习、工作打下良好的基础。
能源使社会生产力的重要基础,随着社会生产的不断发展,人类使用能源不仅在数量上越来越多,在品种及构成上也发生了很大的变化。
人类对能源质量也要求越来越高。
电力使能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的地位,是实现国家现代化的战略重点。
电能也是发展国民经济的基础,使一种无形的、不能大量存储的二次能源。
电能的发、变、送、配和用电,几乎是在同时瞬间完成的,须随时保持功率平衡。
要满足国民经济发展和要求,电力工业必须超前发展,这是世界发展规律。
因此,做好电力规划,加强电网建设,就尤为重要。
火力发电厂电气一次部分设计方案(参考)

4×200MW火力发电厂电气一次部分设计Design of 4x200MWThermal Power Plant Primary System学生姓名:专业班级:指导教师:职称:起止日期:摘要由发电、配电、输电、变电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。
火力本文主要完成了电气主接线的方案设计及其经济型分析,主要电气设备的选择,包括主变压器的容量计算。
在发电厂短路电流计算的基础上,进行配电装置的选型方案的设计。
回路。
在火力发电厂电气部分设计中,一次回路的设计是主体,它是保证供电可靠性、经济性和电能质量的关键,并直接影响着电气部分的投资。
本文主要完成了电气主接线的方案设计及其经济型分析,主要电气设备的选择,包括主变压器的容量计算。
在发电厂短路电流计算的基础上,进行配电装置的选型方案的设计。
关键词:发电厂;电气主接线;电气设备目录摘要II第1章绪论01.1 电力工业的发展简况01.2 发电厂预设规模01.3 发电厂接入系统的原则1第2章电气主接线设计22.1 概述22.1.1 电气主接线设计的基本要求22.1.2 220kV电压等级常用接线方式22.2 拟定可行的主接线方案32.2.1 方案一32.2.2 方案二32.2.3 方案的比较与选定42.3 变压器的选型4第3章火电厂厂用电接线的选择53.1 概述53.1.1 方案的比较与选定53.1.2 厂用电的电压等级53.1.3 厂用电系统中性点接地方式53.1.4 厂用电源及其引接73.2 厂用电系统的设计及确定7第4章短路电流的计算94.1 概述94.2 短路电流计算条件94.2.1 短路计算的基本假定94.2.2 短路计算的一般规定104.3 短路计算104.3.1 画等值网络图104.3.2 化简等值网络图,求短路电流124.3.3 短路计算结果19第5章电气设备的选择与校验205.1 电气设备选择的概述205.1.1 一般原则205.1.2 有关的几项规定205.1.3 按额定电压选择的要求215.1.4 按额定电流选择的要求215.1.5 短路热稳定校验的要求215.1.6 校验动稳定校验的要求215.2 电气设备的选择与校验215.2.1 回路最大持续工作电流的确定215.2.2 高压断路器的选择与校验225.2.3 隔离开关的选择与校验245.2.4 导体的选择与校验25结论29参考文献29致谢30第1章 绪 论由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
某地区4X300MW发电厂电气部分设计

电力网中性点接地方式,决定了主变压器中性点接地方式。
主变压器的110-500KV侧采用中性点直接接地方式。
(1)凡是自耦变压器,其中性点需要直接接地或经小阻抗接地。
(2)凡中、低压有电源的升压站和降压变电所至少应有一台变压器直接接地。
(3)终端变电所的变压器中性点一般不接地。
②中性点经高电阻接地
当接地电容电流超过允许值时,也开采用中性点经高电阻接地。此接地方式降低弧光间隙接地过电压,同时可以提供足够的电流和零序电压,使接地保护可靠动作,一般用于大型发电机中性点。
(2)中性点直接接地
直接接地方式的单相短路电流很大,线路或设备需立即切除,增接了断路器的负担,降低了供电的连续性。但由于过电压较低,绝缘水平可下降,减少了设备的造价,特别是在高压和超高压电网,经济效益显著。故适用于110KV及以上电网中。
我国110KV以上电压,变压器的绕组都采用Y连接。35KV以下电压,变压器绕组都采用△连接。本次设计采用Y连接。
4.4变压器调整方式的选择
变压器的电压调整使用分接开关切换变压器的分接头,从而改变变压器的变比。切换方式有两种:不带负荷切换,称为无励磁调压,调整范围通常在±5%以内;另一种是带负载切换,称为有载调压,调整范围可达20%-30%。对于110KV以下的变压器,设计时才考虑到变压器采用有载调压的方式。综合考虑发电厂的发电机运行出力变化不大,所以在本次的设计中采用的变压器调整方式是无励磁调压。
二.电气主接线方案的确定
1.电气主接线的主要要求
电气主接线的设计原则是:根据发电厂在电力系统的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、本期建设规模、输送电压等级、进出线回路数、供电负荷的重要性、保证供需平衡、电力系统线路容量、电气设备性能和周围环境及自动化规划与要求等条件确定。应满足可靠性、灵活性和经济性的要求。
300MW机组火力发电厂电气部分设计

300MW机组火力发电厂电气部分毕业设计论文目录摘要 (I)绪论 (1)第1章电力系统及其发电厂电气部分总述 (3)1.1 电力系统的构成 (3)1.2 对电力系统的基本要求 (3)1.3 发电厂电气部分概述 (4)第2章发电厂电气主接线选择 (6)2.1 概述 (6)2.2 电气主接线的设计依据 (6)2.3 主接线方案的拟定 (8)2.4 主接线方案的比较与选定 (9)第3章主变压器的选择 (10)3.1 主变压器的概述 (10)3.2 主变压器的选择 (10)3.3 主变压器的计算 (10)第4章短路电流的分析及计算 (12)4.1 短路电流计算分析 (12)第5章电气设备的选择及校验 (14)5.1 电气设备选择的原则 (14)5.2 电气设备的分析 (14)5.3 220KV母线侧高压断路器的选择及校验 (14)5.4 220KV母线侧隔离开关的选择及校验 (15)5.5 220KV母线侧电流互感器的选择 (16)5.6 220KV母线侧电压互感器的选择 (16)5.7 110KV母线侧高压断路器的选择及校验 (18)5.8 110KV母线侧隔离开关的选择及校验 (18)5.9 110KV母线侧电流互感器的选择 (19)5.10110KV母线侧电压互感器的选择 (19)第6章防雷保护规划 (21)6.1 雷电过电压的形成与危害 (21)6.2 防雷保护 (21)6.3避雷器的选择 (22)6.4防雷计算 (22)第7章展望 (26)致谢 (28)参考文献 (29)附录I短路电流计算 (30)绪论世界各国电力工业发展的经验告诉我们,电力系统愈大,调度运行就愈能合理和优化,经济效益就愈好,应变事故的能力就愈强。
所以很多发达国家的电力系统都已联合成统一的国家电力系统,甚至联合成跨国电力系统。
这可以说是现代电力工业发展的重要标志。
我国也必然要向这一方向发展由于负荷的不断增长和电源建设的发展,负荷和能量分布不均衡,将一个电力系统与邻近的电力系统互联,是历史发展的必然趋势。
(电气自动化技术)论文题目

李老师:这是我整理的20个题目,你让学生3~5人一个题目选择即可。
当然,学生也可以自选题目,只要大体符合电气自动化方向即可。
太原科技大学 毕业设计任务书(一)一、 毕业设计(论文)题目: 220KV 枢纽变电所一次系统设计 二、原始数据(材料):1、两台主变,容量180MV A ,电压等级三级:220KV 、110KV 、35KV ,2、进出线220KV 侧4回;110KV 侧6回;35KV 侧8回。
220KV 由系统以两回线联系接本所又从本所以两回线连至另一地区变电所,110KV 以两回联络线连接110KV 系统,此两回线在正常工作情况下,只起联络作用,只是在故障或检修情况下,才需短时间向110KV 地区负荷供电,110KV 以四回线供110KV 地区负荷,35KV 侧以8回线供35KV 侧负荷。
3、110KV 侧最大负荷 100MV A (4-10月),最小负荷60 MV A ,35KV 侧最大负荷50MV A (4--10月),最小负荷40MV A 。
4、220KV 系统容量日2500 MV A , 110KV 系统容量日1000 MV A 。
5、220KV 系统归算至变电所 220KV 母线总电抗么值X C *220=2.2, 110KV 系统归算至110KV 母线总电抗标么值X C *110=1.3。
6、所设计变电所设在地势较平坦,具有良好出线走廊条件,但土地质量为一般的地区,最高温度为38℃。
三、毕业设计(论文)的目的要求:1、熟悉各类主接线的特点。
2、了解短路计算的方法和过程。
3、熟悉如何选择主要电气设备。
四、完成的工作内容:1、本变电所在系统中的地位分析。
2、变电所主接线设计。
3、变电所主接线短路电流的计算,经济计算等。
4、主要电气设备的选择(DL 、ZK 、BL 、PT 、CT 、母线)。
5、电气主接线的绘制,配电装置选型。
五、学生应交出的设计(论文)文件: 1、毕业设计论文一本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 选择本厂主变压器和厂用变压器的容量、台数、型号及参数1.1厂用变压器的选择1.1.1负荷计算方法负荷计算一般采用换算系数法,换算系数法的算式为S =∑(KP ) (2.1)式中S ——计算负荷(KVA)K ——换算系数P ——电动机的计算功率(KW )由于发电机额定功率已经给出,f S =353MVA ,则主变选择应按 B S ≥1.1⨯(1-p K )⨯f S 计算式中B S ――主变的最小容量(MV A )p K ――厂用电量所占总发电量的比例(%)1.1.2容量选择原则(1)高压厂用工作变压器容量应按高压电动机计算负荷的110%,与低压厂用电计算负荷之和选择。
(2)高压厂用备用变压器或起动/备用变压器应与最大一台高压厂用工作变压器的容量相同;当起动/备用变压器带有公用负荷时,其容量还应满足最大一台高压厂用工作变压器的要求,并考虑该起动/备用变压器检修的条件。
1.1.3容量计算公式高压厂用工作变压器: d g B S S 1.1S +≥ (2.2) B S ——厂用变压器高压绕组额定容量(KVA )g S ——高压电动机计算负荷之和d S ——低压厂用计算负荷之和 由电力工程电气设备手册及所给原始资料,本厂选用SFPF P Z -40000/20的变压器,其额定容量为40000/25000-25000(KVA ),高压额定电压为20±8×1.25%,低压额定电压为6.3-6.3,周波为50HZ ,相数为3,卷数为3,结线组别为N Y 、11d -11d ,阻抗为14,空载电流0.31%,空载损耗41.1KW ,负载损耗178.9KW ,冷却方式为ONAN/ONAF 。
1.2主变压器的选择1.2.1容量和台数选择发电机与主变压器为单元接线时,主变压器的容量按发电机的量大连续输出容量扣除本机组的厂用负荷来选择。
1.2.2 相数的选择主变压器采用三相或是单相,主要考虑变压器的制造条件,可靠性要求及运输条件等因素。
特别是大型变压器,尤其需要考查其运输可能性,保证运输尺寸不超过隧洞,涵洞,桥洞的允许通过限额,运输重量不超过桥梁、车辆、船舶等运输工具的允许承载能力。
当不受运输条件限制时,在330KV 及以下的发电厂,应选用三相变压器。
1.2.3绕组连接方式的选择变压器的绕组连接方式必须和系统电压相位一致,否则不能并列运行。
电力系统采用的绕组连接方式只有Y 和 ,高、中、低三侧绕组如何组合要根据具体工程来确定。
按照设计要求及所给原始资料,本厂选择装设的主变压器型号为7SFP -370000/220,额定容量为370MVA ,额定电压为242±2×2.5%/20KV,额定电流为/10681A ,周波50Hz ,相数为3,卷数为2,结线组别N Y ,11d ,阻抗为14.15%,空载损耗203.7KW ,空载电流0.22%,负载损耗951.5KW ,冷却方式为ODAF ,油量为37.2T ,器重167T ,总重249.7T 。
第二章 设计本厂电气主接线方案电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置布置、继电保护和控制方式的拟定有较大影响。
2.1主接线设计的基本要求主接线应满足可靠性、灵活性和经济性三项基本要求。
2.1.1可靠性供电可靠性是电力生产和分配的首要要求,主接线首先应满足这个要求。
主接线可靠性的具体要求(1)断路器检修时,不宜影响对系统的供电;(2)断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要保证对一级负荷及全部或大部分二级负荷的供电;(3)尽量避免发电厂、变电所停运的可能性;(4)大机组超高压电气主接线应满足可靠性的特殊要求。
2.1.2灵活性主接线应满足在调度、检修及扩建时的灵活性。
(1)调度时,应可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式以及特殊运行方式下的系统调度要求。
(2)检修时,可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对用户的供电。
(3)扩建时,可以容易地从初期接线过渡到最终接线。
在不影响连续供电或停电时间最短的情况下,投入新装机组、变压器或线路而不互相干扰,并且对一次和二次部分的改建工作量最少。
2.1.3 经济性主接线在满足可靠性、灵活性要求的前提下做到经济合理。
(1)投资省a.主接线应力求简单,以节省断路器、隔离开关、电流和电压互感器,避雷器等一次设备;b.要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆;c.要能限制短路电流,以便于选择价廉的电气设备或轻型电器;d.如能满足系统安全运行及继电保护要求,110KV及以下终端可采用简易电器。
(2)占地面积小主接线设计要为配电装置创造条件,尽量使占地面积减少。
(3)电能损失少经济合理地选择主变压器的种类、容量、数量,要避免因两次变压而增加电能损失,此外在系统规划设计中,要避免建立复杂的操作枢纽,为简化主接线,发电厂、变电所接入系统的电压等级一般不超过两种。
2.2 高压配电装置的基本接线形式及适用范围2.2.1双母线接线四分段带旁路双母线四分段带旁路的两组母线同时工作,并通过母线联络断路器并联运行,电源与负荷平均分配在两组母线上。
由于母线继电保护的要求,一般某一回路固定与某一组母线连接,以固定连接的方式运行。
图3-1 双母线四分段带旁路接线(1)优点:a.供电可靠。
通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;检修任一回路的母线隔离开关,只停该回路;b.调度灵活。
各个电源和各回路负荷可以任意分配到某一组母线上,能灵活地适应系统中各种运行方式调度和潮流变化的需要;c.扩建方便。
向双母线的左右任何一个方向扩建,均不影响两组母线的电源和负荷均匀分配,不会引起原有回路的停电。
当有双回架空线路时,可以顺序布置;d.便于试验。
当个别回路需要单独进行试验时,可将该回路分开,单独接至一组母线上。
(2)缺点:a.增加一组母线就需要增加一组母线隔离开关。
b.当母线故障或检修时,隔离开关作为倒换操作电器,容易误操作。
为了避免隔离开关误操作,需在隔离开关和断路器之间装设连锁装置。
这种接线适用于出线回路数或母线上电源较多,输送和穿越功率较大,母线故障后要求迅速恢复供电,母线或母线设备检修时不允许影响对用户的供电、系统运行调度对接线的灵活性有一定要求时采用,或当110-220KV配电装置,在系统中居重要地位,出线回路数为4回及以上时采用。
为了保证采用双母线四分段的配电装置,在进出线断路器检修时,不中断对用户的供电,可增设旁路母线或旁路隔离开关。
第三章设计本厂厂用电接线方案3.1厂用电接线总的要求:厂用电设计应按照运行、检修和施工的要求,考虑全厂发展规划,妥善解决分期建设引起的问题,积极慎重地采用经过鉴定的新技术和新设备,使设计达到经济合理、技术先进,保证机组安全、经济和满发地运行。
3.2厂用电接线应满足下列要求:(1)各机组的厂用电系统应是独立的。
一台机组的故障停运或其辅机的电气故障,不应影响到另一台机组的正常运行,并能在短时间内恢复本机组的运行。
(2)充分考虑机组起动和停运过程中的供电要求。
一般均应配备可靠的起动电源。
在机组起动停运和事故时的切换操作要少,并能与工作电源短时并列。
(3)充分考虑到电厂分期建设和连续施工过程中厂用电系统的运行方式。
特别要注意对公用负荷供电的影响,要便于过渡,尽少改变接线和更换设备。
(4)200MW及以上机组应设置足够容量的交流事故保安电源,当全厂停电时,可以快速起动和自动投入,向保安负荷供电,还要设置电能质量指标,合格的交流不间断供电装置,保证不允许间断供电的热工负荷的用电。
由设计手册,发电机容量为300MW,宜采用6KV的高压厂用电压,而且当厂用电压为6KV时,200KW以上的电动机采用6KV,200KW以下的采用380V;另外300MW机组火电厂主厂房通用设计的厂用电接线中6KV为中性点不接地系统,380V为中性点经高电阻接地系统。
每台机组设A、B两段6KV母线,由一台分裂绕组高压厂用工作变压器供电,该变压器由发电机出口引接。
两台机组设一台起动变压器,供给机组起动和停机负荷,并兼作厂用工作变压器的事故备用。
在本厂厂用电设计中,因锅炉辅助机械多、容量大、供电网络复杂,为了提高供电可靠性,厂用电接线系统通常采用单母线分段接线形式,而且为了保证厂用电系统的供电可靠性与经济性,且便于灵活调度,一般采用“按炉分段”原则,即将厂用电母线按锅炉的台数分成若干独立段,既便于运行、检修,又能使事故影响范围局限在一机一炉。
图4-3 厂用电主接线第四章电气部分各种类型短路电流的计算4.1短路电流计算的目的:(1)电气主接线比选;(2)选择导体和电器;(3)确定中性点接地方式;(4)计算软导体的短路摇摆;(5)选择继电保护装置和进行整定计算等。
4.2短路计算原则短路电流实用计算中,采用以下假设条件和原则:(1)正常工作时,三相系统对称运行;(2)所有电源的电动势相位角相同;(3)系统中的同步和异步电机均为理想电机,不考虑电机磁饱和、磁滞、涡流及导体集肤效应等影响;转子结构完全对称;定子三相绕组空间位置相差0120电气角度;(4)电力系统中各元件的磁路不饱和,即带铁心的电气设备电抗值不随电流大小发生变化;(5)电力系统中所有电源都在额定负荷下运行,其中50%负荷接在高压母线上,50%负荷接在系统侧;(6)同步电机都具有自动调整励磁装置(包括强行励磁);(7)短路发生在短路电流为最大值的瞬间;(8)不考虑短路点的电弧阻抗和变压器的励磁电流;(9)除计算短路电流的衰减时间常数和低压网络的短路电流外,元件的电阻都略去不计;(10)元件的计算参数均取其额定值,不考虑参数的误差和调整范围;(11)输电线路的电容略去不计;(12)用概率统计法指定短路电流运算曲线。
第五章 主要电气设备的选择5.1电器选择的一般要求5.1.1一般原则选择的高压电器应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。
(1)长期工作条件a.电压选择的电器允许最高工作电压max U 不得低于该回路的最高运行电压g U 。
即、max U ≥g U (6.1)b.电流选用的电器额定电流e I 不得低于所在回路在各种可能运行方式下的持续工作电流g I ,e I ≥g I ,高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。